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ABSTRACT

In recent times, the quality of life of several individuals has been affected by chronic diseases. Traditional forms of rehabilitation occasionally involve 
face-to-face sessions, which restricts accessibility and presents challenges for real-time monitoring. Lack of comprehensive understanding of the 
aspects impacts long-term patient engagement and adherence to remote rehabilitation programs. Individuals and healthcare systems incur a signifi-
cant portion of the costs associated with rehabilitation treatment. A home-based rehabilitation program reduces the rehabilitation cost. However, the 
clinicians’ absence may affect the effectiveness of rehabilitation programs. There is a demand for an artificial intelligence-based remote monitoring 
model for evaluating the physical movements of individuals. Therefore, the study proposes a framework for generating scores for physical rehabili-
tation exercises. It supports the home-based rehabilitation program by assessing the individual’s movements. The authors employ the You Only Look 
Once V5–ShuffleNet V2-based image processor for generating scores using the variations between the joints. In addition, they build bidirectional 
long short-term memory networks for delivering a score for each exercise. Finally, the two outcomes are compared using the modulated rank averag-
ing method for presenting the final score. The authors evaluate the performance of the proposed model using the KiMoRe dataset. The comparative 
analysis outcome suggested that the proposed model obtained an exceptional mean absolute deviation, mean absolute percentage error, and root mean 
square error of 0.425, 1.120, and 0.985, respectively. It highlighted the significance of the proposed framework in assessing the individual’s physical 
movement. Further studies will improve the performance of the proposed framework.
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INTRODUCTION

Rehabilitation is frequently recommended for individuals 
with physical limitations or who need to regain functional 
ability resulting from an accident or surgery (Capecci et al., 
2019). In the literature, several studies emphasize the signif-
icance of physical rehabilitation for better patient outcomes 
and the robust relationship between exercise intensity and 
rehabilitation success rates (Zhao et al., 2017; Vakanski 
et al., 2018; Zhang et al., 2019). In clinical rehabilitation 
programs, clinicians teach and supervise patients’ activities 
(Li et al., 2018). This sort of rehabilitation treatment requires 
patients’ schedules and is limited by clinician availability. 
Thus, home-based rehabilitation is utilized as a complement 
to clinic-based programs to provide additional program 
adaptability. In home-based rehabilitation, the physician 
prepares a unique rehabilitation program for each patient by 
suggesting a series of activities (Allahbakhsh et al., 2020). 

Patients follow the instructions, register their daily progress, 
and attend the clinic for progress assessments. Recent stud-
ies report that over 90% of rehabilitation treatments are car-
ried out at home (Sarsfield et al., 2019).

In order to regain muscular strength along with enhanced 
balance, individuals with a variety of physical impairments 
benefit greatly from participating in home-based rehabilita-
tion programs and performing the recommended physical 
exercises (Lin et al., 2018). Without a medical specialist, 
individuals in these programs cannot evaluate their action 
performance. In the field of activity monitoring, vision-
based sensors have become more prevalent in recent years. 
These devices may obtain highly accurate measurements of 
skeletons. Recent advances in computers, robotics, machine 
learning, connectivity, and sensor downsizing provide com-
passionate intelligent gadgets and technology-embedded 
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environments (Petersen et al., 2018; Prabhu et al., 2020; 
Ferreira et al., 2021). The majority of intelligent systems 
are for manufacturing, military, space exploration, and 
entertainment. Improving health-related quality of life is an 
emerging topic in artificial intelligence (AI)-based applica-
tions. Assistive technology has become compromised in the 
shuffle between breakthroughs in medical and intelligent 
system technologies. In order to build intelligent devices 
and systems that assist and interact with humans, a funda-
mental knowledge of how they relate to human functions is 
essential.

In recent years, the quality of life of stroke survivors 
has been the focus of significant research and development 
efforts. These efforts have focused on utilizing a diverse 
array of technological tools (Nambi et al., 2017; Derungs 
et al., 2018; Soro et al., 2019; Ishii et al., 2020). However, 
relatively few medical institutions make use of computer- 
based rehabilitation solutions. According to the studies, more 
than 90% of rehabilitation takes place at home. To achieve 
the best possible outcome in terms of safety and efficacy, a 
rehabilitation program is typically delivered in clinical facil-
ities or at home by a physiotherapist who continuously pro-
vides feedback on gesture accuracy, in terms of goal, motion, 
and posture (Ebert et al., 2017; Sardari et al., 2020; Raihan 
et al., 2021; Kanade et al., 2022; Rahman et al., 2022; Li 
et al., 2023). Motor learning and retention are enhanced by 
the feedback and information on gesture accuracy provided 
between and following a physical movement (Bevilacqua 
et al., 2020; Liao et al., 2020; Deb et al., 2022; Abedi et al., 
2023). To provide safe and successful rehabilitation, the 
supervision of the gesture is essential to achieve an effective 
outcome.

In order for the patients to keep track of their progress 
in the rehabilitation program, they are required to either 
self-monitor or seek assistance from family members. The 
voluntary nature of home-based rehabilitation programs 
might lead to low patient adherence, prolonging posthospi-
talization recovery (Chowdhury et al., 2021; Guo and Khan, 
2021; Mottaghi and Akbarzadeh-T, 2022). Home-based 
rehabilitation lacks corrective input on movement quality 
and accuracy. Robotic-assistive devices, virtual reality and 
gaming interfaces, and Kinect-based support are a few of 
the technology tools accessible to patients receiving home-
based rehabilitation (Mourchid and Slama, 2023).

AI and other forms of cutting-edge technology have 
advanced rehabilitation to an entirely new level (Mourchid 
and Slama, 2023). It is possible to train AI algorithms to ana-
lyze enormous amounts of patient data, such as medical his-
tory, vital signs, and lifestyle variables, in order to generate 
a tailored treatment plan for the patient. More precise and 
rapid diagnosis might result in better health outcomes for 
patients (Mourchid and Slama, 2023). AI enables physicians 
to closely monitor rehabilitation progress and adapt treat-
ment plans to speed patient recovery. Deep learning (DL) is 
a widely applied AI technique for classifying medical images 
(Albert et al., 2021). It can assist therapists in estimating the 
rehabilitation period. In addition, it determines whether their 
patients are ready for the subsequent phase in their recov-
ery process. Rehabilitation solutions driven by AI may 
lower the financial and logistical barriers that prevent more 

individuals from benefiting from physical treatment (Albert 
et al., 2021). If rehabilitation is more efficient and success-
ful, patients will need fewer sessions, reducing healthcare 
expenses (Maradani and Levkowitz, 2017).

A significant number of individuals globally necessitate 
physical rehabilitation; nonetheless, the accessibility of reha-
bilitation services may be restricted due to variables such as 
geographical location, mobility impairments, or limitations 
in healthcare resources. Traditional treatment involves reg-
ularly attending sessions in person, resulting in a lack of 
monitoring and intervention in the time between sessions. 
The research motivation for building an AI-driven remote 
monitoring model for physical rehabilitation is to enhance 
accessibility, individualization, continual tracking, and the 
overall efficacy of rehabilitation services. Implementing 
AI-based technology can enhance rehabilitation, yielding 
more significant outcomes for individuals undergoing phys-
ical rehabilitation.

In Vision 2030, the Kingdom established the health sec-
tor transformation program. The initiative aims to provide 
universal healthcare, improve regional fairness, and promote 
e-health utilization (Zahra et al., 2022). The program pri-
oritizes health innovation in order to enhance health care, 
particularly rehabilitation. However, there is a demand for 
automating the process of monitoring rehabilitation pro-
grams to provide an effective service for disabled individ-
uals. Therefore, the study intends to generate an AI-driven 
movement assessment score for monitoring the home-based 
rehabilitation program.

The contributions of this study are:
•	 An effective rehabilitation monitoring framework using 

bidirectional long short-term memory (Bi-LSTM) and 
You Only Look Once (YOLO) V5–ShuffleNet V2 models.

•	 Evaluation of the proposed framework using the bench-
mark dataset and the baseline models.

The study is organized as follows: The Literature Review 
section presents the features and limitations of the existing 
literature. The research methodology is presented in the 
Materials and Methods section. The Results section presents 
the experimental outcomes of the proposed study. The study 
findings are discussed in the Discussions section. Finally, the 
Conclusion section concludes the proposed study.

LITERATURE REVIEW

In AI, human behavior analysis is considered a significant 
and formidable challenge (Capecci et al., 2019). It analyzes 
human body movements by evaluating joint, bone, and mus-
cle motions. The modeling and analysis of human movements 
using DL techniques have recently gained popularity due to 
their exceptional performance (Zhao et al., 2017; Li et al., 
2018; Lin et al., 2018; Vakanski et al., 2018; Sarsfield et al., 
2019; Zhang et al., 2019; Allahbakhsh et al., 2020). It has 
been widely used for motion classification, gesture recogni-
tion, and action localization. DL techniques, including convo-
lutional neural networks (CNNs), LSTM, and gated  recurrent 
units, are employed to assess the physical movements in 
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the rehabilitation program (Lin et al., 2018; Petersen et al., 
2018; Prabhu et al., 2020; Ferreira et al., 2021). These move-
ments can be interpreted as various gestures, human–human 
interactions, group activities, and behaviors depending on 
the level of complexity. These activities can reveal persons’ 
personalities, physiological and psychological states, and 
potential goals and intents. Automatic human behavior anal-
ysis systems are gaining popularity for assisting profession-
als in healthcare, public monitoring, and driverless systems 
(Nambi et al., 2017; Derungs et al., 2018; Soro et al., 2019; 
Ishii et al., 2020; Li et al., 2023). Nevertheless, the effective-
ness of motion tracking, data preprocessing, representation 
learning, and assessment approaches heavily influences the 
development of a human activity analysis system.

In order to develop effective tools and systems for home-
based rehabilitation, it is crucial to quantify the degree of accu-
racy in performing recommended activities. Existing studies 
typically analyze the movement by contrasting a patient’s per-
formance on a certain activity with the optimal performance 
of healthy individuals. Several previously published research 
used machine learning techniques to categorize workout repe-
titions as correct or incorrect (Ebert et al., 2017). Researchers 
applied the Adaboost classifier, k-nearest neighbors, and CNN 
models to assess the individual’s performance quality. These 
approaches were unable to identify the movement quality or 
incremental patient performance improvements throughout 
rehabilitation (Rahman et al., 2022).

It is common practice for clinicians to provide their 
patients with a series of exercises combined with a rec-
ommended number of repetitions (Sardari et al., 2020). 
Evaluating exercise performance involves objective criteria 
such as following set and repetition guidelines, maintaining 
adequate technique, quality of movements, and right pos-
ture. Thus, temporal segmentation is the initial step in an 
AI-driven workout assessment pipeline. Segmentation can 
be used to calculate exercise repetition counts, or it may be 
conducted independently. Multiple data sources, such as 
the inertial measurement unit, sensor, video, and skeletal 
position data, were utilized for repetitive segmentation and 
counting.

The existing datasets cover a small set of physical move-
ments. The limited number of the participants may reduce 
the performance of the CNN model in generating the assess-
ment score. The KiMoRe dataset offers video, images, and 
skeletal body joints (BJ) data (Capecci et al., 2019). The 
number of healthy and unhealthy individuals participating in 
the dataset is higher than the existing datasets. In addition, 
recent studies are widely applying this dataset for develop-
ing physical rehabilitation assessment models. The studies 
(Ebert et al., 2017; Derungs et al., 2018; Bevilacqua et al., 
2020; Ishii et al., 2020; Liao et al., 2020; Sardari et al., 2020; 
Chowdhury et al., 2021; Guo and Khan, 2021; Raihan et al., 
2021; Deb et al., 2022; Kanade et al., 2022; Rahman et al., 
2022; Abedi et al., 2023; Li et al., 2023) utilized the KiMoRe 
dataset to their assessment frameworks. Sardari et al. (2020) 
proposed a Vi-net-based movement assessment model. They 
employed images to evaluate the individual’s movements. 
Kanade et al. (2022) built a DL-based framework for assess-
ing movement quality. The skeletal BJ data were used to 
generate a score for each individual’s rehabilitation exercise. 

Raihan et al. (2021) developed an exercise assessment model 
using a genetic algorithm (GA)-optimized CNN. They gen-
erated scores for each exercise using a local binary pattern 
(LBP) mechanism.

Deb et al. (2022) extracted features from the red, green, 
and blue (RGB) videos for presenting the quality assess-
ment score. Bevilacqua et al. (2020) developed an LSTM 
and a boosting aggregation exercise assessment model. They 
employed accelerometer and gyroscopic data. Liao et al. 
(2020) proposed an assessment framework for supervising 
physical rehabilitation exercises. They employed a log like-
lihood of a Gaussian mixture model for the score generation. 
In addition, a deep encoder network was used to encode the 
low-dimensional data. Abedi et al. (2023) developed a set 
of DL models for exercise repetition segmentation using 
the skeletal BJ data. They applied multiple sequential neu-
ral networks for producing an outcome. Chowdhury et al. 
(2021) utilized depth sensor data and developed an assess-
ment model for supervising the rehabilitation exercises. Guo 
and Khan (2021) employed a feature extraction method for 
evaluating physical rehabilitation exercises. The RGB vid-
eos of the KiMoRe dataset are used for building the model. 
Mottaghi and Akbarzadeh-T (2022) developed deep mixture 
density neural networks for the automated evaluation of 
rehabilitation exercises. Lastly, Albert et al. (2021) used gen-
erative adversarial networks for extracting the features from 
the RGB videos. The existing literature focused on imple-
menting a score generator using the RGB videos, images, 
and skeletal BJ data. However, the current models demand a 
substantial computational cost and high training time. There 
is a demand for an effective feature extraction technique to 
support the score generator model.

There is a lack of significant clinical validation and evi-
dence about the effectiveness of AI-driven remote moni-
toring models in various rehabilitation scenarios; lack of 
collaboration between AI researchers and rehabilitation 
specialists; insufficient and comprehensive ethical and legal 
frameworks for implementing AI in rehabilitation; and inad-
equate validation of AI-driven models across heterogeneous 
patient populations encompassing various age cohorts, cul-
tural contexts, and medical conditions.

MATERIALS AND METHODS

In this study, the authors developed an integrated framework 
for assessing the movements of disabled individuals. Table 1 
presents the features and limitations of the current liter-
ature. Figure 1 highlights the proposed assessment frame-
work (PAF). It includes a preprocessing method, YOLO V5 
(Ge et al., 2021)–ShuffleNet V2 (Ma et al., 2018) model, 
and Bi-LSTM (Huang et al., 2015) model. The preprocess-
ing technique is employed in order to improve the image 
quality and remove irrelevant data from the dataset. The 
authors apply YOLO V5 to extract features from the images. 
In addition, the ShuffleNet V2 model classifies the images 
and generates a score using the movement variations. In 
addition, Bi-LSTM is used to process the BJ data. The mod-
ulated rank averaging (MRA) method (De and Chowdhury, 
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2021) fuses the outcomes of the YOLO V5–ShuffleNet V2 
and Bi-LSTM models and presents a final score. Finally, 
the authors generalized the PAF using the KiMoRe dataset 
(KiMoRe dataset, 2023). They employed benchmark metrics 
that are used to evaluate the performance of the proposed 
framework. Figure 1 outlines the PAF.

Data acquisition phase

The authors utilized the KiMoRe to train the PAF. The data-
set is publicly available in the repository (KiMoRe dataset, 
2023). It includes RGB images, videos, BJ positions, and 

joint orientations of 78 individuals. The dataset was col-
lected from 44 healthy and 34 unhealthy individuals. A total 
of five exercises were conducted and respective images, vid-
eos, and features of exercises were recorded. Table 2 outlines 
the characteristics of the dataset. Figure 2 shows the sample 
images of exercises 4 and 5 of the KiMoRe dataset.

Preprocessing phase

The images were extracted from the videos. It may contain 
noises, which may affect the image quality. Thus, the authors 
apply the linear filtering technique for removing the noises. 

Figure 1: The proposed framework.

Table 1: Characteristics of the existing literature.

Authors  Methods  Dataset  Features  Limitations
Sardari et al. 
(2020)

 Two-dimensional 
CNN

 KiMoRe  Used the Vi-net model to process the 
images and generate a score

 The skeletal BJ data are not 
considered in the study.

Kanade et al. 
(2022)

 Transformer-
based attention 
mechanism

 KiMoRe  Applied the transformer network and 
attention mechanism for data imputation

 The study’s outcome was limited 
to the skeletal BJ data.

Raihan et al. 
(2021)

 CNN  KiMoRe  Employed GA-based CNN and local 
binary mechanism for score generation

 GA requires a huge computation 
cost for optimizing the CNN model.

Deb et al. 
(2022)

 Graph 
convolutional 
network

 KiMoRe  Applied graph convolutional network 
(GCN)-based quality assessment score 
generator

 GCN requires an additional 
computational cost.

Bevilacqua 
et al. (2020)

 LSTM model  KiMoRe  Employed LSTM and boosting 
aggregation method for processing the 
skeletal BJ data

 The LSTM model passes the 
information in one direction. The 
model may face challenges in 
dealing with data overfitting.

Liao et al. 
(2020)

 Gaussian 
mixture model

 University of 
Idaho- Physical 
Rehabilitation 
Movement Dataset 
(UI-PRMD)

 Employed log likelihood to compute a 
score

 UI-PRMD contains 10 exercises 
without ground truth labels.

Abedi et al. 
(2023)

 DL models  KiMoRe, UI-PRMD, 
and IntelliRehabDS

 Applied a set of DL techniques  Irregularities in the exercises may 
affect the model’s efficiency.

Chowdhury 
et al. (2021)

 DL model  KiMoRe  Employed depth sensor data and graph 
convolutional network

 Graph convolutional network 
demands an additional 
computational time.

Guo and Khan 
(2021)

 DL-based 
feature 
extraction model

 KiMoRe  Utilized the RGB videos and extracted 
features

 The model requires a huge 
computational cost for processing 
the videos.

Mottaghi and 
Akbarzadeh-T 
(2022)

 DL model  KiMoRe  Deep mixture density neural network  The model’s performance is based 
on the low-quality sensor data.

Albert et al. 
(2021)

 CNN  KiMoRe  Employed GAN for the feature 
extraction

 The model presented the features 
rather than generating score for 
each exercise.

Abbreviations: BJ, body joints; CNN, convolutional neural network; DL, deep learning; GA, genetic algorithm; GAN, generative adversarial 
network; LSTM, long short-term memory; RGB, red, green, and blue.
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In addition, average and median filtering techniques are 
employed to overcome the salt and pepper noises. In addi-
tion, BJ data are normalized to support the Bi-LSTM model.

YOLO V5–ShuffleNet V2-based score 
 generation

The YOLO V5 model utilizes a deep neural network as its 
foundation to extract hierarchical features from the images. 
Figure 3 offers the structure of the proposed model. These 
characteristics can be employed for the purpose of identify-
ing and locating objects. The system utilizes transfer learn-
ing by leveraging pretrained weights from extensive datasets 
such as ImageNet. This enables the model to utilize acquired 

characteristics from a wide range of images prior to refining 
its performance object detection assignments. The system 
includes feature pyramid networks or comparable struc-
tures. This facilitates the capture of characteristics at several 
scales, enabling the model to effectively detect objects of 
varying sizes. The YOLO V5 model employs the residual 
and dense blocks for forwarding the information to the deep-
est layers to overcome the challenges in generating the fea-
ture maps. Let I be the image; b be the bounding box; a, d, 
h, and w are the locations of the bounding box; and s be the 
image variation in time (t). Eqs. 1-4 express the computation 
of the bounding box.

 (2 ( ) 0.5)a ab X t�� � � aC  (1)

 (2 ( ) 0.5)d bb X t�� � � bC  (2)

 � �2(2 ( ))  w w wb P X X t��  (3)

 � �2( 2 ( ))  h h hb P X X t��  (4)

where c is the fixed constant and P is the specified location in 
the bounding box. Using the YOLO V5 model, the features 
are extracted and corresponding feature maps are generated. 
The authors use the ShuffleNet V2 model for processing the 
feature maps and produce a score for the individual’s perfor-
mance in the specific exercise.

ShuffleNet V2 is a lightweight CNN model that demands 
fewer computing resources for classifying complex images. 
It employs a limited number of feature channels to reduce 
the number of floating point operations (FLOPs). A channel 
shuffle is used for communicating the information between 
the channel groups. Furthermore, the feature channels are 
divided into branches. Each branch includes three convolu-
tions with similar input and output channels. Element-wise 
operations, including depth-wise convolution, channel shuf-
fle, and channel split, are merged into a single element-wise 
operation. It identifies the BJ data and generates the score 
according to the variations. For instance, individuals’ pos-
tures during the exercises are analyzed and variations are 
calculated based on the specific postures of the exercises. 
The authors employ the Adam optimizer to fine-tune the 
performance of the ShuffleNet V2 model. Based on the fine-
tuned parameters, the additional rectified linear unit (ReLu), 
fully connected CNNs, and dropout layers are integrated into 

Table 2: KiMoRe dataset characteristics.

Exercises  Features  Number of individuals 
with standard deviation 
and average age

1  7  1.  44 healthy individuals, 
36.5, and 35 years.2  9

3  9

4  5  2.  34 unhealthy, 60.44, 
and 60 years5  9

Figure 2: (a) Exercise 5. (b) Exercise 4.

Figure 3: The structure of YOLO V5 and ShuffleNet V2 models.
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the primary ShuffleNet V2 model. Figure 2 outlines the pro-
posed feature extraction and image-based score generation.

Bi-LSTM-based score generation

Bi-LSTM is used to study the BJ data for computing the 
score. It offers the PAF to read backward and forward the 
information at each step. The hidden state preserves the infor-
mation of the directions. The initial layer of the Bi-LSTM 
model is the vectorization layer. It encodes the BJ data into 
a sequence of tokens. The tokens are processed and assigned 
to a trainable vector. The vector can adjust themselves using 
the neighbor values. Lastly, Bi-LSTM processes the vectors 
and calculates an outcome for each exercise. Table 3 pre-
sents the notations and description of BJ.

Eqs. 5 and 6 show the computation of exercise 1.

 
3

1
1  JP ( / )s ii

E r�
�

� ��  (5)

where E1
s
 is the side view of exercise 1.

 
13

1
1  JP ( / ) ( / ) ( / )f i a hi

E r r r d d� �
�

� � � � � � ��  (6)

where E1
s
 is the frontal view of exercise 1.

The frontal views of exercise 2 are covered in Eqns. 7 and 8.

 
4

1 1
2 JP ( / )F ii

E r�
�

� ��  (7)
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13

2 1
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( / ) ( / )

F i s h hi
E d r d Z r X r

r r

�

�
�
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�

 (8)

where E2
F1

 and E2
F2

 are the frontal views of exercise 2.
Eqs. 9 and 10 highlight the expression of the exercise 3 

top and frontal views, respectively.

 
2

1
3 JPT i xi

E d
�

� ��  (9)

 

13

hip1
3 JP ( / ) ( / ) ( / )
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h

E d d d r r h r

Z r r r

� �

�
�
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� � � �
�

 (10)

where E3
T
 and E3

F
 are the top and frontal views of exercise 

3, respectively.
Eqs. 11 and 12 outline the combinations of angles and var-

iations related to exercise 4.

 1 14 JP  FE x z� � �  (11)

 hip

13

2 1
4  JP ( / ) ( / ) ( / )F i s si

E r d Z r d r�
�

� � � � � � ��  (12)

where E4
F1

 and E4
F2

 are the frontal views of exercise 4.
Finally, Eqs. 13 and 14 represent the expression of 

 exercise 5.
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1
5 JP ( / )s ii

E r�
�

� ��  (13)

 hip

13

1
5 JP ( / , / )F i t k s a s s hi

E A d d d d Z r X r d
�
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 (14)

where E5
s
 and E5

F
 are the side and frontal views of exercise 5, 

respectively.

Score ranking model

In order to rank the scores of Bi-LSTM and YOLO 
 V5–ShuffleNet V2 models, the authors follow the study. 
They apply the MRA method to fuse the scores and gener-
ate an outcome. The loss function outcome of Bi-LSTM and 
YOLO V5–ShuffleNet V2 models is used as a weight and 
combined with the generated scores. Based on these values, 
the accuracy is computed using the MRA method.

Evaluation metrics

In order to evaluate the performance of the PAF, the authors 
follow the benchmark evaluation metrics. They employ 
mean absolute deviation (MAD), mean absolute percentage 
error (MAPE), and root mean square error (RMSE) for the 
performance evaluation. MAD is used to derive the aver-
age distance between each BJ data with the mean. MAPE 
is the loss function that measures the prediction accuracy 
of the framework. RMSE is used to compute the difference 
between the predicted and ground truth values. In addition, 
the authors computed the accuracy using the MRA method. 
Eqs. 15-17 show the expression for computing MAD, 
MAPE, and RMSE.

 1
ˆ1

MAD
m

i
x x

m �
� ��  (15)

 1

1
MAPE 100

ˆm

i

x x

m x�

�
� ��  (16)

Table 3: KiMoRe dataset—notations and its description.

Notations Description
(a/r) Sagittal plane

(g /r) Elbow angles

(Ø/r) Knee angles

(ψ/r) Hip angles

(b /r) Vertical axis of the hip and shoulders

At Torso area

da Ankle distance

dh Hands distances

dk Knee distance

dhip Hip distance

dx Horizontal distance between the elbows

(h/r) Distance between wrists and shoulders

(Zh/r,Xh/r) Transverse plane coordinates of the hip

(h/r) Shoulder extension angle

ds Shoulder distance

(Zh/r) Depth coordinates of the hip

(Zs/r) Depth coordinates of the shoulder

(Zs/r,Xs/r) Transverse plane coordinates of the hip

(ds/r) Distance between hand and shoulder

(x,z) Transverse plan

JP Joint positions
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 � �
2

1

1
R E ˆMS

m

i
x x

m �
� ��  (17)

where m is the size of the dataset, and x and x̂ are the real-
time and predicted values, respectively.

RESULTS

The authors deployed the proposed model using Python 
3.8.2, Nvidia Geforce rtx 3050 ti, Intel I7 processor, and 10 
GB RAM. They used PyTorch and Tensorflow libraries for 
constructing the model. They trained the model using the 
batch size of 24 and Epochs of 242. Table 4 highlights the 
strategies of movement monitoring frameworks for gener-
ating the outcome. Compared to the state-of-the-art frame-
works, the PAF required a limited learning rate and FLOPs. 
The ShuffleNet V2 model assisted the framework to identify 
the image variation and produce an optimal outcome with a 
limited computation cost.

Table 5 presents the performance of the PAF. The PAF 
generalization using the KiMoRe dataset highlighted its sig-
nificance in assessing the rehabilitation exercises. Bi-LSTM 
and YOLO V5–ShuffleNet V2 models processed the key 
patterns of the images and streamlined the process of gen-
erating an outcome. Figure 4 reveals the findings of the per-
formance analysis.

Table 6 reveals the findings of the comparative analysis. 
It is evident that the PAF outperforms the existing move-
ments monitoring framework. The modified assessment 
framework (MAF) method presented a significant improve-
ment in the PAF’s performance. It employed the weights of 
Bi-LSTM and YOLO V5–ShuffleNet V2 models and gener-
ated the final score effectively. The lack of skeletal BJ data 
or images reduced the effectiveness of the existing frame-
works. Figure 5 represents the outcome of the comparative 
analysis.

DISCUSSIONS

The proposed study presented an AI-based framework for 
monitoring the rehabilitation processes. It generates a score 
for each exercise using the skeleton’s position data and 
images. The authors employed YOLO V5–ShuffleNet V2 

Table 4: Computation strategies of the movement assessment framework.

Methods/strategies Learning rate Parameters (M) FLOPs (G) GPU speed (batches/sec)
PAF 1 × 10−4 40 2.3 412

Deb et al. 1 × 10−3 38 3.4 503

Sardari et al. 1 × 10−4 25 4.7 586

Raihan et al. 1 × 10−3 40 5.1 490

Kanade et al. 1 × 10−2 42 4.8 535

Abedi et al. 2 × 10−4 51 3.9 621

Abbreviations: FLOP, floating point operations; G, giga; GPU, graphics processing unit; M, millions; PAF, proposed assessment framework.

Table 5: Outcome of the performance analysis.

Exercises/metrics  MAD  MAPE  RMSE  Accuracy
Ex 1  0.482  1.112  1.026  86

Ex 2  0.521  1.205  1.102  91

Ex 3  0.389  1.098  1.206  78

Ex 4  0.478  0.981  1.054  89

Ex 5  0.489  1.108  0.996  91

Average  0.4718  1.1008  1.0768  87

Abbreviations: MAD, mean absolute deviation; MAPE, mean absolute 
percentage error; RMSE, root mean square error.

0 20 40 60 80 100

Ex 1

Ex 2

Ex 3

Ex 4

Ex 5

Performance analysis

Accuracy RMSE MAPE MAD

Figure 4: Performance analysis outcome.

Table 6: Outcome of the comparative analysis.

Frameworks/
metrics

 MAD  MAPE  RMSE  Accuracy (%)

PAF  0.4718  1.1008  1.0768  87

Deb et al.  0.581  1.305  1.2682  85

Sardari et al.  0.674  1.523  1.325  76

Raihan et al.  0.812  1.751  1.524  81

Kanade et al.  0.759  2.0123  1.458  77

Abedi et al.  0.536  1.268  1.362  82

Abbreviations: MAD, mean absolute deviation; MAPE, mean 
 absolute percentage error; PAF, proposed assessment framework; 
RMSE, root mean square error.
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PAF

Deb et al.

Sardari et al.
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Comparative analysis
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Figure 5: Comparative analysis outcome.
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models and the Bi-LSTM model to build the proposed frame-
work. The KiMoRe dataset was utilized to evaluate the per-
formance of the PAF. The dataset covers videos and images 
of five exercises. It provides stroke patient (SP) data for each 
exercise. Initially, the image quality is enhanced using the 
contrast-limited adaptive histogram equalization technique. 
YOLO V5 is used to extract features from images. The 
extracted features are processed using ShuffleNet V2 to gen-
erate scores using the skeleton joints. In addition, the skel-
eton’s positions are used by Bi-LSTM to generate a score. 
Finally, the MRA method is used to compare the scores of 
Bi-LSTM and ShuffleNet V2 models using the weights and 
their scores to deliver the final score.

The PAF has major implications and benefits for 
patients, healthcare professionals, and the healthcare sys-
tem. Personalizing treatment programs corresponding to 
each patient’s unique requirements maximizes the efficacy 
of therapies while decreasing the time patients engage in 
rehabilitation. Using the suggested model makes it possible 
to promptly identify any problems, complications, or devi-
ations from the planned path of recovery. This allows for 
appropriate interventions and minimizes the likelihood of 
setbacks. Integrating the model can improve patient involve-
ment, resulting in increased adherence rates and improved 
rehabilitation outcomes. In addition, the proposed model 
provides healthcare clinicians with vital insights, facilitating 
evidence-based decision-making, individualized modifica-
tions to treatment plans, and enhanced overall patient care.

The PAF addressed the study’s intention to develop an 
automated movement assessment framework. It offers 
an opportunity for clinicians and physiotherapists to pro-
vide effective services for disabled individuals. The recent 
developments in Internet of Things (IoT) devices can sup-
port the PAF in presenting an effective home-based reha-
bilitation monitoring environment. IoT-based cameras can 
be integrated with the PAF to supervise the individuals’ 
movements. The lightweight application can be deployed in 
remote locations and assist physiotherapists in rendering ser-
vices to aged and unhealthy individuals.

The experimental outcome revealed that the proposed 
framework outperformed the existing AI-based assessment 
framework. The model by Sardari et al. (2020) obtained 
a remarkable outcome using the images. However, the 
skeleton’s position data can be applied to support disa-
bled individuals in a real-time environment. The proposed 
framework integrated images and SP data for assessing 
the individual’s movement. Raihan et al. (2021) extracted 
features from the SP data using LBP. The GA-based CNN 
demands additional training time for generating the score. 
Similarly, Deb et al. (2022) employed a graph convolu-
tional network to evaluate the exercises. It obtained a MAD, 
MAPE, and RMSE of 0.581, 1.305, and 1.2682. In contrast, 
the PAF delivered a superior outcome. The frameworks of 
Kanade et al. (2022) and Abedi et al. (2023) required a high 
computation cost for generating the outcome. On the other 
hand, the PAF achieved a superior result with a limited 
computation cost.

The PAF contains some limitations. The authors validated 
the study using the KiMoRe dataset. The irregularities of the 
dataset may reduce the effectiveness of the PAF. In addition, 

the structure of the ShuffleNet V2 model may affect the 
PAF’s performance in the real-time environment, depend-
ency on the availability of high-quality and diverse datasets 
for training the proposed model, challenges in precisely mon-
itoring and evaluating the effectiveness of intricate rehabil-
itation exercises using remote monitoring, the dynamic and 
changing regulatory environment, and the lack of assurance 
in the approval processes for healthcare solutions driven by 
AI technologies. In the future, the authors will address the 
limitations of the PAF. They will focus on creating a large 
dataset using IoT and Kinect sensors. In addition, the muscle 
activity measurement will be considered for generating the 
score, integrating AI-driven monitoring, interactive activi-
ties, teleconsultations, and secure communication channels 
into comprehensive telerehabilitation platforms for seamless 
remote medical care. Edge computing is becoming more 
popular for processing AI algorithms in real-time, improving 
distant monitoring systems’ responsiveness and decreasing 
latency. The fusion of AI algorithms with robotic rehabil-
itation devices enables the development of intelligent and 
adaptable systems that can offer dynamic and individualized 
support during physical therapy. Utilizing blockchain tech-
nology can strengthen data security, privacy, and integrity by 
addressing apprehensions related to preserving and exchang-
ing confidential patient data.

CONCLUSION

In this study, the authors addressed the limitations of the 
existing movement monitoring framework by developing 
an integrated framework. They implemented the PAF by 
using Bi-LSTM and YOLO V5–ShuffleNet V2 models. The 
images of healthy and unhealthy individuals during the reha-
bilitation exercises and the skeletal BJ data were used to train 
the framework. The low-quality images were improved using 
the image preprocessing model. The YOLO V5–ShuffleNet 
V2 model generated a score based on the images. In addi-
tion, Bi-LSTM produced a score using the skeletal BJ data. 
Finally, the MRA method fused the scores and produced the 
final score for each rehabilitation exercise. The authors gen-
eralized the PAF using the KiMoRe dataset. The performance 
analysis outcome suggested that the PAF generated an opti-
mal outcome for five exercises. Furthermore, the compara-
tive analysis findings highlighted the significance of the PAF 
in supervising the rehabilitation exercises. The PAF yielded 
a superior outcome compared to the existing frameworks. It 
can be implemented in healthcare centers across the Kingdom 
of Saudi Arabia (KSA). It provides an effective environment 
for physiotherapists to treat disabled individuals. In addition, 
IoT cameras can be integrated with the PAF in order to pres-
ent a home-based rehabilitation exercise monitoring system. 
The findings suggested that the proposed model facilitates 
the delivery of additional care beyond the designated treat-
ment periods, consequently fostering continuous rehabil-
itation, mitigating the occurrence of relapses, and assisting 
individuals in effectively managing long-term diseases. The 
proposed model has the ability for scalability, enabling them 
to reach a broader population and deliver rehabilitation treat-
ments to a more significant number of persons concurrently. 
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An AI-powered remote monitoring model enhances the 
robustness of healthcare systems, providing a practical solu-
tion for rehabilitation in times of pandemics or emergencies. 
However, the PAF demands additional training time for gen-
erating scores from complex real-time images. Future studies 
will consider improving the PAF’s performance to deliver 
highly accurate results.
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