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Background Severe coronavirus disease 2019 (COVID -19) has led to severe

pneumonia or acute respiratory distress syndrome (ARDS) worldwide. we have

noted that many critically ill patients with COVID-19 present with typical sepsis-

related clinical manifestations, including multiple organ dysfunction syndrome,

coagulopathy, and septic shock. The molecular mechanisms that underlie

COVID-19, ARDS and sepsis are not well understood. The objectives of this

study were to analyze potential molecular mechanisms and identify potential

drugs for the treatment of COVID-19, ARDS and sepsis using bioinformatics and

a systems biology approach. Methods Three RNA-seq datasets (GSE171110,

GSE76293 and GSE137342) from Gene Expression Omnibus (GEO) were

employed to detect mutual differentially expressed genes (DEGs) for the

patients with the COVID-19, ARDS and sepsis for functional enrichment,

pathway analysis, and candidate drugs analysis. Results We obtained 110

common DEGs among COVID-19, ARDS and sepsis. ARG1, FCGR1A, MPO, and

TLR5 are the most influential hub genes. The infection and immune-related

pathways and functions are the main pathways and molecular functions of these

three diseases. FOXC1, YY1, GATA2, FOXL, STAT1 and STAT3 are important TFs

for COVID-19. mir-335-5p, miR-335-5p and hsa-mir-26a-5p were associated

with COVID-19. Finally, the hub genes retrieved from the DSigDB database

indicate multiple drug molecules and drug-targets interaction. Conclusion We

performed a functional analysis under ontology terms and pathway analysis and

found some common associations among COVID-19, ARDS and sepsis.

Transcription factors–genes interaction, protein–drug interactions, and DEGs-

miRNAs coregulatory network with common DEGs were also identified on the

datasets. We believe that the candidate drugs obtained in this study may

contribute to the effective treatment of COVID-19.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1152186/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1152186/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1152186/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1152186/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1152186&domain=pdf&date_stamp=2023-05-16
mailto:lizhiwanghn@163.com
https://doi.org/10.3389/fimmu.2023.1152186
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1152186
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2023.1152186
Introduction

Coronavirus disease 19 (COVID‐19) is a novel infectious

disease caused by severe acute respiratory syndrome coronavirus

2 (SARS‐CoV‐2) (1, 2). The lung is the organ most severely affected

by SARS-CoV-2. Patients with COVID-19 autoimmune diseases (3)

may develop severe pneumonia or acute respiratory distress

syndrome (ARDS). The pathophysiology of those two diseases are

characterized by diffuse alveolar damage, exudation, and

accompanied by extensive immune cell infiltration and

inflammatory cytokine expression (4). If the inflammation is

further aggravated, the extrapulmonary organ damage is serious,

manifested as multiple organ dysfunction and systemic

inflammatory response, its symptoms include cold limbs,

microcirculatory dysfunction, weak peripheral pulse, oxidative

stress injury, and cytokine storm. This is very similar to sepsis

(5). Consideration of severe COVID-19 disease as a sepsis

syndrome has relevance and may assist in terms of determining

treatments (6).

Sepsis, a systemic inflammatory response syndrome (SIRS)

caused by infection, is a common and critical disease with

characteristics of high incidence, complex pathogenesis, severe

illness, and high mortality (7, 8). In 2016, sepsis3.0 was released

(9), which defined sepsis as a clinical syndrome of maladjusted host

immune response triggered by infection and manifested as life-

threatening organ dysfunction resulting from it. Sepsis is

characterized by uncontrolled inflammation and overproduction

of reactive oxygen and nitrogen species (RONS), which in turn leads

to cell and tissue destruction, immune system dysfunction and

pronounced hematopathology, eventually leading to multiple organ

failure syndrome (MODS) (10).

Acute respiratory distress syndrome (ARDS) is a serious

respiratory disease secondary to trauma, shock, infection and

other non-cardiogenic diseases. ARDS is one of the most

common and serious complications in the development of sepsis
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(11). The mortality rate of ARDS is as high as 30%-40% (11). People

with COVID-19 who have an autoimmune disease may develop

severe pneumonia or ARDS (3).

Given the similarities between COVID-19, ARDS, and sepsis, it

is necessary to understand the biological links and underlying

molecular mechanisms between the three diseases in order to

provide new insights into the pathogenesis of COVID-19 and to

search for potential therapeutic agents for patients with COVID-19

or those with COVID-19 secondary to ARDS and sepsis.

In this study, three datasets were used to discover the biological

relationship among COVID-19, ARDS and sepsis. The three

datasets are GSE171110, GSE76293 and GSE137342. Initially,

DEGs were identified for datasets and then found common DEGs

genes among the three diseases. The enrichment pathways and

biological functions of the common DEGs were analyzed, and the

biological processes involved in them were studied. The central gene

was extracted from common DEGs, which is an important

component of potential drugs. Protein-protein interaction

networks (PPIs) are designed by common DEGs to collect central

genes. Here, we also trace transcriptional regulators against DEGs

similar to GSE171110, GSE76293, and GSE137342. Finally, possible

drugs are predicted. The sequential workflow of our research is

presented in Figure 1.
Materials and methods

Collection of the datasets

To analyze shared genetic interrelations and potential

therapeutic targets among COVID-19, ARDS and sepsis, we

obtained both microarray and RNA-seq datasets from the Gene

Expression Omnibus (GEO) database of the National Center for

Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/

geo/). The GEO accession ID of the COVID-19 dataset was
FIGURE 1

Schematic illustration of the overall general workflow of this study.
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GSE171110, which included transcriptional profiling from 78

samples (44 COVID-19 samples and 10 healthy control samples,

with samples collected from whole blood). GSE171110 was based on

the Illumina HiSeq 2500 (Homo sapiens) (GPL16791) platform for

extracting RNA sequence analysis. The ARDS dataset was (GEO

accession ID: GSE76293) of whole blood containing 12 ARDS

patients and 12 healthy controls, which is based on Affymetrix

Human Genome U133 Plus 2.0 Array (GPL570) platform.

Similarly, the sepsis dataset (GEO accession ID: GSE137342)

included array-based gene expression profiles of whole blood

from 43 sepsis patients and 12 healthy individuals. Table 1 shows

the basic information of the three datasets.
Identification of DEGs and common DEGs
among COVID-19, ARDS and sepsis

Identification of DEGs for GSE171110, GSE76293 and

GSE137342 datasets was the main task of our research. The DEGs

for GSE171110 were identified by using the limma package of R

programming language. Data generated by microarray analysis

were retrieved through DESeq2 and limma package. DEGs for

GSE76293 and GSE137342 datasets were analyzed through

GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) web tool

which also uses limma package for identifying DEGs. Benjamini–

Hochberg false discovery rate (FDR) method was applied to

discover genes which were statistically significant and limited

false positives. Genes that met the cut-off criteria, adjust P-values

<0.01 and |log2FC|≥1.0, were considered as DEGs. Statistical

analysis were carried out for each dataset, and the common DEGs

of GSE171110, GSE76293 and GSE137342 datasets were obtained

using an online VENN analysis tool called Jvenn (http://

jvenn.toulouse.inra.fr/app/index.html). Volcano plots were drawn

using to show the differential genes in the three datasets.
Gene ontology and pathway enrichment
analysis of DEGs

Gene set enrichment analysis undertakes target gene sets to help

understand the general biological functions and chromosomes’

positions. Gene ontology (GO) analysis is a common useful

method for functional enrichment analysis (12), which can be

classified into biological process (BP), cellular composition (CC)

and molecular function (MF). Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway was used for metabolic pathway

enrichment analysis and contains considerable utility of genomic

analysis (13). GO analysis and KEGG pathway enrichment analysis
Frontiers in Immunology 03
of DEGs in this study was performed using the DAVID database for

annotation, visualization and integrated discovery tools (https://

david.ncifcrf.gov/). The adjusted P value < 0.01 was considered

statistically significant GO terms and pathways.
Protein-protein interaction networks and
hub genes extraction

The evaluation and analysis of PPI network are fundamental

and key to illustrating the molecular mechanisms of key cellular

activities. In our study, the PPI networks on common DEGs were

identified, and associations between different diseases were found

from the perspective of protein interactions. The search tool for the

retrieval of interacting genes database called STRING (https://

www.string-db.org/) was used to construct the PPI network of

proteins derived from shared DEGs among COVID-19, ARDS

and sepsis. STRING aims to integrate all known and predicted

associations between proteins, including both physical interactions

as well as functional associations. This experiment set the medium

confidence score of 0.500 to generate the PPI network of common

DEGs. The confidence score was also used for the current PPIs

network with a medium confidence score of 0.400.

Sebsequently, we consume our PPI network into Cytoscape

(v.3.9, https://cytoscape.org/) for a superior visual representation

and further PPI network studies. Then, Cytohubba, a plugin in

Cytoscape (https://apps.cytoscape.org/apps/cytohubba), was used

to calculate the hub genes in the PPI network. Cytohubba can

sequence and extract the central or target elements of a biological

networks based on different network characteristics. Cytohubba has

11 methods for topological analysis from various viewpoints, and

Maximal Clique Centrality (MCC) is the best of them, and the MCC

function of Cytohubba was carried out to confirm the top 10

hub genes.
Identification of transcription factors and
miRNAs

Transcription factors (TFs) are proteins that attach to particular

genes and control the rate of transcription of genetic information

(14). MicroRNAs (miRNAs) are a class of short, endogenously

initiated and non-coding RNAs that strive to attach with gene

transcripts to affect protein expression; hence, TFs and miRNAs are

essential for molecular insights. We used the NetworkAnalyst

platform (https://www.networkanalyst.ca/) to construct TF–DEG

and DEG–miRNA regulatory networks to analyze relevant TFs and

miRNAs. NetworkAnalyst is an extensive online platform for meta-
TABLE 1 Overview of datasets with their geo-features and their quantitative measurements in this analysis.

Disease name GEO accession GEO platform Total DEGs count Up regulated DEGs count Down regulated DEGs count

SARS-CoV-2 GSE171110 GPL16791 3986 2620 1366

ARDS GSE76293 GPL570 677 346 331

Sepsis GSE137342 GPL10558 3339 3309 30
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analyzing gene expression data and gaining insights into biological

mechanisms, roles, and interpretations. The TF–DEG network was

established using the JASPAR database. JASPAR is a publicly

available resource for TFs of multiple species in six major taxa.

Besides, the DEG–miRNA network was established using the

TarBase database. Tarbase and mirTarbase are the main

experimental validity databases for miRNAs–target interacting

with target genes. We have extracted miRNAs with common

DEGs focused on topological analysis from both Tarbase

and mirTarbase.
Drug prediction analysis

Protein-drug interaction (PDI) prediction and drug molecular

recognition based on target genes are essential. Potential drug

molecules were predicted using the Drug Signatures database

(DSigDB) via gene set enrichment network tool Enrichr based on

the common DEGs of COVID-19, ARDS and sepsis. Enrichr

contains a large number of different gene set collections available

for analysis, which can be used to explore gene-set enrichment

across a genome-wide scale. DSigDB is a web-based resource that

contains relevant information about drugs and their target genes for

enrichment analysis. This database currently has 22,527 gene sets,

including 17,389 drugs and 19,531 genes (15).
Gene-disease association analysis

DisGeNET is a knowledge management database of gene-

disease associations based on various biomedical aspects of

diseases, which synchronizes relationships from several origins. It

provides and highlights new insights into human genetic disorders.

We also examined the gene-disease relationship through

NetworkAnalyst using the DisGeNET database to find related

diseases and their chronic complications with common DEGs.
Result

Identification of DEGs and common DEGs
among COVID-19, ARDS and sepsis

Firstly, 3986 genes were differentially expressed for COVID-19

from GSE171110, including 2620 up-regulated and 1366 down-

regulated genes exposure. In the same way, we identified 677 DEGs

(346 up-regulated and 331 down-regulated) in GSE76293 and 3339

DEGs (3309 up-regulated and 30 down-regulated) in GSE137342. The

three volcano plots in Figure 2 visually demonstrated the overall picture

of transcribed gene expression for COVID-19, ARDS and sepsis, where

red and blue dots indicated up-regulated and down-regulated genes

with significant differences, respectively (Figures 2A–C). we identified

the 110 common DEGs among GSE171110, GSE76293 and

GSE137342 (Figure 2D). There were some mechanistic

commonalities and interaction among COVID-19, ARDS and sepsis,

the results of differential expression analysis suggested.
Frontiers in Immunology 04
Gene ontology and pathway enrichment
analysis

GO analysis included biological process, cell composition, and

molecular function. The GO database was selected as an annotation

source. Table 2 showed the top 10 items in the categories of

biological processes, molecular functions, and cell components.

Figure 3A also showed the top 10 GO terms for molecular

function, biological process, and cell compartment, respectively.

The differentially expressed genes were significantly enriched in

inflammatory response in the subset of BP, enriched in the plasma

membrane in the subset of CC, and enriched in catalytic activity in

the subset of MF, which were all involved into immunotherapy

related functional enrichment.

KEGG pathway analysis revealed the following top 10 pathways:

Hematopoietic cell lineage, Legionellosis, Pantothenate and CoA

biosynthesis, Inflammatory bowel disease, Leishmaniasis, Drug

metabolism-other enzymes, Th1 and Th2 cell differentiation,

Staphylococcus aureus infection, Viral protein interaction with

cytokine and cytokine receptor and Th17 cell differentiation.

Table 3 listed the KEGG enrichment pathways generated from

the selected dataset. For a more detailed illustration, the pathway

enrichment analysis was showed in the bubble graphs (Figure 3B).
Classification of hub proteins
and submodule

The PPI network of common DeGs included 110 nodes and 105

edges, as shown in Figure 4A. Based on PPI network analysis, we

identified the top 10 DEGs as the most influential genes by using the

Cytohubba plugin in Cytoscape. The hub genes were namely LCN2,

HP, ARG1, MPO, CD163, CD4, FCGR1A, CR1, C3AR1, and TLR5.

These hub genes could serve as potential biomarkers and potentially

new therapeutic strategies for studying disease. The expanded

network of hub – gene interactions derived from the PPI network

was shown in Figure 4B.
Construction of regulatory networks

TFs regulators interaction with the common DEGs was pictured

in Figure 5. From the Figure 5, KCNJ15, SMARCD3, LILRA5, GAS7

and HMGB2 were more abundant in the highly expressed DEGs as

these genes have a higher degree in the TF–gene interactions

network. TFs such as FOXC1, GATA2, YY1, FOXL1, FOXO3,

STAT1 and STAT3 were more significant than others as

presented in the same Figure 5.

The interactions of miRNAs regulators with common DEGs

was showed in the Figure 6. In the Figure 6, blue squares

represented miRNAs and red circles represented DEGs. Our

results showed that ACVR1B, MTF1, CD4, MAPK14, DACH1,

KIF1B, GAS7 and CYP1B1 were the hub genes of this network, with

the five genes most involved in miRNAs. Besides, we also detected

the significant hub miRNAs from the miRNAs-gene interaction

network, namely mir-335-5p, hsa-mir-26a-5p, hsa-mir-200b-3p,
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hsa-mir-194-5p, hsa-mir-192-5p, hsa-mir-143-3p and hsa-mir-

520f-3p.
Identification of candidate drugs

Based on transcriptome signatures, we identified 10 possible

drug molecules using Enrichr from the DSigDB database. The top

10 chemical compounds were extracted based on their P-value.

These 10 possible drug molecules included isoflupredone, etynodiol,

fludroxycortide, flunisolide, halcinonide, flumetasone, diflorasone,

ribavirin, gabexate and alclometasone (Table 4).
Identification of disease association

From the analysis of the gene-disease association by Network

Analyst (16), we noticed that major depressive disorder,
Frontiers in Immunology 05
cardiovascular diseases, mental depression, hypertensive disease,

autosomal recessive predisposition, anemia, liver diseases,

schizophrenia and liver cirrhosis are most coordinated to our

reported hub genes, and even among COVID-19, ARDS and

sepsis. The gene-disease association was shown in Figure 7.
Discussion

Most patients with severely ill COVID-19 eventually develop

typical septic shock manifestations, including cold limbs,

microcirculatory dysfunction, peripheral pulse weak, oxidative

stress injury, and cytokine storm (17). These symptoms and

serological markers are present in both ARDS and sepsis patients

(18). ARDS induced by COVID-19 can progress to sepsis (17).

The results of our GO analysis from the DAVID show that

inflammatory response (14 genes), defense response to bacterium

(11 genes), immune response (12 genes) and innate immune
A

B

C

D

FIGURE 2

Volcano plots exhibit DEGs of (A) COVID-19, (B) ARDS and (C) sepsis. (D) The Venn diagram depicts the common DEGs among COVID-19, ARDS and sepsis.
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TABLE 2 Ontological analysis of common DEGs among COVID-19, ARDS and sepsis.

Category GO ID Term P Value Genes

GO
Biological
Process

GO:0006954 inflammatory
response

3.72E-07 ORM1, SLC11A1, PPBP, NLRC4, LTB4R, TPST1, IL18RAP, AIM2, VNN1, C3AR1, TLR5, IL18R1,
CCR3, NAIP

GO:0042742 defense response
to bacterium

6.19E-07 CLEC4D, ANXA3, SLC11A1, HP, LCN2, PPBP, NLRC4, FCGR1A, TLR5, MPO, NAIP

GO:0006955 immune response 7.58E-05 HLA-DMA, CD4, CLEC4D, IL18RAP, AIM2, SLC11A1, FCGR1A, CST7, CD24, CCR3, IL18R1,
LTB4R

GO:0045087 innate immune
response

1.00E-04 ARG1, DEFA4, HMGB2, NLRC4, SRPK1, LILRA5, AIM2, VNN1, LCN2, FCGR1A, TLR5, NAIP,
CD177

GO:0032731 positive regulation
of interleukin-1
beta production

4.33E-04 ORM1, AIM2, NLRC4, NAIP, LILRA5

GO:0071222 cellular response
to
lipopolysaccharide

6.54E-04 ARG1, DEFA4, HMGB2, LCN2, PPBP, MAPK14, TLR5

GO:0006953 acute-phase
response

0.00153779 CD163, ORM1, HP, LCN2

GO:0032496 response to
lipopolysaccharide

0.001675603 SLC11A1, MGST1, HMGB2, ALPL, IRAK3, MPO

GO:0002221 pattern
recognition
receptor signaling
pathway

0.002197244 AIM2, NLRC4, NAIP

GO:0008584 male gonad
development

0.003271334 KCNE1, HMGB2, CYP1B1, INSL3, TLR5

GO
Cellular
Component

GO:0005886 plasma membrane 7.35E-06 KCNE1, FCMR, MGST1, GPR84, ACVR1B, CACNA1E, CD3D, ETS2, LTB4R, LILRA5, ASGR2,
MUC1, IL18RAP, PSTPIP2, GRB10, C3AR1, FLVCR2, STOM, CLEC1B, FCGR1A, CCR3, ATP9A,
CD177, CD163, CR1, SORT1, ANXA3, SLC11A1, KREMEN1, KCNJ15, AGTRAP, IRAK3,
MCEMP1, OLFM4, BMX, SRPK1, F5, CD4, CLEC4D, VNN1, RAB13, TMEM119, SLC26A8, ALPL,
RGL4, TLR5, IL18R1, GAS7

GO:0035580 specific granule
lumen

1.70E-05 ORM1, ARG1, DEFA4, HP, LCN2, OLFM4

GO:0070821 tertiary granule
membrane

3.76E-05 CLEC4D, SLC11A1, STOM, MCEMP1, GPR84, CD177

GO:0035579 specific granule
membrane

1.08E-04 CLEC4D, C3AR1, STOM, MCEMP1, GPR84, CD177

GO:1904724 tertiary granule
lumen

0.002875622 ORM1, HP, PPBP, OLFM4

GO:0035577 azurophil granule
membrane

0.003344588 VNN1, MGST1, C3AR1, STOM

GO:0016021 integral
component of
membrane

0.006490311 KCNE1, FCMR, MGST1, TMTC1, CD3D, LTB4R, PHTF1, LILRA5, ASGR2, HLA-DMA, MUC1,
ZDHHC19, APMAP, C3AR1, CYP1B1, FLVCR2, FCGR1A, SLC37A3, CCR3, ATP9A, CD163, CR1,
SORT1, SLC11A1, CSGALNACT2, KREMEN1, KCNJ15, KLHL2, AGTRAP, MCEMP1, FRMD3,
CD4, CLEC4D, VNN1, TMEM119, SLC26A8, RGL4, ST6GALNAC3, TLR5, IL18R1, GRINA

GO:0045092 interleukin-18
receptor complex

0.010283955 IL18RAP, IL18R1

GO:0005887 integral
component of
plasma membrane

0.010415288 CD163, CR1, SLC11A1, KCNJ15, GPR84, ACVR1B, LTB4R, MUC1, CD4, C3AR1, SLC26A8,
STOM, FCGR1A, CLEC1B, TLR5, CCR3

GO:0005615 extracellular space 0.020503922 ORM1, CR1, ARG1, DEFA4, HP, HMGB2, PPBP, OLFM4, CST7, MPO, F5, LILRA5, MUC1,
LCN2, STOM, ALPL, FAM20A, INSL3

(Continued)
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response (13 genes) are among the top GO terms. Innate immune

cell hyperactivation plays a critical role in the pathogenesis of severe

COVID-19 (19). Studies have shown that the infection mediated

immuno-compromised state can result in poor clinical morbidity

and a high risk of fatal pneumonia (20). In the molecular function

experiment, catalytic activity, protein homodimerization activity

and transmembrane signaling receptor activity are three top GO

pathways. According to the cellular component, top GO terms are

plasma membrane, specific granule lumen, tertiary granule

membrane and specific granule membrane.

By identifying the KEGG pathways for 110 common DEGs,

similar pathways were identified for COVID-19, ARDS, and sepsis.

Some patients experiencing severe COVID-19, the disease caused

by the SARS-CoV-2 beta coronavirus, develop what is sometimes

described as a “cytokine storm” or “cytokine release syndrome”

(21). These cytokines produce eosinopenia and lymphocytopenia

characterized by low counts of eosinophils, CD8+ T cells, natural

killer (NK) and naïve T-helper cells, simultaneously inducing naive

B-cell activation, increased T-helper cell 17 (Th17) lymphocyte

differentiation and the stimulation of monocyte and neutrophil

recruitment (18, 22).

The top hub proteins indicate different diseases, most risk

factors for the COVID-19, ARDS and sepsis. A total of 10 hub-

proteins (LCN2, HP, ARG1, MPO, CD163, CD4, FCGR1A, CR1,

C3AR1 and TLR5) identified involved in these diseases. ARG1 can

be released to the extracellular microenvironment during

inflammatory conditions, e.g., asthma and infectious diseases
Frontiers in Immunology 07
(23). FCGRIA has been proposed as an attractive target for

immunotherapy by various workers (24). Research shows that

infiltrating neutrophils, a hallmark of COVID-19, can release

myeloperoxidase (MPO), which can activate several pathways that

lead to elevated cytokines and production of ROS such as

hypochlorous acid (HOCl), superoxide (O2•-), and hydrogen

peroxide (H2O2) (25). Another possible facet of the observed

pathophysiology in critical cases of COVID-19 is a decline in

nitric oxide (NO) and combined with the effect of excessive ROS

on the structure and function of hemoglobin (Hb) could impact

pulmonary and peripheral circulation, possibly eventually leading

to critical or fatal hypoxia (26). Chakraborty recommend the use of

active immunomodulation through TLR5 and activation of the

innate immune to fight against SARS‐CoV‐2 as the main entry

point of this virus is angiotensin‐converting enzyme 2 receptor

respiratory in epithelial cells (27).

To understand how common DEGs regulate COVID-19 (or

ARDS, sepsis) at the transcriptional level, the interactions among

TFs, miRNAs and genes were investigated via web tools. The

identified TFs, such as FOXC1, GATA2, YY1, FOXL1, FOXO3,

STAT1 and STAT3, are associated with COVID-19. In previous

bioinformatics analysis, Ahmed (28) and Islam et al. (29) both

found that FOXC1, YY1, GATA2, and FOXL1 are important TFs

for COVID-19. Coincidentally, Lu Lu also found that FOXC1, YY1,

GATA2 and FOXL1 are important TFs for COVID-19 (30). After a

careful review of the scientific literature, we realized that COVID-19

is a disease caused by a catastrophic cascade of failures stemming
TABLE 2 Continued

Category GO ID Term P Value Genes

GO
Molecular
Function

GO:0003824 catalytic activity 8.57E-04 PFKFB2, DDAH2, ECHDC3, UPP1, OLFM4, BCAT1

GO:0042803 protein
homodimerization
activity

0.002126894 TPST1, CD4, TP53I3, GADD45A, DEFA4, SLC11A1, STOM, IRAK3, NLRC4, CST7, GYG1, UPB1

GO:0004888 transmembrane
signaling receptor
activity

0.004116847 CD4, FCMR, FCGR1A, CLEC1B, TLR5, CD3D

GO:0042008 interleukin-18
receptor activity

0.011098693 IL18RAP, IL18R1

GO:0003873 6-phosphofructo-
2-kinase activity

0.022075366 PFKFB2, PFKFB3

GO:0002020 protease binding 0.024084899 LCN2, INSL3, ATP9A, CD177

GO:0004331 fructose-2,6-
bisphosphate 2-
phosphatase
activity

0.02751836 PFKFB2, PFKFB3

GO:0005524 ATP binding 0.047221652 PFKFB2, PFKFB3, TDRD9, IRAK3, NLRC4, BMX, MAPK14, OPLAH, ACVR1B, SRPK1, PGS1,
MKNK1, KIF1B, NAIP, ATP9A

GO:0042802 identical protein
binding

0.052207838 ARG1, MGST1, KLHL2, AGTRAP, MCEMP1, NLRC4, OPLAH, CD3D, CD4, AIM2, GRB10,
LCN2, STOM, UPP1, BCAT1, GAS7

GO:0061809 NAD+
nucleotidase, cyclic
ADP-ribose
generating

0.085446381 IL18RAP, IL18R1
Top 10 terms of each category are listed.
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A

B

FIGURE 3

(A) The bar graphs of the ontological analysis of the common DEGs among COVID-19, ARDS and sepsis. (B) Bubble graphs indicate the results for
KEGG analysis based on the common DEGs among COVID-19, ARDS and sepsis.
TABLE 3 Pathway enrichment analysis of common DEGs among COVID-19, ARDS and sepsis.

Category Pathways P Value Genes

KEGG_PATHWAY Hematopoietic cell lineage 9.55E-04 HLA-DMA, CD4, CR1, FCGR1A, CD24, CD3D

Legionellosis 0.009529899 CR1, NLRC4, TLR5, NAIP

Pantothenate and CoA biosynthesis 0.011199108 VNN1, BCAT1, UPB1

Inflammatory bowel disease 0.013620921 HLA-DMA, IL18RAP, TLR5, IL18R1

Leishmaniasis 0.021374347 HLA-DMA, CR1, FCGR1A, MAPK14

Drug metabolism - other enzymes 0.023620807 MGST1, UPP1, MPO, UPB1

Th1 and Th2 cell differentiation 0.033841345 HLA-DMA, CD4, MAPK14, CD3D

Staphylococcus aureus infection 0.037683794 HLA-DMA, DEFA4, C3AR1, FCGR1A

Viral protein interaction with cytokine and cytokine receptor 0.041740915 IL18RAP, PPBP, CCR3, IL18R1

Th17 cell differentiation 0.050488231 HLA-DMA, CD4, MAPK14, CD3D

(Continued)
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TABLE 3 Continued

Category Pathways P Value Genes

NOD-like receptor signaling pathway 0.053210438 AIM2, DEFA4, NLRC4, MAPK14, NAIP

Transcriptional misregulation in cancer 0.061334532 CCNA1, GADD45A, DEFA4, FCGR1A, MPO

Epstein-Barr virus infection 0.070083846 CCNA1, HLA-DMA, GADD45A, MAPK14, CD3D

Cytokine-cytokine receptor interaction 0.076591926 CD4, IL18RAP, PPBP, ACVR1B, CCR3, IL18R1

Human T-cell leukemia virus 1 infection 0.091699112 CCNA1, HLA-DMA, CD4, CD3D, ETS2

Acute myeloid leukemia 0.094203186 CCNA1, FCGR1A, MPO
F
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FIGURE 4

(A) The PPI network of common DEGs among COVID-19, ARDS and sepsis. In the figure, the octagonal nodes represent DEGs and edges represent the
interactions between nodes. The PPI network was generated using String and visualized in Cytoscape. (B) The hub genes were identified from the PPI network
using the Cytohubba plug in Cytoscape. Here, the colored nodes represent the highlighted top 10 hub genes and their interactions with other molecules.
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FIGURE 5

The Network Analyst created an interconnected regulatory interaction network of DEG-TFs. In it, blue square nodes represent TFs, gene symbols
interact with TFs as yellow circle nodes.
FIGURE 6

The interconnected regulatory interaction network of DEGs-miRNAs. blue squares represented miRNA s, while red circles represented DEGs.
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from the SARS-CoV-2- mediated dysregulation of STATs.

Specifically, the dysfunctions of STAT1 and STAT3 induced by

SARS-CoV-2 proteins may be the foundation of severe COVID-19

pathophysiology (31).

Our results also showed that the regulatory relationship

between miRNAs (mir-335-5p, hsa-mir-26a-5p, hsa-mir-200b-

3p, hsa-mir-194-5p, hsa-mir-192-5p, hsa-mir-143-3p and hsa-

mir-520f-3p) and genes (ACVR1B, MTF1, CD4, MAPK14,
Frontiers in Immunology 11
DACH1, KIF1B, GAS7 and CYP1B1) that may play important

roles in COVID-19, ARDS and sepsis. It was worth noting that

Huan Hu et al. predicted that mir-335-5p associated with

different genes from COVID-19 (7). Laura Teodori et al.

showed through bioinformatics analysis that miR-335-5p are

regulated by Spike, ACE and histone deacetylation (HDAC)

pathway (32). Upregulation of hsa-mir-26a-5p expression was

significantly associated with inflammatory responses and
TABLE 4 List of the suggested drugs for COVID-19.

Term P-value Chemical Formula Structure

isoflupredone HL60 UP 2.76E-11 C21H27FO5

etynodiol HL60 UP 6.10E-11 C20H28O2

fludroxycortide HL60 UP 1.35E-10 C24H33FO6

flunisolide HL60 UP 5.08E-09 C24H31FO6

halcinonide HL60 UP 6.50E-09 C24H32ClFO5

flumetasone HL60 UP 8.23E-09 C22H28F2O5

diflorasone HL60 UP 1.03E-08 C26H32F2O7

ribavirin HL60 UP 1.03E-08 C8H12N4O5

gabexate HL60 UP 1.29E-08 C16H23N3O4

alclometasone HL60 UP 2.86E-08 C22H29ClO5
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cytokine - and chemokine-mediated signaling pathways in the

sera of lactating mothers with type 1 diabetes (33).

We performed gene-disease (GD) analyses and predicted

significant DEGs associations with different diseases. Diseases

enriched by these DEGs include: major depressive disorder,

mental depression, schizophrenia, cardiovascular diseases,

hypertensive disease, anemia, liver diseases and liver cirrhosis.

Recent studies have proven that people with mental illness,

especially depression and schizophrenia, are at high risk of being

infected by COVID-19 (34). According to the Clinical Bulletin of

the American College of Cardiology (ACC), the mortality rate for

patients with coexisting hypertension or cardiovascular disease

COVID-19 was 6.0% and 10.5%, respectively (35). Besides, 16.7%

of patients face arrhythmia, and 7.2% developed acute cardiac

problems with COVID 19-associated complications (36). A study

reported that 2–11% of COVID-19 patients had primary chronic

liver disease (37). Of those diagnosed with COVID-19, about one-

third of cirrhosis patients die within 10 days, and two-thirds of
Frontiers in Immunology 12
cirrhosis patients died before admission to the intensive care

unit (38).

The current crisis of the COVID-19 pandemic around the

world has been devastating as many lives have been lost to the

novel SARS CoV-2 virus. Thus, There are bioinformatics studies

that aim to identify promising treatment options for COVID-19

through computational drug reuse. Alfred Olaoluwa Akinlalu’s

study predicted that ethynodiol diacetate exhibited better

binding energy and pharmacokinetic properties than the off-

Wlabel reference drugs (hydroxychloroquine, lopinavir and

remdesivir) which has been currently investigated for the

treatment of COVID-19 (39) . Giuseppe Nunnari has

highl ighted Fluniso l ide , Thal idomide , Lenal idomide ,

Desoximetasone, xylazine, and salmeterol as potential drugs

against SARS-CoV (40). Seyedeh Zahra Mousavi’s research

showed that HDAC inhibitors can be an effective drug against

COVID-19 ( 41 ) . Th e mechan i sm o f a c t i on ne ed s

further investigation.
FIGURE 7

The gene-disease association network represents diseases associated with common DEGs. The disorders depicted by the square node and also its
subsequent gene symbols are defined by the circular node.
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Conclusions

We performed a functional analysis under ontology terms

and pathway analysis and found some common associations

among COVID-19, ARDS and sepsis. Transcription factors–

genes interaction, protein–drug interactions, and DEGs-

miRNAs coregulatory network with common DEGs also

identified on the datasets. We believe that the candidate drugs

obtained in this study may contribute to the effective treatment

of COVID-19. So, our identified genes can be a novel therapeutic

target for COVID-19 vaccine development.
Data availability statement

Publicly available datasets were analyzed in this study. The data

could be downloaded from the GEO database of the National

Center for Biotechnology Information (NCBI) (https://

www.ncbi.nlm.nih.gov/geo/), accession numbers GSE171110,

GSE76293, and GSE137342.
Author contributions

ZhiL conceived and designed the study. PL and TL provided

equal contributions to research design, data analysis, and

article writing. ZZ and XD helped to write the manuscript.

All authors contributed to the article and approved the

submitted version.
Frontiers in Immunology 13
Funding

This work was supported by the National Science Foundation

ofHunan Province (No. 2022JJ40006) and the scientific research

project of The First People’s Hospital of Chenzhou (No. N2021-14).

This work was also supported by the scientific research project of

The First People’s Hospital of Chenzhou (No.CZYY202207), the

key research and development project of chenzhou (No.2020013),

the Technology Research and Development Center of chenzhou

(2021) and the Science and Technology Key Development Project

of Chenzhou City (No. ZDYF2020012).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and
epidemiology of 2019 novel coronavirus: implications for virus origins and receptor
binding. Lancet (2020) 395(10224):565–74. doi: 10.1016/S0140-6736(20)30251-8

2. Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D,
Yahalom-Ronen Y, et al. The coding capacity of SARS-CoV-2. Nature (2021) 589
(7840):125–30. doi: 10.1038/s41586-020-2739-1

3. Hu H, Tang N, Zhang F, Li L, Li L. Bioinformatics and system biology approach
to identify the influences of COVID-19 on rheumatoid arthritis. Front Immunol (2022)
13:860676. doi: 10.3389/fimmu.2022.860676

4. Remy KE, Brakenridge SC, Francois B, Daix T, Deutschman CS, Monneret G,
et al. Immunotherapies for COVID-19: lessons learned from sepsis. Lancet Respir Med
(2020) 8(10):946–9. doi: 10.1016/S2213-2600(20)30217-4

5. Yao XH, Luo T, Shi Y, He ZC, Tang R, Zhang PP, et al. A cohort autopsy study
defines COVID-19 systemic pathogenesis. Cell Res (2021) 31(8):836–46. doi: 10.1038/
s41422-021-00523-8

6. Kocak TZ, Kayaaslan B, Mer M. COVID-19 and sepsis. Turk J Med Sci (2021) 51
(SI-1):3301–11. doi: 10.3906/sag-2108-239

7. Shane AL, Sanchez PJ, Stoll BJ, sepsis. Lancet N. (2017) 390(10104):1770–80.

8. Chen AX, Simpson SQ, Pallin DJ, Med SGNE. (2019) . 380(14):1369–71.

9. Guo FM, Qiu HB. [Definition and dignosis of sepsis 3.0]. Zhonghua Nei Ke Za Zhi
(2016) 55(6):420–2. doi: 10.3760/cma.j.issn.

10. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, et al. The
third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA
(2016) 315(8):801–10. doi: 10.1001/jama.2016.0287

11. Li W, Li D, Chen Y, Abudou H, Wang H, Cai J, et al. Classic signaling pathways
in alveolar injury and repair involved in sepsis-induced ALI/ARDS: new
research progress and prospect. Dis Markers 2022. (2022) p:6362344. doi: 10.1155/
2022/6362344
12. . Gene Ontology Consortium. Gene Ontology Consortium: going forward.
Nucleic Acids Res (2015) 43(Database issue):D1049–56. doi: 10.1093/nar/gku1179

13. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res (2000) 28(1):27–30. doi: 10.1093/nar/28.1.27

14. Caramori G, Casolari P, Adcock I. Role of transcription factors in the
pathogenesis of asthma and COPD. Cell Commun Adhes (2013) 20(1-2):21–40. doi:
10.3109/15419061.2013.775257

15. Yoo M, Shin J, Kim J, Ryall KA, Lee K, Lee S, et al. DSigDB: drug signatures
database for gene set analysis. Bioinformatics (2015) 31(18):3069–71. doi: 10.1093/
bioinformatics/btv313

16. Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J, et al. NetworkAnalyst
3.0: a visual analytics platform for comprehensive gene expression profiling and meta-
analysis. Nucleic Acids Res (2019) 47(W1):W234–41. doi: 10.1093/nar/gkz240

17. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology,
transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19) A
review. JAMA (2020) 324(8):782–93. doi: 10.1001/jama.2020.12839

18. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in
COVID-19: an overview of the involvement of the chemokine/chemokine-receptor
system. Cytokine Growth Factor Rev (2020) 53:25–32. doi : 10.1016/
j.cytogfr.2020.05.003

19. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Immunology of
COVID-19: current state of the science. Immunity (2020) 52(6):910–41. doi: 10.1016/
j.immuni.2020.05.002

20. Muralidar S, Ambi SV, Sekaran S, Krishnan UM. The emergence of COVID-19
as a global pandemic: understanding the epidemiology, immune response and potential
therapeutic targets of SARS-CoV-2. Biochimie (2020) 179:85–100. doi: 10.1016/
j.biochi.2020.09.018

21. Root-Bernstein R. Innate receptor activation patterns involving TLR and NLR
synergisms in COVID-19, ALI/ARDS and sepsis cytokine storms: a review and model
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.1016/S0140-6736(20)30251-8
https://doi.org/10.1038/s41586-020-2739-1
https://doi.org/10.3389/fimmu.2022.860676
https://doi.org/10.1016/S2213-2600(20)30217-4
https://doi.org/10.1038/s41422-021-00523-8
https://doi.org/10.1038/s41422-021-00523-8
https://doi.org/10.3906/sag-2108-239
https://doi.org/10.3760/cma.j.issn.
https://doi.org/10.1001/jama.2016.0287
https://doi.org/10.1155/2022/6362344
https://doi.org/10.1155/2022/6362344
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.3109/15419061.2013.775257
https://doi.org/10.1093/bioinformatics/btv313
https://doi.org/10.1093/bioinformatics/btv313
https://doi.org/10.1093/nar/gkz240
https://doi.org/10.1001/jama.2020.12839
https://doi.org/10.1016/j.cytogfr.2020.05.003
https://doi.org/10.1016/j.cytogfr.2020.05.003
https://doi.org/10.1016/j.immuni.2020.05.002
https://doi.org/10.1016/j.immuni.2020.05.002
https://doi.org/10.1016/j.biochi.2020.09.018
https://doi.org/10.1016/j.biochi.2020.09.018
https://doi.org/10.3389/fimmu.2023.1152186
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1152186
making novel predictions and therapeutic suggestions. Int J Mol Sci (2021) 22:(4):2108.
doi: 10.3390/ijms22042108

22. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the;Cytokine storm’ in
COVID-19. J Infect (2020) 80(6):607–13. doi: 10.1016/j.jinf.2020.03.037

23. Burrack KS, Tan JJ, McCarthy MK, Her Z, Berger JN, Ng LF, et al. Myeloid cell
Arg1 inhibits control of arthritogenic alphavirus infection by suppressing antiviral T
cells. PloS Pathog (2015) 11(10):e1005191. doi: 10.1371/journal.ppat.1005191

24. Dhanalakshmi M, Das K, Pandya M, Shah S, Gadnayak A, Dave S, et al. Artificial
neural network-based study predicts GS-441524 as a potential inhibitor of SARS-CoV-
2 activator protein furin: a polypharmacology approach. Appl Biochem Biotechnol
(2022) 194(10):4511–29. doi: 10.1007/s12010-022-03928-2

25. Tang D, Comish P, Kang R. The hallmarks of COVID-19 disease. PloS Pathog
(2020) 16(5):e1008536. doi: 10.1371/journal.ppat.1008536

26. Goud PT, Bai D, Abu-Soud HM. (2021) A multiple-hit hypothesis involving
reactive oxygen species and myeloperoxidase explains clinical deterioration and fatality
in Covid-19. Int J Biol Sci 17 (1):62-72. doi: 10.7150/ijbs.51811

27. Chakraborty C, Sharma AR, Bhattacharya M, Sharma G, Lee SS, Agoramoorthy
G. Consider TLR5 for new therapeutic development against COVID-19. J Med Virol
(2020) 92(11):2314–5. doi: 10.1002/jmv.25997

28. Ahmed FF, Reza MS, Sarker MS, Islam MS, Mosharaf MP, Hasan S, et al.
Identification of host transcriptome-guided repurposable drugs for SARS-CoV-1 infections
and their validation with SARS-CoV-2 infections by using the integrated bioinformatics
approaches. PloS One (2022) 17(4):e0266124. doi: 10.1371/journal.pone.0266124

29. Islam T, Rahman MR, Aydin B, Beklen H, Arga KY, Shahjaman M. Integrative
transcriptomics analysis of lung epithelial cells and identification of repurposable drug
candidates for COVID-19. Eur J Pharmacol (2020) 887:173594. doi: 10.1016/
j.ejphar.2020.173594

30. Lu L, Liu LR, Gui R, Dong H, Su YR, Zhou XH, et al. Discovering common
pathogenetic processes between COVID-19 and sepsis by bioinformatics and system
biology approach. Front Immunol (2022) 13:975848. doi: 10.3389/fimmu.2022.975848

31. Teodori L, Sestili P,MadiaiV,Coppari S, FraternaleD,RocchiMBL, et al.MicroRNAs
bioinformatics analyses identifying HDAC pathway as a putative target for existing anti-
COVID-19 therapeutics. Front Pharmacol (2020) 11:582003. doi: 10.3389/fphar.2020.582003
Frontiers in Immunology 14
32. Frorup C, Mirza AH, Yarani R, Nielsen LB, Mathiesen ER, Damm P, et al.
Plasma exosome-enriched extracellular vesicles from lactating mothers with type 1
diabetes contain aberrant levels of miRNAs during the postpartum period. Front
Immunol (2021) 12:744509. doi: 10.3389/fimmu.2021.744509

33. Mahmud SMH, Al-Mustanjid M, Akter F, Rahman MS, Ahmed K, Rahman
MH, et al. Bioinformatics and system biology approach to identify the influences of
SARS-CoV-2 infections to idiopathic pulmonary fibrosis and chronic obstructive
pulmonary disease patients. Brief Bioinform (2021) 22(5):115. doi: 10.1093/bib/
bbab115

34. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes
mellitus at increased risk for COVID-19 infection? Lancet Respir Med (2020) 8(4):e21.
doi: 10.1016/S2213-2600(20)30116-8

35. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138
hospitalized patients with 2019 novel coronavirus-infected pneumonia in wuhan,
China. JAMA (2020) 323(11):1061–9. doi: 10.1001/jama.2020.1585

36. Jothimani D, Venugopal R, Abedin MF, Kaliamoorthy I, Rela M. COVID-19
and the liver. J Hepatol (2020) 73(5):1231–40. doi: 10.1016/j.jhep.2020.06.006

37. Sansoe G, Aragno M, Wong F. COVID-19 and liver cirrhosis: focus on the
nonclassical renin-angiotensin system and implications for therapy. Hepatology (2021)
74(2):1074–80. doi: 10.1002/hep.31728

38. Akinlalu AO, Chamundi A, Yakumbur DT, Afolayan FID, Duru IA,
Arowosegbe MA, et al. Repurposing FDA-approved drugs against multiple proteins
of SARS-CoV-2: an in silico study. Sci Afr (2021) 13:e00845. doi: 10.1016/
j.sciaf.2021.e00845

39. Nunnari G, Sanfilippo C, Castrogiovanni P, Imbesi R, Li Volti G, Barbagallo I,
et al. Network perturbation analysis in human bronchial epithelial cells following
SARS-CoV2 infection. Exp Cell Res (2020) 395(2):112204. doi: 10.1016/
j.yexcr.2020.112204

40. Mousavi SZ, Rahmanian M, Sami A. A connectivity map-based drug
repurposing study and integrative analysis of transcriptomic profiling of SARS-CoV-
2 infection. Infect Genet Evol (2020) 86:104610. doi: 10.1016/j.meegid.2020.104610

41. Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffer K, Mak TW. An aberrant STAT
pathway is central to COVID-19. Cell Death Differ (2020) 27(12):3209–25. doi:
10.1038/s41418-020-00633-7
frontiersin.org

https://doi.org/10.3390/ijms22042108
https://doi.org/10.1016/j.jinf.2020.03.037
https://doi.org/10.1371/journal.ppat.1005191
https://doi.org/10.1007/s12010-022-03928-2
https://doi.org/10.1371/journal.ppat.1008536
https://doi.org/10.7150/ijbs.51811
https://doi.org/10.1002/jmv.25997
https://doi.org/10.1371/journal.pone.0266124
https://doi.org/10.1016/j.ejphar.2020.173594
https://doi.org/10.1016/j.ejphar.2020.173594
https://doi.org/10.3389/fimmu.2022.975848
https://doi.org/10.3389/fphar.2020.582003
https://doi.org/10.3389/fimmu.2021.744509
https://doi.org/10.1093/bib/bbab115
https://doi.org/10.1093/bib/bbab115
https://doi.org/10.1016/S2213-2600(20)30116-8
https://doi.org/10.1001/jama.2020.1585
https://doi.org/10.1016/j.jhep.2020.06.006
https://doi.org/10.1002/hep.31728
https://doi.org/10.1016/j.sciaf.2021.e00845
https://doi.org/10.1016/j.sciaf.2021.e00845
https://doi.org/10.1016/j.yexcr.2020.112204
https://doi.org/10.1016/j.yexcr.2020.112204
https://doi.org/10.1016/j.meegid.2020.104610
https://doi.org/10.1038/s41418-020-00633-7
https://doi.org/10.3389/fimmu.2023.1152186
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Bioinformatics and system biology approach to identify the influences among COVID-19, ARDS and sepsis
	Introduction
	Materials and methods
	Collection of the datasets
	Identification of DEGs and common DEGs among COVID-19, ARDS and sepsis
	Gene ontology and pathway enrichment analysis of DEGs
	Protein-protein interaction networks and hub genes extraction
	Identification of transcription factors and miRNAs
	Drug prediction analysis
	Gene-disease association analysis

	Result
	Identification of DEGs and common DEGs among COVID-19, ARDS and sepsis
	Gene ontology and pathway enrichment analysis
	Classification of hub proteins and submodule
	Construction of regulatory networks
	Identification of candidate drugs
	Identification of disease association

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding
	References


