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ABSTRACT

Alzheimer’s disease (AD), an irreversible neurodegenerative disease that progressively impairs memory and 
cognitive judgment, severely affects the quality of life and imposes a heavy burden on the healthcare system. No 
cure is currently available for AD, in part because the pathogenesis of this disease has not been established. Animal 
models are essential for investigating AD pathogenesis and evaluating potential therapeutic strategies for AD. 
Some phenotypic and neuropathologic changes in AD patients can be recapitulated with genetic and pharmacologic 
approaches in animals. This article systematically reviews the animal models available for AD research, including 
transgenic, chemical- or drug-induced, and spontaneous animal models, and the characteristics of these animal 
models. In this review we also discuss the challenges and constraints when using AD animal models. Although no 
single animal model can reproduce all pathologic aspects and behavioral features in AD patients, the currently 
available AD models are valuable tools for deciphering the pathogenic mechanisms underlying AD and developing 
new anti-AD therapeutics.
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1. INTRODUCTION

Alzheimer’s disease (AD) is the most common neuro-
degenerative disease that progressively impairs mem-
ory and cognitive judgment [1]. AD severely affects 
the quality of life and imposes a heavy burden on the 
healthcare system [1]. The global incidence of AD cur-
rently exceeds 50 million, and the mortality rate due to 
AD has increased two-fold over the last two decades [2]. 
No cure for AD is currently available, and current thera-
peutics commonly used in the clinical setting only exert 
a modest effect in symptomatic relief, but fall short in 
reversing or even slowing down AD progression [3, 4].

The pathogenesis of AD is complex, much of which 
is unknown. There are two well-recognized pathologic 
hallmarks in AD (extracellular amyloid plaques and intra-
cellular neurofibrillary tangles [NFTs]) [4]. The aggrega-
tion of beta-amyloid (Aβ) and hyperphosphorylated tau 
protein contribute to the formation of amyloid plaques 
(Figure 1) and NFTs (Figure 2), respectively, which are 
thought to have important roles in AD progression [4].

The formation of amyloid plaques, mainly consist-
ing of Aβ peptide, is one of the pathologic hallmarks 
in the brains of patients with AD. The amyloid cascade 
hypothesis proposes that Aβ accumulates and aggre-
gates in the brain during the initial stage of AD pathol-
ogy, and ultimately leads to neurodegeneration [5, 6]. 
Aβ is a 38-43-residue fragment formed by proteolysis 
of amyloid precursor protein (APP) through cleavage of 
β- and γ-secretases [7]. The following two pathways are 
associated with APP processing: the non-amyloidogenic 
pathway, in which APP is cleaved by α-secretase, lead-
ing to the release of cytoplasmic tail fragment α (CTFα) 
and soluble APPα (sAPPα) [8], which has neuroprotec-
tive effects due to its ability to prevent APP degrada-
tion mediated by β-secretase [9]; and the amyloidogenic 
pathway, through which β-secretase cleaves APP to 
produce CTFβ and soluble APPβ (sAPPβ), followed by 
γ-secretase-mediated generation of several types of 
Aβ [10]. Among the types of Aβ, Aβ40 and Aβ42 are the 
two major Aβ peptides that have important roles in AD 
pathology. The ratio of the Aβ40 and Aβ42 isoforms is 
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influenced by the pattern of cleavage from APP by α, 
β, and γ secretases [11]. These two pathways are paral-
lel and kept in balance in under physiologic conditions. 
Aβ clearance and degradation dysfunction can cause 
the deposition of Aβ in the brains of AD patients, and 
sequentially generate Aβ oligomers and fibrils, ulti-
mately leading to the formation of Aβ plaques [6, 12]. 
In addition, the genetic mutations of the APP gene on 
chromosome 21, the presenilin-1 (PS1) gene on chro-
mosome 14, and the presenilin-2 (PS2) gene on chro-
mosome 1 are positively correlated with the increased 
levels of Aβ [13]. Accumulating evidence suggests that 
Aβ oligomers have significant neurotoxicity [14], and 
the Aβ plaques are usually surrounded by activated glial 
cells and damaged neurons [15-17]. It has been shown 
that soluble oligomeric and deposited Aβ in amyloid 
plaques interact with neurons, microglia, astroglia, and 
blood vessels, causing a variety of detrimental cellular 
responses that eventually lead to neuronal death [18].

NFTs are largely composed of hyperphosphorylated 
tau protein. NFTs are another pathologic hallmark of 
AD and contribute significantly to AD progression [19]. 

Tau protein is a glycoprotein related to microtubule 
assembly that has a crucial role in stabilizing microtu-
bules, maintaining neuronal morphology, and mod-
ulating neurotransmitter transport under physical 
conditions [20]. Progression of AD is closely associated 
with abnormal post-translational modifications and 
aggregation of tau protein, including phosphorylation, 
acetylation, N-glycosylation, and truncation [21, 22]. 
Phosphorylation is the most common post-translational 
modification of tau protein. Accumulating evidence 
suggests that phosphorylated tau is closely correlated 
with AD symptom severity and may drive progression of 
AD [23]. In the brains of patients with AD, hyperphos-
phorylated tau protein loses affinity for microtubules 
and progressively forms insoluble intracellular NFTs, 
thus leading to neuronal dysfunction, synaptic loss, and 
ultimately cognitive impairment [24].

Tau and phosphorylated tau proteins have been 
reported to be associated with Aβ directly and indi-
rectly. According to the amyloid cascade hypothesis, 
Aβ accumulation promotes the hyperphosphorylation 
of tau protein and the formation of NFTs [25]. Tau 

Figure 1  |  Amyloidogenic and non-amyloidogenic pathways for APP processing in AD.
There are two pathways of APP processing: (a) The non-amyloidogenic pathway, in which APP is cleaved by α-secretase, leads to the release of 
cytoplasmic tail fragment α (CTFα) and soluble APPα (sAPPα). sAPPα has neuroprotective effects due to prevention of APP degradation medi-
ated by β-secretase. (b) The other pathway is the amyloidogenic pathway, in which β-secretase cleaves APP to produce CTFβ and soluble APPβ 
(sAPPβ), followed by γ-secretase-mediated cleavage to generate several types of Aβ. Aβ40 and Aβ42 are the two major Aβ peptides that have 
an important role in AD pathology. The ratio of these two isoforms is influenced by the pattern of cleavage from APP by α-, β-, and γ secre-
tases. These two pathways are parallel and kept in balance under physiologic conditions. Dysfunction of Aβ clearance and degradation causes 
the deposition of Aβ in the AD brain, and sequentially generates Aβ oligomers and fibrils, ultimately leading to the formation of Aβ plaques.
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immunotherapy, however, alleviates amyloid pathology 
and memory impairment in a transgenic APP mouse 
model of AD [26], indicating that tau pathologies have 
important roles in Aβ-induced neurotoxicity. Multiple 
factors, such as calcium homeostasis, kinases (glycogen 
synthase kinase-3β [GSK-3β] and cyclin-dependent pro-
tein kinase-5 [CDK-5]), and free fatty acid disruptions, 
are responsible for the association between tau and Aβ 
pathologies. Moreover, tau and Aβ-associated patholo-
gies exert synergistic effects on neurotoxicity and synap-
tic dysfunction [27]. The development of tau-targeted 
therapeutics may be a promising strategy for AD treat-
ment, although the relationship between Aβ and tau 
has not been completely determined.

Other neuropathologic features, such as neuroin-
flammation, neuronal loss, oxidative stress, and synaptic 
impairment, are also believed to contribute to disease 
progression [28]. All of these mechanisms may interact, 
leading to amplification of the mechanisms and result-
ing in AD pathogenesis.

Animal models are important for investigating AD 
pathogenesis and evaluating potential therapies for AD. 
In the past few decades, many potential drug candidates 

have shown promising anti-AD effects in preclinical 
models, but surprisingly failed in clinical trials [29]. One 
of the reasons for this finding may be partially attrib-
uted to the inappropriate choice of preclinical models. 
Mammals, such as rodents, share extensive physiologic 
and genetic homology with humans. Thus, preclinical 
findings acquired from animal models may provide 
insight into human disease conditions. Although no sin-
gle animal model can reproduce all aspects of the patho-
logic and behavioral features of AD patients, currently 
available AD animal models can, at least to some extent, 
replicate several important features of AD. This review 
aimed to summarize the characteristics and features of 
the animal models commonly in use for AD research. It 
is hoped that the information summarized in this arti-
cle may help AD researchers choose appropriate animal 
models to achieve their objectives.

2. TRANSGENIC RODENT MODELS

Genetics is one of the most salient known risk factors 
for AD. AD can be divided into sporadic AD (sAD) and 
familial AD (fAD). The ε4 allele of the apolipoprotein E 

Figure 2  |  Intracellular neurofibrillary tangles (NFTs) pathway in AD.
Hyperphosphorylation occurs in an epitope-specific manner during the course of AD, and is known to underlie the mis-sorting of tau from a 
primarily axonal-to-a somato-dendritic location in neurons. Hyperphosphorylated tau loses its affinity to microtubules and destabilizes micro-
tubule dynamics. After pathologic aggregation, abnormal folding of tau protein leads to the generation of a paired helical filament (PHF) and 
neurofibrillary tangles (NFTs), ultimately causing neurodegeneration and cognitive impairment in patients with AD.
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(ApoE) gene is considered the most relevant gene for 
sAD [30, 31], while fAD is mainly associated with familial 
gene mutations, including APP, PS1 and PS2 gene muta-
tions [32, 33]. Compared with the most common ApoE 
genotype (ε3/ε3), ε4 heterozygosity raises the risk of 
developing AD 3-fold and ε4 homozygosity increases the 
risk 8-12 times [1]. Approximately two-thirds of pathol-
ogy-confirmed AD cases are ε4-positive (homozygous or 
heterozygous), while the percentage of ε4-positive cases 
is 15%-20% in the general population [31]. Although 
pathogenic variants of APP, PS1, and PS2 genes contrib-
ute to ≤ 1% of AD cases [1], nearly 100% of individuals 
inheriting APP and PS1 and approximately 95% of indi-
viduals inheriting PS2 develop the disease, assuming an 
average lifespan [34].

The identification of APP, PS1, and PS2 gene 
mutations related to fAD [32, 33] has resulted in the 
development of numerous transgenic rodent models 
of amyloid pathology [35, 36], while the human MAPT 
gene mutations related to neurodegeneration [37] 
have been utilized to induce tau pathology. To date, > 
200 transgenic rodent models of AD have been estab-
lished (data obtained from https://www.alzforum.org/, 
accessed in November 2022), most of which are gener-
ated based on the mutations associated with amyloid 
and tau pathologies. Because ApoE4 and triggering 
receptor expressed on myeloid cells 2 (TREM2) genes are 
considered the most relevant genes for sAD [30, 31, 38], 
transgenic models associated with these genes have 
been established. The most commonly used transgenic 
rodent models of AD are listed in Table 1.

2.1 APP-based transgenic model
The PDAPP transgenic mouse model, the first reported 
transgenic AD mouse model, was generated in the 
mid-1990s [52-56], followed by the development of the 
currently most commonly used APP transgenic models, 
including Tg2576 [117], APP23 [44-47], TgCRND8 [39-43], 
and J20 [118] transgenic mouse models. These five mod-
els overexpress human APP with the Indiana mutation 
(V717F) and/or the Swedish mutation (KM670/671NL). 
Other APP transgenic murine models, such as APP(V717I) 
and mThy1-hAPP751, encode a mutant form of human 
APP with the London mutation (V717I) driven by the 
murine Thy-1 promoter [57, 58, 63-65]. APP-based 
transgenic rodent models exhibit comprehensive Aβ 
pathology, Aβ-associated neuroinflammation, synaptic 
dysfunction, neuronal loss, and cognitive and behavio-
ral impairment (also shown in Table 1), thus supporting 
the amyloid cascade hypothesis and recapitulating sev-
eral key pathologies observed in AD patients. Indeed, 
these AD models are ideal experimental tools for amy-
loid-related research, not only for evaluating the poten-
tial efficacy of new therapeutics, but also investigating 
the underlying mechanisms, including amyloid pathol-
ogy and amyloid-associated neuropathogenesis. It is 
worth noting, however, that the importance of Aβ in 
AD pathogenesis has been increasingly questioned due 

to the continuous clinical failures of anti-Aβ or amyloid-
centric therapies [119-121]. Although aducanumab, a 
monoclonal antibody targeting Aβ pathology, was con-
ditionally approved in 2021 by the United States Food 
and Drug Administration (US FDA) for the treatment 
of AD patients, although the clinical efficacy and safety 
have yet to be verified [122]. This therapeutic dilemma 
may be attributed to the complex pathologies of AD 
[123], while APP transgenic rodent models only display 
amyloid pathology. It is conceivable that the absence 
of comprehensive tau pathology in APP transgenic 
models, another crucial pathologic feature of AD, may 
result in the promising therapeutic effects of potential 
drug candidates demonstrated in animal models, but 
shown to be negative in AD patients. Although tau 
protein is hyperphosphorylated in some models, such 
as TgCRND8 [124], APP23 [44-47], and APP(V717I) mice 
[57, 58, 63-65], as well as APPNL-G-F knock-in rats [66], 
no NFTs were observed in APP-based transgenic rodent 
models. Therefore, the lack of NFT development in the 
above-mentioned amyloidosis models, at least to some 
extent, limits preclinical use [36, 125].

2.2 Tau-based transgenic models
Apart from amyloid plaques, another pathologic hall-
mark of AD is the formation of NFTs, which results from 
the hyperphosphorylation and pathologic aggregation 
of tau proteins [19]. Because the formation of NFTs is 
absent in transgenic rodents harboring APP or APP/
PS mutations [126], mutated MAPT models are often 
selected to investigate tau pathology in preclinical stud-
ies on AD.

2.2.1 hTau.P310S.  As the most widely used tauopa-
thy model, tau P310S mice express mutant human tau 
5-fold higher than the endogenous murine tau on a 
C57BL/6×C3H background, and display widespread NFTs 
in the hippocampus, neocortex, amygdala, brainstem, 
and spinal cord at 6 months of age, with progressive hip-
pocampal synaptic dysfunction at 3-6 months of age and 
neuronal loss by 9-12 months of age [67]. Tau pathology 
is also accompanied by microglial and astrocytic activa-
tion by 6 months of age [67]. Moreover, 6-month-old 
P301S transgenic mice exhibit learning and spatial mem-
ory deficits, when undergoing the Morris water maze 
test (MWMT) and impaired spontaneous alternating 
behavior in the Y-maze test [68].

2.2.2 rTg (tauP301L) 4510.  After the initial description 
in 2005 [70, 71], the rTg4510 mouse model has gradu-
ally become a popular and commonly used tauopathic 
model. rTg4510 mice encode a repressible mutant of 
human tau with a P301L mutation, expressing mutant 
human tau at a level 13 times higher than endogenous 
murine tau [71]. NFT-like pathologic changes appear in 
the cortex and hippocampus at 4 months of age and 5.5 
months of age, respectively [70, 71]. Apart from an early 
onset of tau pathology, this model shows progressive 

https://www.alzforum.org/
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and age-related spatial memory impairment beginning 
at 2.5 months of age [71, 72], while females exhibit 
more severe deterioration than males [72]. Hyperactivity 
and recognition memory deficits are also observed, as 
demonstrated by the open field and novel objective rec-
ognition tests [127-129]; however, a recent study sug-
gested that the neuropathologic deficits and behavior 
phenotypes in this model may be partially attributed 
to overexpression of mutant human tau [130]. Thus, 
researchers are advised to take factors other than hTau 
overexpression into consideration when using rTg4510 
mice.

2.2.3 hTau.  Unlike the above-mentioned animal mod-
els of tau pathology, hTau mice develop tangles with-
out mutations and exclusively express all six isoforms of 
non-mutant human tau, including 3R and 4R forms, but 
no endogenous mouse tau is detected [75]. Tau protein 
is progressively hyperphosphorylated and accumulated 
from 6 months of age, while paired helical filaments 
(PHFs) and thioflavin-S-positive NFTs can be detected 
in 9-15-month-old hTau mice [75]. Compared with the 
wild-type littermates, hTau mice exhibit significant defi-
cits in spontaneous burrowing behavior at 4 months of 
age [76], as well as spatial learning and memory at 6-12 
months of age [77, 78], with neuronal loss detected at 
8-18 months of age [79].

2.2.4 THY-Tau22.  This model encodes a transgene con-
taining human tau with P301S and G272V mutations 
driven by a Thy1.2 promotor. The tau pathologies with 
an onset at 3-6 months develop progressively with age 
in THY-Tau22 mice, including hyperphosphorylation of 
tau protein and the formation of NFTs in the hippocam-
pus and cortex [80]. In addition, this model shows neu-
ronal loss, synaptic dysfunction, and an age-dependent 
increase in GFAP-positive astrocytes in the hippocampus 
[80, 81, 131]. THY-Tau22 mice exhibit spatial memory 
impairment at 9 months of age [81] and impaired appe-
titive responding at 9-10 months [82].

Although tau-based rodent models display pro-
nounced tau pathology, Aβ plaques and amyloid pathol-
ogy are absent in these models [70, 71, 75, 80, 132]. Of 
note, pathogenic mutations of the tau gene are only 
present in patients with frontotemporal dementia and 
parkinsonism linked to chromosome 17 (FTDP-17), but 
not in individuals affected with AD [133]. Due to the 
lack of amyloid pathology in tau-based models and the 
lack of tau pathology in APP-based models, these AD 
models cannot recapitulate the association between tau 
and amyloid pathologies observed in AD patients. Thus, 
some multi-transgenic AD models, such as triple trans-
genic (3 × Tg) and PLB1-triple mice, have been generated 
to counterbalance the above-mentioned shortcomings.

2.3 PSEN-based transgenic models
As major components of the γ-secretase enzyme, PS1 
and PS2 are closely associated with APP processing and M
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AD pathology [134, 135]. Mutations of these two genes 
contribute to the early onset of fAD, in which PS1 muta-
tions play a more prominent role [134, 135]. Transgenic 
models only expressing mutant PS1 or PS2 produce a 
significantly elevated level of Aβ42, a major Aβ peptide 
preceding Aβ plaque deposition, but Aβ plaques and 
NFTs are not developed [136]. In addition, age-related 
tau inclusions, synaptic dysfunction, and neuronal loss 
are present in transgenic animals expressing mutant PS1 
or PS2 [137-139]. These models generally do not exhibit 
pronounced AD-like pathologies because the models 
have a lower Aβ42 level than APP transgenic mice [136, 
140]. Thus, the application of PS mutant mice is limited; 
however, the development of APP/PS transgenic mice 
has drawn much attention because the PS1 or PS2 muta-
tions have synergistic effects with APP on accelerating 
amyloidosis [136].

2.4 Multi-transgenic models
2.4.1 APP/PS1.  Compared to single APP transgenic mod-
els, APP/PS mice have a more extensive and earlier onset 
of amyloid pathologies and cognitive deficits, in addi-
tion to more pronounced synaptic and neuronal loss 
[136, 137]. Specifically, APP/PS1 mice harboring mutant 
APPswe and PS1 (M146L) display Aβ depositions much 
earlier than the original monogenic APP transgenic mice 
(Tg2576 mice) [141]. Other APP/PS1 lines, such as APPSwe 
× PS1∆E9, APPSwe × PS1A246E, and APPLon × PS1A246E, have 
also been developed and widely used. The extensive 
applications of APP/PS1 mice in preclinical AD research 
are mainly attributed to rapid and age-dependent Aβ 
accumulation and deposition in the hippocampus and 
cortex at an early age, with an enhanced Aβ42/Aβ40 ratio 
and behavioral impairments. Like monogenic APP trans-
genic mice, however, tau pathologies are absent in APP/
PS1 mice.

2.4.2 5×FAD.  The 5×FAD model is used commonly in 
preclinical AD-associated research. These mice harbor 
five AD-related human mutant genes: mutant APP (with 
Swedish, Florida, and London mutations); and PS1 (with 
M146 L and L286V mutations). Like other APP/PS1 mice, 
this model has a rapid and early onset of amyloid dep-
osition, making APP/PS1 mice a valuable preclinical tool 
for amyloid-associated studies. Extracellular Aβ plaques 
appear in the hippocampus and cortex beginning at 
2  months of age and progress in an age-dependent 
manner, while accompanied with neuroinflammation 
[95-98]. Of note, female mice generate higher Aβ lev-
els than males and display more numerous Aβ plaques 
in the hippocampus and cortex, showing more aggres-
sive amyloid pathology [142-144]. This gender-depend-
ent difference in phenotypes is generally similar to AD 
patients, as women have been demonstrated to be 
more susceptible to AD than men [1]. Moreover, 5×FAD 
mice exhibit age-dependent cognitive deficits, including 
impaired spatial memory and working memory [95-98], 
with neuronal loss and synaptic dysfunction [95-98, 145].

2.4.3 3×Tg-AD.  As the most commonly used transgenic 
AD mouse model, 3×Tg-AD mice encode three mutant 
forms of genes associated with fAD (APPSwe, MAPT 
P301L, and PSEN1 M146V) and develop both amyloid 
and tau pathologies [99]. Extracellular Aβ deposition 
occurs in the cerebral cortex by 6 months of age and 
becomes more extensive by 12 months, while tau pro-
tein is hyperphosphorylated and aggregated in the 
hippocampus by 12-15 months of age, which is later 
than amyloid deposition [99, 100]. Neuroinflammation 
and synaptic deficits appear at 7 and 6 months of age, 
respectively; both neuroinflammation and synaptic 
deficits occur prior to amyloid and tau pathologies 
[99, 146]. These mice show an early onset of intraneu-
ronal Aβ-associated cognitive impairment at 4 months 
of age that manifests as a deficit with long-term 
retention [100]. Thus, this model recapitulates many 
AD-associated phenotypes and is well-recognized as 
one of the most appropriate models for mechanistic 
investigations and drug discovery in AD.

2.4.4 PLB1-triple.  The PLB1-triple mice have five trans-
genic mutations on a C57BL/6J background, including 
APPSwe, APPLon, MAPT P301 L, MAPT R406W, and PSEN1 
A246E. Unlike models with high overexpression of dis-
ease genes, this model expresses low levels of mutant 
human APP, tau, and PS1, with no NFTs and virtually no 
Aβ deposition [102]. The neurodegenerative patholo-
gies in this model progress slowly and are mild; however, 
spatial memory deficits are reported in 12-month-old 
PLB1-triple mice, with sparse Aβ plaques and hyperphos-
phorylated tau in the hippocampus and cortex from 6 
months onwards [102, 103].

2.4.5 E4FAD.  As mentioned above, the APOE4 gene 
is currently the most relevant gene associated with 
the development of sAD [30, 31]. The APOE4-elicited 
increase in the risk of developing AD has been reported 
to be closely related to the high avidity and specific 
binding of Aβ peptide with APOE4, sequentially lead-
ing to enhanced Aβ aggregation and reduced Aβ clear-
ance [30, 31, 147]. Thus, some animal models have been 
established to investigate the role of APOE4 in AD, such 
as the E4FAD mouse model. The E4FAD mice are gen-
erated through cross-breeding of 5×FAD mice with the 
APOE4-targeted replacement mice on a C57BL/6 back-
ground. In this model, the AD phenotypes are generally 
less severe than the original 5×FAD mouse model. While 
Aβ plaques can be detected in 5×FAD mice at 2 months 
of age, the E4FAD mouse model exhibits progressive 
amyloid plaques in the cerebral cortex at 4 months 
[107]. The E4FAD mice have increased compact plaques 
and decreased diffuse plaques in the brain relative to 
mice with other APOE isoforms, such as E2FAD mice 
expressing APOE2 and E3FAD mice expressing APOE3 
[107]. Moreover, age-dependent cognitive impairments 
in MWMT and Y maze are found in this model at 2 
months, with elevated neuroinflammation at 6 months 
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and synaptic loss at 4 months [108, 109] compared to the 
E2FAD and E3FAD models.

3. NON-TRANSGENIC ANIMAL MODELS

Most transgenic animal models are generated based on 
genetic mutations, bringing valuable insight into the 
roles of amyloid and tau pathogenesis in AD; however, 
> 95% of AD patients are diagnosed with sAD and are 
rarely caused by familial gene mutations [148, 149]. 
Although the etiology of sAD has yet to be fully eluci-
dated, some non-transgenic animal models have been 
established to mimic the neuropathologic changes in 
sAD. The most commonly used non-transgenic animal 
models of AD are shown in Table 2.

3.1 Spontaneous models
3.1.1 Senescence-accelerated mouse (SAM) models.  
The most salient known risk factors for AD are the non-
modifiable contributors of older age, gender, genetics, 
and family history. Of these risk factors, advanced age 
has the most significant known impact on the risk of 
developing AD [1]. Thus, some AD models are estab-
lished based on aging. The SAM, a mouse model of AD 
established in the early 1980s through phenotypic selec-
tion from a genetic pool of AKR/J mice, has mostly dupli-
cated natural age-associated deterioration [36]. The 
SAM model consists of nine major sub-strains of SAM-
prone (SAMP) mice, including the SAMP8 and SAMP10 
sub-strains. Accumulating evidence demonstrated that 
SAMP8 mice display progressive memory deficits from 
6 months of age and other aging features at a young 
age, such as sparse hair and osteoporosis [151, 152], with 
age-related hyperphosphorylated tau, Aβ deposition, 
and neurotransmitter dysfunction [153-155]. Therefore, 
the SAMP8 mouse model has been used as an aging-
associated AD model. Another sub-strain, the SAMP10 
strain, has also been proven to be a relevant model for 
AD, as these mice show age-associated learning and 
memory deficits at 4-6 months of age and exhibit Aβ 
deposition, neuronal loss and neuroinflammation during 
the aging process [156, 157]. Due to the high mortality 
rate and poor drug absorption, the use of SAMP models 
is limited. Moreover, the pathologic alterations in these 
models are not consistent with AD pathogenesis [33].

3.1.2 Natural aging models.  Natural aging animals have 
also been used for AD research. Although natural aging 
rodents show age-related cognitive impairments mor-
phologic changes, and cholinergic hypofunction [150], 
aging rodents do not develop amyloid and tau pathol-
ogies, making them less useful for AD studies targeting 
these two pathologic features. Furthermore, the high 
cost of maintenance and long experimental cycle largely 
restrict preclinical use. Some other species, including 
dogs, goats, cats, polar bears, sheep, wolverines, and 
several non-human primate species, can spontane-
ously develop Aβ plaque pathology, and some species 

even exhibit tau pathology [36]. These histopathologic 
changes can be accompanied by learning and memory 
impairment; however, there are some shortcomings or 
obstacles when using these species for experimental 
studies, such as limited availability, ethical problems, 
difficulty of large-scale breeding, and the high mainte-
nance cost.

3.2 Streptozotocin (STZ)-induced AD model
As a natural alkylating anti-neoplastic agent isolated 
from Streptomyces achromogenes, STZ is selectively 
toxic for insulin-producing cells in the brain and periph-
ery. The administration of STZ via intracerebroventricu-
lar (ICV) injection progressively and in a dose-dependent 
fashion causes AD-like pathologies, including cerebral 
glucose/energy metabolism impairments, decreased 
brain insulin resistance state, Aβ plaque deposition, 
hyperphosphorylation of tau protein, synaptic dysfunc-
tion, neuroinflammation, oxidative stress, and neuronal 
loss [158-161]. Moreover, behavioral deficits, such as 
progressive memory impairment, anxiety- and depres-
sion-like behaviors, and social dysfunction, can also be 
induced by ICV injection of STZ in rodents [162-164]. 
These pathologic alterations are generally consistent 
with the features of sAD patients. Thus, STZ has been 
extensively used to establish the sAD rodent model for 
the mechanistic assessment and preclinical evaluation of 
potential therapeutics.

Sone features or disadvantages in this model can hin-
der preclinical use. First, the STZ-induced AD model does 
not develop pronounced NFTs, although tau protein is 
hyperphosphorylated in the hippocampus and cortex 
3 weeks after injection [165]. Second, repeated or pro-
longed exposure to STZ is considered a health hazard 
and possibly carcinogenic to humans [166]. Therefore, 
qualified experimental laboratories and appropriate 
personal protective equipment are required during the 
establishment of the STZ-induced AD model. Third, the 
STZ solution is unstable and has a short half-life (15-30 
min), thereby easily leading to failure of model estab-
lishment if not handled properly. In addition, females 
are more resistant to pathologic changes induced by 
STZ injection than male rats, thus there are significant 
sex differences in cognitive impairment, glucose uptake, 
glutathione level, hippocampal astrocyte activation, 
and the choline acetyltransferase level [167]. The sex-
dependent phenotypes in this model are inconsistent with 
the clinical findings that showed women have a nearly 
two-fold increased risk of developing AD than males [1].

3.3 D-galactose-induced AD model
D-galactose (D-gal) is a naturally-occurring monosac-
charide sugar that serves as an energy-providing source 
and essential glycosylation component in mammals. As 
a reducing sugar, D-gal can be metabolized in the body 
under physiologic conditions, while high levels of D-gal 
can be changed to aldose and hydroperoxide under 
catalysis of galactose oxidase [168, 169]. The increased 
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production of reactive oxygen species (ROS) induced by 
high D-gal levels cause oxidative stress, ultimately accel-
erating the process of aging [168, 170]. Accumulating 
evidence has shown that rodents receiving a continu-
ous subcutaneous or intraperitoneal injection of D-gal 
exhibit progressive learning and memory impairment, 
accompanied by mitochondrial dysfunction, oxidative 
stress, microglial and astrocytic activation, and impaired 
cholinergic neurons in the brain [169, 171, 172]. All of 
these pathologic alterations are generally consistent 
with the natural brain aging process. Thus, long-term 
injection of rodents with D-gal has been widely used 
to study the mechanisms involved with aging and age-
associated neurodegeneration and evaluate potential 
therapeutic strategies. Because increasing age is the 
most salient known risk factor for developing AD [1], 
the D-gal-induced model is applicable to the research on 
AD pathogenesis in aging.

The D-gal-induced model does not develop NFTs and 
amyloid plaques, the two neuropathologic hallmarks 
in the AD brain, or tau and Aβ pathologies [169, 171]. 
Moreover, gender-dependent differences have been 
shown with respect to the pathologic changes induced 
by D-gal [173]. Chronic injection of 100 mg/kg D-gal for 
6 consecutive weeks causes spatial memory deficits and 
cerebral oxidative stress in male mice, but not female 
mice [173], indicating that male mice are more vulnera-
ble to D-gal-elicited oxidative damage.

3.4 Aluminum-induced rodent model
As the most abundant neurotoxic metal, aluminum (Al) 
is closely associated with AD pathogenesis [203, 204]. 
Mounting evidence demonstrates that Al can cross the 
blood-brain barrier (BBB) and accumulate in the brain 
in a semi-permanent manner [205, 206]. The high con-
sumption of Al from drinking water has been reported 
to increase both the incidence of cases and AD mortality 
[207, 208], and Al has been shown to promote the neu-
rofibrillary degeneration and accelerate the formation 
of NFT-like structures in AD patients [209-211], suggest-
ing that Al is a potential causative factor for AD. The 
association between Al exposure and tau pathology was 
later confirmed by experimental findings. Oshima et al. 
[174] reported that chronic oral administration of Al 
accelerates tau aggregation, promotes apoptosis, and 
exacerbates motor dysfunction in a tauopathy mouse 
model, showing that Al has an aggravating effect on 
tau pathologies. Moreover, Al administration induce 
taus or tau-related pathologies in experimental animals 
by suppressing the dephosphorylation of tau protein, 
increasing tau aggregation, and enhancing the activi-
ties of GSK-3β and CDK5, the two important tau kinases 
[204]. Apart from the development of tau pathologies, 
Al exposure affects Aβ by increasing the aggregation 
and Aβ-associated endothelial cell toxicity [175, 176]. 
The APP gene has been reported to be overexpressed 
in rat brain after treatment with 1.7 mg/kg aluminum 
chloride (AlCl3) for 4 consecutive months [177], while 

the oral administration of 17 mg/kg AlCl3 for 6 consec-
utive weeks causes increased BACE-1 and Aβ42 levels in 
rats [178]. Other prominent pathologic features, such as 
oxidative damage [179], neuroinflammation [180, 204], 
neuronal apoptosis [181], and increased AChE activity 
[182], are also observed in an Al-treated AD model. All 
these neurologic alternations induced by Al exposure 
are attributable to the impaired cognitive functions in 
animals, which are generally congruent with that which 
is observed in the early stage of AD [203, 204]. Although 
Al causes neuropathologic and neurobehavioral changes 
in in vivo experimental models, poor bioavailability hin-
ders use of Al due to low solubility at a physiologic pH. 
Thus, AlCl3 rather than Al is often used to establish the 
animal model of AD; however, it is worth noting that 
an aqueous solution of AlCl3 partially hydrolyzes and 
releases volatile hydrogen chloride [183], affecting its 
bioavailability. Furthermore, this Al-induced AD model 
does not develop Aβ plaques and NFTs, two typical hall-
marks of AD.

3.5 Scopolamine-induced rodent model
Cholinergic neurons are extensively distributed in the 
central nervous system (CNS) and have a predominant 
role in regulating critical physiologic processes, such as 
attention, learning, memory, and the stress response 
[212]. dysfunction of the cholinergic transmission system 
contributes to AD pathology [213]. Cholinergic antag-
onists impair learning and memory, while the adminis-
tration of cholinergic agonists increases the availability 
of acetylcholine (ACh) at synapses and ameliorates 
cognitive deficits [198, 213]. Scopolamine, a known 
non-selective antagonist of the postsynaptic muscarinic 
receptor, disrupts the cholinergic tracts for cognition 
and induces learning and memory impairment in ani-
mals via intraperitoneal or ICV injection [184-186]. 
Animals treated with scopolamine partially exhibit the 
pathologic features of patients with AD; specifically, the 
Ach level is decreased, cholinergic neuron loss, amnesia, 
oxidative damage, and neuroinflammation [187-189]. 
Thus, the scopolamine-induced animal model provides 
an experimental tool to investigate the role of the cho-
linergic system in cognition and assess the preclinical 
efficacy of cholinomimetics; however, this model lacks 
typical AD pathologic hallmarks and disease progres-
sion, imposing limitations on preclinical use.

3.6 Aβ infusion (single or chronic)
The amyloid cascade hypothesis proposes that cere-
bral accumulation and aggregation of Aβ in the initial 
stage of AD is the primary culprit driving pathogene-
sis, regardless of sporadic or familiar AD, which ulti-
mately results in neurodegeneration [5, 6, 12]. The 
Aβ-associated pathologies of the AD brain can be mim-
icked by intrahippocampal, intracerebral, or ICV injec-
tion of different Aβ species into the rodent brain [214]. 
Aβ peptides, including Aβ40, Aβ42, and Aβ25-35, can be 
administered in single or multiple injections to induce 
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AD-like pathologies and behavioral deficits [190-192], 
including cholinergic dysfunction, Aβ deposition, and 
learning and memory impairment [191, 193-195]. In 
addition, the severity of cognitive impairment is asso-
ciated with the species of Aβ infused and the interval 
between Aβ administration and behavioral tests.

In addition to the APP transgenic animal models, this 
Aβ infusion rodent model provides researchers with 
alternative means to study the mechanisms underlying 
Aβ toxicity in vivo and assess the preclinical effects of 
Aβ-targeting drugs. Moreover, this model has a much 
shorter experimental cycle than transgenic models. As 
alluded to above, it takes several months to observe 
Aβ plaque deposition in APP-based transgenic rodents, 
while plaque deposition can be found within a few 
weeks after Aβ infusion in animals [196]; however, like 
APP transgenic models, the formation of NFTs are not 
observed in this Aβ infusion model, suggesting that 
Aβ infusion does not induce essential neuropathologic 
features of AD. Furthermore, hyperphysiologic Aβ lev-
els required to establish this model are much higher 
than the Aβ concentrations in the cerebrospinal fluid or 
brains of AD patients [197].

3.7 Other non-transgenic AD models
In addition to the spontaneous and chemical/drug-
induced models described above, AD-like pathologies 
can also be induced by acrolein [215] and traumatic 
brain injury [216] (Table 2).

Moreover, in addition to rodents, other non-rodent 
animal species have also been used as AD animal mod-
els, such as Caenorhabditis elegans [217], zebrafish 
[218], Drosophila melanogaster (also known as fruit 
flies) [219], and non-human primates [215, 220]. These 
species, however, are much less used than rodents in AD 
studies due to the limited availability, the vast pheno-
typic or pathologic differences from humans, difficult 
large-scale breeding, ethical problems, and the high 
maintenance cost. In addition, C. elegans and D. mela-
nogaster are valuable and advantageous AD models for 
genetic manipulation and high-throughput drug screen-
ing due to the short lifespan, ease of maintenance, and 
genetic tractability [221, 222]. These two models can 
be genetically modified to overexpress human APP and 
MAPT genes, and are useful for studying the amyloid 
and tau pathologies in AD [217, 219]. C. elegans has a 
short life cycle of 3 days from egg-to-adult at 25 °C [222], 
while D. melanogaster has a short lifespan that includes 
four different morphologic stages (embryo, larva, pupa, 
and adult) [223], each of which allows genetic dissection 
of the mechanisms that affect aging and lifespan. Thus, 
although higher animals (e.g., rodents and non-human 
primates) are necessary for a more comprehensive 
understanding of AD pathology and for developing and 
translating potential therapeutics, lower species, such 
as C. elegans and D. melanogaster, can replace higher 
species for specific studies.

4. CHALLENGES AND PERSPECTIVES

Currently, numerous animal models are available for 
AD research, all of which have their own advantages 
and disadvantages. Of note, no experimental model 
can perfectly replicate all aspects of the neuropatho-
logic and behavioral features that occur in AD patients. 
For example, the absence of Aβ plaques is commonly 
noted in in tau-based transgenic models, and the lack 
of NFTs formation is a feature of most sAD models and 
APP-based transgenic models. Thus, the experimental 
findings from animal studies may not be directly trans-
lated into clinical use. Moreover, because of the dra-
matic increase in the incidence of AD and the absence 
of a promising cure for AD at present, some potential 
drugs have been evaluated in clinical trials without reli-
able and robust preclinical data from animal studies, 
hence heightening the likelihood of failure in a clinical 
study. To validate a successful translation, the poten-
tial therapeutic strategies or drug candidates should 
be evaluated in different AD models to test efficacy 
and safety because pathologic differences are detected 
in different AD animal models. In addition, to avoid 
the preclinical inconsistency among different research-
ers or laboratories, it is necessary to follow standard 
procedures or protocols to assure the results are com-
parable and repeatable. Some guidelines, such as the 
Planning Research and Experimental Procedures on 
Animals: Recommendations for Excellence (PREPARE) 
[224] and the Animal Research: Reporting of In Vivo 
Experiments (ARRIVE) [225] guidelines, should be con-
sidered for improving the methodologic quality during 
the design, execution, and reporting of further animal 
studies in AD.

Some key points should also be considered when 
using AD animal models. First, like AD patients, gender 
often affects not only the onset but also the progres-
sion of the disease in AD models, as reviewed above. 
In some AD models, females display earlier AD pheno-
typic and pathologic characteristics than males, such 
as 5×FAD transgenic mice. In contrast, males are more 
vulnerable to AD and exhibit more severe deteriora-
tion in other models, such as the STZ-induced AD ani-
mal model. Second, because most AD-like pathologies 
and cognitive deficits in animal models are time- or 
age-dependent, the appropriate timing of behavioral 
tests and tissue/sample collection should be designed 
with an intention to obtain better and more promis-
ing results. Third, although animal models can mimic 
AD-like phenotypes, interspecies variability can cause 
marked pathologic differences, and the pharmacoki-
netics are potentially different between species [226]. 
Nevertheless, up to now, the use of AD animal models 
for preclinical research is well-recognized and well-
accepted because the phenotypic similarities between 
humans and animals are more prominent than the dif-
ferences [227].
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5. CONCLUSIONS

This review comprehensively summarized the AD animal 
models and the model characteristics, including trans-
genic animal models, chemical- or drug-induced animal 
models, and spontaneous animal models. Some phe-
notypic and neuropathological changes in AD patients 
can be recapitulated with genetic and pharmacologic 
manipulations in animals. Despite the challenges and 
constraints, the currently available AD models remain 
very valuable tools for deciphering the pathogenic 
mechanisms underlying AD and developing new thera-
peutic strategies.
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