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ABSTRACT
A cyclodextrin glycosyltransferase (CGTase) from an alkali-
philic Bacillus sp. strain, isolated from Cuban soil, was puri-
fied with Sephadex G-50 with a yield of 66.5%. The CGTase
was stable over a very wide pH range, 6.0–10, at 25°C and
was most active at pH 7.5. The enzyme exhibited an optimum
temperature of 60°C and was stable to 50°C for at least 8 h.
The T50 value – defined as the temperature at which 50%
of the initial activity was retained–was 63°C in this enzyme.
The influence of substrate or product concentration on the
initial rate of CD production was studied, and the kinetic
parameters were determined. The analysis of kinetic para-
meters Km and Vmax was obtained by the action of CGTase on
the starch of corn with respect to β-CD, and the values were
4.1 g/L and 5.2 μM β-CD/min ml, respectively. The purified
CGTase from Bacillus sp. could be used for an efficient cyclo-
dextrin (CD) production which is the significant yield of γ- CDs.

INTRODUCTION
The increasing interest to the alkaliphilic Bacillus sp. is in

connection with a great impact that these alkaliphilic micro-
organisms have gotten by their valuable and commercially
important enzymes [1–3]. Various applications, e.g., in deter-
gents [4], dye decolorization [5], pulp and paper industry [6,
7], have prompted the isolation of strains from a variety of
alkaline environments as a source of enzymes with suitable
activities.
The alkaliphilic Bacilli are the best producers of the enzyme

cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19).
Cyclodextrin glucanotransferase (CGTase, EC 2.4.1.9) is a
unique enzyme capable of converting starch and related sub-
strates into cyclodextrins (CDs) [8]. CDs are cyclic ring struc-
ture compounds consisting of six, seven, or eight glucose
residues joined by α(1!4) linkages (α-, β-, and γ-CD, respect-
ively) [9]. These compounds have an exclusive ability to act
as molecular containers by entrapping hydrophobic molecules
in their internal cavity. This property can improve stability,

solubility, and availability of a wide variety of interesting
compounds used in pharmaceutical, food, cosmetic, agricul-
tural, and chemical industries [10–13].
Besides the ability of CGTases to catalyze the intramolecular
transglycosylation reaction (cyclization), they are also able to
perform two intermolecular transglycosylation reactions:
coupling, in which a CD ring is cleaved and transferred to a
linear acceptor substrate and disproportionation, wherein
two linear oligosaccharides are converted into linear oligosac-
charides of different sizes. In addition, these enzymes possess
a weak hydrolyzing activity in which water is the glycosyl
acceptor [14, 15].
The industrial production of CGTase was made attractive only
when alkaliphilic Bacillus sp. was introduced as a production
organism [16]. The separation of the different CDs is costly
and time-consuming. A CGTase that synthesizes predomi-
nantly one type of CD is of interest [17]. The majority of the
CGTases especially from the alkaliphilic bacteria convert
starch into β-CD as the main product but still in a mixture of
CDs of different ratios [18].
The obtaining of new CGTases has a great scientific and prac-
tical contribution to the enzyme production of CDs [19]. In
this study, we report the purification and characterization of
the CGTase produced by the alkaliphilic Bacillus sp. B3 strain
isolated by us.

MATERIALS AND METHODS
Material

α-, β-, and γ-CD and Sephadex G-50 were purchased from
Pharmacia Biotech. Soluble starch, yeast extract and peptone
were purchased from Sigma. Phenolphthalein was purchased
from Merck. All of the chemicals were of analytical grade.

Screening and isolation of bacteria

Soil samples of 1 g were suspended in 10 mL of sterilized
water; 0.1 mL of the suspensions were inoculated in plates
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containing agar Horikoshi II containing the following (in w/
v): 1.0% soluble starch, 0.5% yeast extract, 0.5% peptone,
0.1% KH2PO4, 0.02% MgSO4·7H2O, 0.02% phenolphthalein
and 1.0% Na2CO3 (autoclave separately). Medium was incu-
bated at 37°C. Plates were incubated at 37°C for 24 h.
Bacterial colonies which produced the largest clear halo zones
were selected for further studies [20].

CGTase production and purification

The selected strain was cultivated in flasks containing 200
mL of Horikoshi II broth culture medium and incubated at
37°C for 48 h at 200 rpm [21]; 500 ml of culture medium
was across diatomaceous earth. The resulting liquid volume
was concentrated with rotoevaporation at 30°C. The extract
was centrifugated at 3000 rpm for 15 min and applied to
Sephadex chromatography gel G-50 (15 � 3.76) with mobile
phase buffer Tris/HCl pH 8.0 20 mM. The protein concentra-
tion was estimated for Bradford method [22].

Cyclizing activity of CGTase

The cyclizing activity of CGTase was determined according to
the phenolphthalein method, measuring spectrophotometri-
cally at 550 nm the production of β-CD on the basis of its
ability to form a colourness inclusion complex with this dye.
Phenolphthalein (4 mM) in ethanol is diluted in 125 mM
Na2CO3 pH 11 just before starting the assay; 1% starch in
0.05 M citrate-phosphate buffer pH 5.0 was used as substrate.
One unit of CGTase is defined as the amount of enzyme cata-
lyzing the production of 1 μmol of β-CD per minute under the
reaction conditions [23, 24].

Optimum pH

The cyclizing activity of CGTase was measured at 30°C for 10
min in the following buffers: 100 mM sodium acetate/acetic
acid, pH 3.0–5.5; 100 mM K2HPO4/KH2PO4, pH 6.0–7.5; 100
mM Tris/HCl, pH 8.0–9.0; and Na2CO3/NaHCO3, pH 9.5–11.5.

pH stability

Enzyme preparations (0.57 U) were incubated at 4°C in the
following buffers: 100 mM sodium acetate/acetic acid, pH
3.0–5.5; 100 mM K2HPO4/KH2PO4, pH 6.0–7.5; 100 mM Tris/
HCl, pH 8.0–9.0; and Na2CO3/NaHCO3, pH 9.5–11.5. Aliquots
were removed after 24 h of incubation, diluted in 0.1 M
K2HPO4/ KH2PO4 buffer, pH 7.0, and assayed for cyclizing
activity of CGTase.

Thermostability

Enzyme preparations (0.57 U) were incubated at different
temperatures between 35°C and 75°C in 100 mM potassium
phosphate buffer, pH 7.0. Aliquots were removed after 30

min of incubation, chilled quickly, and assayed for cyclizing
activity.

Optimum temperature

The activity of enzyme preparations was measured at differ-
ent temperatures ranging from 30°C to 80°C; after 10 min,
incubation and assay process for cyclizing activity was done.

Determination of kinetic parameters

To determine the Michaelis–Menten constant (Km), the activ-
ity assay was applied for different substrate (starch) concen-
trations. Starch solutions (40–0.31 g/L) were prepared in
potassium phosphate buffer, 0.1 mol/l (pH 7.0) and kept in a
water bath at 60°C for 10 min, and then the enzyme solution
was added to the test tubes and shaken for different incuba-
tion times. The dates were adjusted to the substrate inhibi-
tion model using the software Gradpad Prism.

Production of different CDs

The enzyme (0.57 U) was incubated for 300 min with 5%
starch in potassium phosphate buffer (pH = 7, 100 mM) at
50°C for 5 h. The concentration of different CDs produced by
the action of the purified CGTase on soluble starch was deter-
mined by colorimetric methods. The concentration of α-CD
was assayed by the decrease in absorbance at 507 nm due to
formation of a methyl orange–α-CD complex [25]. The con-
centration of β-CD was determined according to the method
described above [23, 24]. The concentration of γ-CD was
determined by measuring the absorbance at 630 nm due to
the formation of an inclusion complex with bromocresol
green [26].

RESULTS AND DISCUSSION
CGTase was purified partially by rotoevaporation and chro-
matography on Sephadex G-50. The rotoevaporation step was
used to concentrate the enzyme preparation. Figure 1 shows
a chromatography which was obtained after rotoevaporation
step. The CGTase was eluted as one peak containing the high-
est protein content and enzymatic activity of all fractions
(Figure 1). Therefore, further experiments of the characteriza-
tion of this enzyme were carried out with fraction to 10–20
of chromatography. The enzyme could be sufficiently purified
using two-step purification with a yield of 66.5% activity and
1.49-fold purification for specific enzymatic activity of 5.2 U/
mg (one unit of enzyme activity is defined as μmoles of β-CD
per minute under the reaction condition; Table 1). The yield
of this purification was better than the one obtained by Bejar
et al. [8], Tachibana et al. [27], and similar to Tonkova et al.
[28] for CGTases isolated of Paenibacillus pabuli, Archaeon, a
Thermococcus sp. and Bacillus pseudalcaliphilus respectively.
This method of purification is suitable for elimination of CD
present in the culture medium that interferes in the activity
assay.
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The effect of pH on CGTase activity was established by deter-

mination of the enzyme activity at varying pH value ranging

from 3.0 to 11.5 at 30°C (Figure 2). The purified enzyme

exhibited two pH peaks at pH 6.2 and 7.1, similar to CGTase
from Bacillus lentus [29]. The establishment of two pH optima
may been caused by the subtle structural change due to alkal-
ine pH [28]. However literature from different authors
reported that CGTases from Bacillus sp. show an optimal
cyclizing activity in pH range from 5.0 to 10.0 [30, 31, 32].
The pH stability of the enzyme was determined by preincu-

bating enzyme in buffers between 3.0 and 11.5 pH values

during 24 h at 4°C, and then residual activities were meas-

ured under standard assay conditions (Figure 3). The CGTase
obtained was highly stable at pH 5.0 and 11.0 maintaining
84% and 80% residual activities, respectively. This property
permit to apply this enzyme in a wide range of pH.
The heat stability of CGTase was evaluated from the activity

retained after heating the enzyme at different temperatures

for 30 min. A temperature activity profile on enzyme showed

increasing enzyme activity up to 45°C and which decreased

thereafter (Figure 4). The T50 value – defined as the temper-
ature at which 50% of the initial activity was retained – was
the 63°C.
The activities of enzyme were measured at the temperature

in the range 30–80°C with soluble starch as substrate.

Figure 5 shows the enzyme to be optimally active at 60°C.
This result was the best obtained among other CGTases from
Bacillus megaterium [33], Bacillus macerans IFO 3490 [34]
and B. lentus [35].
The Vmax and Km values obtained by starch as substrate were

5.2 μM β-CD/min ml and 4.1 g/L, respectively. Considering
that the Km parameter is correlated to the affinity of the
enzyme for its substrate, the value observed in this work indi-
cates that the enzyme has comparatively higher affinity for
the substrate. In the literature, some Km values measured for
CGTase are higher than the value obtained in this work for
example: Bacillus circulans E 192, 5.7 g/L [36] and Bacillus
agaradhaerens 21.2 g/L [37]. All the values shown above,
obtained by different researchers, were based on soluble
starch as the substrate. The substrate inhibition constant Ks

gave 26.8 L/g.
The production yield and ratio of the different CDs formed by

CGTases are dependent not only on the microbial source pro-

ducing the enzyme but also on the nature of the substrate

and the bioconversion conditions (such as temperature, pH,

and time). The profile of CDs production with time, during

the action of Bacillus sp. CGTase, was shown in Figure 6. A

maximum conversion was obtained with 2 U enzyme/g of
substrate after 3 h of reaction. At this point, the CGTase gen-
erated a mixture of CDs in the ratio of 1:0.43:0.94 for α-, β-,
and γ-CD, respectively.
It should be noted that the CGTase from Bacillus sp. can be

used for an efficient production of CDs without any additives.
In many reports, some additives, such as toluene [38],
Ca2+ and polyols [39], or pullulanase pretreatment of starch
[38], were applied to increase the CD production. Specific
applications in food and pharmaceutical industries require
CDs completely free of these toxic (in most cases) agents.
Complete removal of these compounds is often difficult and
expensive.
Therefore, the CGTase from Bacillus sp. which gave a signific-

ant yield of γ-CDs in comparison to recombinant CGTase from
alkaliphilic Bacillus sp. TS1 [40] without using any additives
could be of interest for their industrial production.
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Figure 1. Elution profile of the CGTase from gel filtration chro-

matography column using Fractogel EMD BioSEC (S). Fraction

10–20 was collected and used for subsequent characterization

steps.

Table 1. Summary of CGTase purification result.

Purification steps
Total volume

(mL)
Enzymatic activity

(U/mL)
Protein concentration

(mg/mL)
Specific activity

(U/mg)
Purification

fold
Yield
(%)

Crude enzyme before rotoevaporation 500 0.16 0.12 1.3 1 100.0
Eluate after chromatography on
Sephadex G-50

40 1.3 0.25 5.2 1.49 66.5
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CONCLUSIONS
In this study, the purification and characterization of a novel

CGTase from Bacillus sp. isolated from Cuba soil were

reported. The purification of the enzyme was achieved by
chromatography and recovery of 66.5% activity and 4-fold
purification. This enzyme could be effectively used for conver-
sion starch into CD in a wide pH range from 5.0 to 9.0.
Besides retains an 80% of the residual activity after incubated
a pH = 11 during 24 h. The enzyme exhibits a good thermo-
stability and shows temperature optimum at 60°C. The puri-
fied CGTase from Bacillus sp. could be used for an efficient
CD production which is the significant yield of γ-CDs.
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