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Abstract

The homothallic ascomycete fungus Gibberella zeae is a plant pathogen that is found worldwide, causing Fusarium head
blight (FHB) in cereal crops and ear rot of maize. Ascospores formed in fruiting bodies (i.e., perithecia) are hypothesized to
be the primary inocula for FHB disease. Perithecium development is a complex cellular differentiation process controlled by
many developmentally regulated genes. In this study, we selected a previously reported putative transcription factor
containing the Myb DNA-binding domain MYT2 for an in-depth study on sexual development. The deletion of MYT2
resulted in a larger perithecium, while its overexpression resulted in a smaller perithecium when compared to the wild-type
strain. These data suggest that MYT2 regulates perithecium size differentiation. MYT2 overexpression affected pleiotropic
phenotypes including vegetative growth, conidia production, virulence, and mycotoxin production. Nuclear localization of
the MYT2 protein supports its role as a transcriptional regulator. Transcriptional analyses of trichothecene synthetic genes
suggest that MYT2 additionally functions as a suppressor for trichothecene production. This is the first study characterizing
a transcription factor required for perithecium size differentiation in G. zeae, and it provides a novel angle for understanding
sexual development in filamentous fungi.
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Introduction

The homothallic ascomycete fungus Gibberella zeae (anamorph:

Fusarium graminearum) is a worldwide plant pathogen that causes

Fusarium head blight (FHB) in cereal crops and ear rot of maize

[1]. This fungal infection leads to severe yield losses and the

accumulation of mycotoxins, such as trichothecenes and zear-

alenone, which are harmful to humans and livestock [2]. G. zeae

produces ascospores (sexual spores) and conidia (asexual spores),

and both are considered as disease inocula. However, the

ascospores formed in fruiting bodies (i.e., perithecia) are proposed

to be the primary inocula for FHB. After overwintering as

perithecia or perithecia-associated hyphae formed on plant debris,

the ascospores are forcibly discharge from mature perithecia

during flowering season and are then considered primary inocula

[3,4,5,6].

Perithecia are complex multicellular structures that protect

sexual spores and ensure their proper discharge [7]. Perithecial

morphogenesis can be conveniently divided into three morpho-

logically distinct developmental stages: ascogonial, protoperithe-

cial, and perithecial [8]. Homothallic fungi usually generate female

reproductive structures called ascogonia, which further develop

into spherical protoperithecia. The tips of ascogenous hyphae

contain two nuclei that pair to form the dikaryotic state. This

dikaryotic mycelial phase is followed by karyogamy of two haploid

nuclei, resulting in a diploid nucleus. The formation of a diploid

nucleus is a prerequisite to meiotic division. After meiosis, the four

haploid nuclei undergo a postmeiotic mitosis. As a result, every

ascus contains eight nuclei, and each nucleus is a starting point for

ascospore formation [9,10]. Although homothallic fungi may not

require the mating process, the nuclei are required to pair and

form a dikaryon within the ascogenous hyphae [11]. In G. zeae,

a previous in-depth microscopic observation of sexual develop-

ment was unable to identify binucleate hyphae during the

initiation of the sexual stage [4]. The binucleate condition was

eventually established in the ascogenous hyphae and first observed

in the crosiers [4].

The development of perithecia in filamentous ascomycetes is

a complex cellular differentiation process that is under polygenic

control [12,13]. The cytology and genetics of ascus development,

meiotic silencing by unpaired DNA, and ascospore formation have

been studied in considerable detail in Neurospora crassa, Sordaria

macrospora, and G. zeae [10,11,12,14,15,16]. Some genes identified

in these species are now known to be involved in the formation of

the perithecia that arise during sexual propagation. Most of these

genes take part in signal transduction cascades, transcriptional or

posttranscriptional regulation, and primary or secondary metab-

olism [17]. In S. macrospora, several genes governing the transition

from the spherical protoperithecial stage to the flask-shaped

perithecial stage have been studied at the molecular level.
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However, few molecular and biochemical details are known about

factors governing this differentiation process [9].

In G. zeae, several genes and pathways are considered to play

important roles in perithecial development, including mating type

genes [18,19] and G-protein and MAP-kinase signaling pathways

[20,21,22,23]. The release of a genome sequence assembly for G.

zeae has allowed the use genome-wide approaches for identifying

more genetic elements involved in the sexual reproduction process

[24,25,26,27,28,29], and forward and reverse genetics-based

studies have found many sexual development-related genes

[30,31,32,33,34,35,36,37,38,39,40,41]. With the exception of

ROA, null mutants of these genes consistently show defects in the

pleiotropic phenotype such as mycelia growth, conidiation, toxin

production, virulence, and sexual development.

As a ubiquitous family, proteins containing the Myb DNA-

binding domain play diverse roles in eukaryotes, and this domain

is typically found in eukaryotic transcription factors. After the

identification of the first Myb domain-containing protein, v-Myb

of the avian myeloblastosis virus [42], researchers subsequently

found several Myb domain-containing proteins, such as c-myb, A-

myb, B-myb and their homologs in vertebrates, insects, fungi, and

slime molds{Klempnauer, 1982 #8300} [43,44]. In animals, Myb

family members are considered to be oncogenes involved in colon

and breast cancer and some human leukemias [45] and to play

various roles in the control of cell proliferation, apoptosis, and

differentiation [46]. In plants, MYB proteins are a superfamily of

transcription factors that regulate networks controlling primary

and secondary metabolism, cell fate and identity, developmental

processes, and responses to biotic and abiotic stresses [47]. In

fungi, even though only a few Myb-related proteins have been

reported, the functions of these proteins are various and include

G2/M progression and pre-mRNA splicing (cdc5p), termination

of rRNA transcription and G1 arrest in response to nitrogen

starvation (Reb1), and activation of GCN4-indepentdent HIS4

transcription (BAS1) [48,49,50]. The Myb-related gene FlbD was

reported in filamentous fungi and is known to control co-

nidiophore development in Aspergillus nidulans [51,52]. Recently,

we found a MYT1 transcription factor containing a Myb domain

that is involved in female fertility in G. zeae [41].

Previously, we performed genome-wide functional analyses of

whole transcription factor genes in G. zeae [29]. In this study, we

selected one gene that previously demonstrated a defect in

perithecial development and further characterized its function in

G. zeae using a variety of techniques, including gene deletion and

overexpression.

Methods

Fungal strains and media
All of the strains used in this study are listed in Table 1. Conidia

and mycelia of the wild-type strain Z-3639 [53] and mutants

derived from this wild-type strain were stored in 20% glycerol at

270uC. A transgenic strain mat1r carrying both a MAT1–1

deletion and histone H1 tagged with red fluorescence protein

(RFP), was used for the co-localization study, as previously

described [36]. A minimal medium containing 5 mM agmatine

(MMA) was used to evaluate trichothecene production [54]. Yeast

malt agar (YMA) was used to induce conidia production as

previously described [55]. All of the other media used in this study

were prepared as per the Fusarium laboratory manual [1].

Nucleic acid manipulations, primers, and sequencing
Fungal genomic DNA was prepared as previously described [1].

The mycelia or perithecia in different stages were harvested, and

total RNA was isolated using the Easy-Spin Total RNA Extraction

Kit (Intron Biotech, Seongnam, Korea). Restriction endonuclease

digestion, agarose gel electrophoresis, and DNA gel blot hybrid-

ization with 32P-labeled probes were performed following standard

protocols [56]. PCR primers were synthesized at an oligonucle-

otide synthesis facility (Bionics, Seoul, Korea) (Table S1) and

stored at 220uC at a concentration of 100 mM. General PCR

reactions were processed following the manufacturer’s instructions

(Takara Bio Inc., Otsu, Japan). DNA sequencing was performed

by Macrogen Korea (Seoul, Korea), and sequences were

compared against the Fusarium Comparative Database at the

Broad Institute (http://www.broadinstitute.org/annotation/

genome/fusarium_graminearum).

Rapid amplification of cDNA ends (RACE)-PCR
We determined the MYT2 open reading frame (ORF) using

rapid amplification of cDNA ends (RACE)-PCR. The cDNA

library used as template was constructed in a previous study [36].

Three fragments located around the MYT2 ORF were amplified

with MYT2-seq1/MYT2-seq2, pPRN3-N-For/MYT2-seq2, and

pPRN3-N-Rev/MYT2-seq1 primers and then directly sequenced.

Genetic manipulations and fungal transformations
We applied a slightly modified double-joint (DJ) PCR strategy

[57] to construct fusion PCR products for complementation and

overexpression. To complement the MYT2 deletion mutant

(Dmyt2), the MYT2 ORF was fused with green fluorescent protein

(GFP) by DJ PCR as previously described [36]. In brief, the MYT2

ORF with its own promoter was fused with GFP-hyg, carrying the

GFP gene and the hygromycin resistance gene cassette (hyg)

amplified from pIGPAPA [58], and the 39 flanking region of the

MYT2 gene. Using this PCR product as a template, a final fusion

construct was amplified with the nested primer pair MYT2–5N/

MYT2–3N. Finally, we transformed the fusion construct into the

myt2 mutant strain.

To overexpress MYT2, we generated a fusion construct

containing the 59 flanking regions of MYT2, the MYT2 ORF,

and the gen-PEF1a-carrying elongation factor 1a promoter (PEF1a)

from Fusarium verticillioides as previously described [37]. The gen-

PEF1a sequence was amplified from pSKGEN [37] with primers

Neo-for new and eGFP-P1. The 59 flanking regions of MYT2 and

the MYT2 ORF were amplified by primer pairs MYT2–5F/

MYT2–5R OE and MYT2–3F OE/MYT2–3R OE, respectively.

Three amplicons were then fused by a secondary round of DJ

PCR. Using this fusion fragment as a template, a final PCR

product was amplified with the nested primers MYT1–5N and

MYT1–3N OE. Finally, this fusion construct was transformed into

the wild-type strain.

Table 1. G. zeae strains used in this study.

Strain Genotype
Source or
reference

Z-3639 Wild-type [53]

myt2 Dmyt2::gen [29]

MYT2com Dmyt2::MYT2-GFP-hyg This study

MYT2OE MYT2::gen- PEF1a -MYT2 This study

mat1r Dmat1-1::gen; hH1::hH1-RFP-gen [36]

MYT2comr Dmyt2::MYT2-GFP-hyg; hH1::hH1-RFP-gen This study

doi:10.1371/journal.pone.0037859.t001
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Quantitative real-time (qRT)-PCR
To obtain the MYT2 expression profile in different G. zeae

strains, we extracted the total RNA of each strain from vegetative

cultures at 5 d after inoculation and sexual cultures at 3, 5, and 7

d after sexual induction, respectively. We then synthesized the first

strand of cDNA from the total RNA with SuperScriptIII reverse

transcriptase (Invitrogen, Carlsbad, CA, USA). qRT-PCR was

performed using SYBR Green Super mix (Bio-Rad, Hercules, CA,

USA) and a 7500 real-time PCR system (Applied Biosystems,

Foster City, CA, USA) with the MYT2-realtime-F/MYT2-

realtime-R primers (Table S1). For normalization, the cyclophilin

gene (CyP1; locus ID: FGSG_07439.3) was used as an endogenous

control [59]. The PCR was repeated three times with two

replicates per run. The relative transcript level of MYT2 in each

strain was calculated as previously described [60]. Briefly, gene

expression was calibrated using the formula 2-DDC
T method. The

threshold cycle (CT) value of CyP1 was subtracted from that of

MYT2 to obtain a DCT value. The DCT value of MYT2 expression

in the wild-type strain at the 5-d vegetative stage was subtracted

from the DCT value of each sample to obtain a DDCT value. The

MYT2 expression level relative to the calibrator was obtained as 2-

DDC
T. Significant differences (p,0.05) of 2-DDC

T were examined

statistically among the mean values of the samples based on

Tukey’s test.

To confirm whether MYT2 regulates the toxin synthesis-related

genes, Tri5 and Tri6, we incubated the conidia of wild-type, myt2,

and MYT2OE strains in MMA media for 5 d and isolated total

RNA from these cultures. We synthesized first-strand cDNA and

performed qRT-PCR for the Tri5 and Tri6 genes as described

above.

Sexual crosses
Each strain was incubated on carrot agar [1] at 25uC for 5 d.

Mycelia grown on carrot agar were mock fertilized with 700 ml of

2.5% Tween 60 solution to induce fertilization and were then

incubated under a near-UV light (wavelength: 365 nm, HKiv

Import & Export Co., Ltd., Xiamen, China) at 25uC. Seven days

after induction, the perithecia from each strain were dissected in

a drop of 15% glycerol. The cell size of perithecia and asci rosettes

within the perithecia were observed under a DE/Axio Image A1

microscope (Carl Zeiss, Oberkochen, Germany). Nine days after

sexual induction, we collected ascospores discharged from the

perithecia of each strain and measured the number of septa and

the length and width of the ascospores using the same microscope.

We also counted the number of ascospores per perithecia for

each strain as previously described [34]. Each strain was

inoculated on carrot agar and was mock fertilized. The circular

agar block (14.5 mm in diameter) of each strain was downwards

fixed on the lid of a 24-well plastic plate (SPL Lifesciences,

Pocheon, Korea) 7 d after sexual induction, but before the

ascospores were discharged from the perithecia, and incubated at

25uC for another 7 d. Ascospores within the perithecia can be

completely discharged onto the plastic plate. All discharged

ascospores were collected from the 24-well plastic plate through

14 d after sexual induction with 500 ml of sterile distilled water and

were counted with a haemacytometer (Superior Co., Germany).

After counting the number of perithecium on each block, the total

ascospore number per perithecium was obtained. The experiments

were performed three times with three replicates.

Conidia production, morphology, and germination
After a 72-h incubation in 50 ml of complete media (CM) at

25uC on a rotary shaker (150 rpm), the mycelia of each strain were

harvested and washed twice with sterile distilled water. To induce

conidiation, the mycelia were spread onto YMA plates and

incubated at 25uC under near-UV light. After 48 h, the conidia

that had formed on the YMA were collected with sterile distilled

water, filtered through cheese cloth, washed with sterile distilled

water, and centrifuged (5000 rpm, 25uC, 5 min). A 1-ml conidia

suspension (16105 conidia ml21) of each strain was inoculated

into 50 ml of CMC and then incubated at 25uC on a rotary shaker

(150 rpm). The number of conidia produced after a 3-d incubation

in CMC media was counted to measure conidia production by

each strain.

To observe conidial morphology, the conidia produced by each

strain on YMA were harvested and stained with Calcofluor white

stock solution (10 mg ml–1; Sigma, 18909). Microscopic observa-

tion was performed with a DE/Axio Imager A1 microscope (Carl

Zeiss) using the filter set 49 (excitation 356; emission 445/50), the

number of septa was counted, and the length and width of the

conidia were measured.

The conidia germination rate was counted as previously

described [60]. A 1-ml conidia suspension (16107 conidia ml21)

harvested from YMA medium was inoculated into 20 ml of CM or

minimal medium (MM). The number of germinated conidia per

200 conidia was counted after incubation at 0, 2, 4, 6, and 8 h.

The experiment was performed twice with three replicates for

each point.

Virulence test and trichothecene analysis
To test the virulence of each strain on wheat head, the point

inoculation method was performed as previously described [33].

The conidia of each strain were harvested from CMC and

adjusted to 105 conidia ml21. Thereafter, 10 ml of each conidial

suspension was injected into a center spikelet of the wheat head

(cultivar Eunpamil) at mid-anthesis. The wheat plants were then

incubated in a humidity chamber for 3 d and transferred to

a greenhouse. The number of spikelets showing disease symptoms

was counted 14 d after inoculation as previously described [36].

The experiment was performed with five replicate inoculations per

strain, and two independent mutant strains were used for the

experiment.

The trichothecene analysis was performed as previously de-

scribed [36]. Briefly, cultures grown in MMA were filtered with

cheese cloth and extracted with ethyl acetate. We then concen-

trated the extracts to dryness. Derivatization of each dry extract

was performed with Sylon BZT (BSA + TMCS + TMSI at a 3:2:3

ratio, respectively; Supelco, Bellefonte, PA, USA), and the

derivatized products were analyzed using a Shimadzu QP-5000

gas chromatograph mass spectrometer (GC-MS, Shimadzu,

Kyoto, Japan) with a selected ion-monitoring mode as previously

described [61]. We quantified the total trichothecene concentra-

tion based on the biomasses produced by each strain in MMA.

The experiment was repeated three times.

MYT2-GFP localization
We constructed a strain carrying both MYT2-GFP and hH1-

RFP-gen to observe co-localization of MYT2 with nuclei using an

outcross between the mat1r strain [36] and the MYT2com strain.

After fertilizing the mat1r strain with the MYT2com strain, we

performed a single-spore isolation. Ascospores carrying both

MYT2-GFP and hH1-RFP-gen were selected using antibiotic

resistance and confirmed by PCR assays. We observed localization

of the fluorescence signal in cultures grown from CM, MM, carrot

agar, and CMC. Microscopic observation was performed with

a DE/Axio Imager A1 microscope (Carl Zeiss) using the filter set

38HE (excitation 470/40; emission 525/50) for GFP and the filter

set 15 (excitation 546/12; emission 590) for RFP.

MYT2 Transcription Factor in Gibberella zeae

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e37859



Results

MYT2 identification
We performed a RACE-PCR and determined that the

transcription and splicing of FGSG_07546.3 in vivo were the same

as the deduced ORF in the database. We designated

FGSG_07546.3 as Myb DNA-binding domain-containing tran-

scription factor 2 (MYT2), which encodes a 323-amino acid

polypeptide containing the Myb DNA-binding domain. With the

exception of the Myb DNA-binding domain, no other known

motif exists in MYT2. MYT2 has no orthologs in the species of the

phyla Oomycota and Basidiomycota, but it is conserved in species

of the subphylum Pezizomycotina of the Ascomycota, particularly

in Sordariomycetes (Figure 1A and B). However, none of the

MYT2 orthologs have been functionally characterized in other

fungi.

Complementation and overexpression
A construct carrying MYT2-GFP was introduced into the

previously generated MYT2 deletion mutant [29] for genetic

complementation with GFP tagging as previously described [36] to

generate the MYT2com strain. Deletion and complementation

were confirmed by Southern hybridizations (Figure 1C).

We also generated a MYT2-overexpression strain (MYT2OE) in

which MYT2 expression was controlled by inserting the EF1a
promoter (Figure 2A). Southern hybridizations were performed to

confirm all genetic manipulations (Figure 2A). The MYT2

transcript level in each strain was confirmed by qRT-PCR. In

the wild-type strain, the MYT2 expression level was significantly

up-regulated at 3 d after sexual induction, increased until 5 d, and

decreased again at 7 d. During both the vegetative growth and

sexual development stages, the MYT2 expression level in the myt2

strain was undetectable, but it was constitutively up-regulated in

the MYT2OE strain by approximately fivefold compared to the

wild-type strain (Figure 2B).

Sexual development
The previously described mutant phenotypes of MYT2 deletion

mutants include defects in perithecia formation with normal

ascospore formation [29]. Further in-depth examinations were

Figure 1. Distribution of MYT2 homologs in fungi and genetic complementation. (A) Distribution of MYT2 in representative fungal species.
The distribution image was constructed using the BLASTMatrix tool that is available on the Comparative Fungal Genomics Platform (http://cfgp.
riceblast.snu.ac.kr/) [72]. (B) Phylogenetic tree of MYT2 homologs in several fungal species. The alignment was performed with ClustalW, and the
MEGA program, version 4.0, was used to perform a 1,000-bootstrap phylogenetic analysis using the neighbor-joining method. Pi, Phytophthora
infestans; Pr, P. ramorum; Ps, P. sojae; Af, Aspergillus fumigatus; An, A. nidulans; Ao, A. oryzae; Hc, Histoplasma capsulatum; Bc, Botrytis cinerea; Fo,
Fusarium oxysporum; Fv, F. verticillioides; Mg, Magnaporthe grisea; Nc, Neurospora crassa; Pa, Podospora anserine; Ca, Candida albicans; Kl,
Kluyveromyces lactis; Sc, Saccharomyces cerevisiae; Cc, Coprinus cinereus; Cn, Cryptococcus neoformans; Pc, Phanerochaete chrysosporium; nd, not
detected. (C) Targeted deletion and complementation of MYT2. WT, G. zeae wild-type strain Z-3639; myt2, MYT2 deletion mutant; MYT2com, myt2-
derived strain complemented with MYT2-GFP; A, AvaI; gen, geneticin resistance gene cassette; hyg, hygromycin B resistance gene cassette. Lane 1, Z-
3639; lanes 2 and 3, MYT2 mutants; lanes 4 and 5, MYT2com mutants. The sizes of the DNA standards (kb) are indicated to the left of the blot.
doi:10.1371/journal.pone.0037859.g001
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performed in this study. The selfing of the MYT2 deletion strain

(myt2) resulted in larger perithecia but approximately 7% of the

number of perithecia produced by the wild-type and complemen-

ted strains (Figure 3A). The average perithecium diameter

produced by myt2 was approximately 280 mm, which was nearly

1.5-fold larger than those produced by the wild-type and

complemented strains (p,0.05). By contrast, the average perithe-

cium diameter produced by the MYT2OE strain was approxi-

mately 0.7-fold smaller than those produced by the wild-type

strain (p,0.05) (Figure 3B).

The cell size of perithecia formed by wild-type and mutant

strains was not significantly different (data not shown). Both the

myt2 and MYT2com strains formed mature ascospores inside the

asci that were similar to the wild-type strain 7 d after sexual

induction. Although the MYT2OE mutant showed delayed

ascospore maturation, it normally matured and discharged after

3–5 d later (Figure 3C). Ascospores produced by the myt2 mutant

were wider than the wild-type strain, and the length and number

of septa of the ascospores produced by the MYT2OE mutant were

reduced compared to the wild-type strain (Table 2). Thus, myt2

mutants produce larger ascospores, while the MYT2OE mutant

produces smaller ascospores.

The myt2 and MYT2OE strains contained more and less asci

rosettes compared to the wild-type strain, respectively (Figure 4A).

The average ascospore number per perithecium in the myt2

mutant was approximately 3-fold greater than the wild-type strain

(p,0.05), while the number for the MYT2OE mutant was

approximately 0.3-fold less (p,0.05) (Figure 4B). This result was

similar to the volume ratio of the perithecia from each strain

(1:3.5:0.4 for the wild-type strain, the deletion mutant, and the

overexpression mutant, respectively), which was calculated based

on the diameter assuming the perithecium was a complete

globular-shaped structure.

Conidia production and germination
After a 3-d incubation in CMC media, there was no significant

difference in conidial production among the wild-type, myt2, and

MYT2com strains. However, the MYT2OE strain only produced

4% of the number of conidia produced by the wild-type strain

(p,0.05) (Table 2). Similar to the ascospore morphology, the

length, width, and number of septa of the MYT2OE mutant

conidia were significantly reduced compared to the other strains

(p,0.05) (Table 2). No significant difference was detected among

the wild-type, myt2, MYT2com, and MYT2OE strains for

conidial germination at 6 h after incubation in CM or MM

(Table 3).

Vegetative growth, virulence, and trichothecene
production

The MYT2 deletion mutant grew faster and produced more

aerial mycelia than the wild-type and complemented strains and

accumulated a low level of red pigment in both CM and MM. By

contrast, the MYT2OE strain had a severe defect in vegetative

growth (Figure 5A).

At 14 days after wheat head inoculation, the wild-type and

MYT2com strains caused typical head blight symptoms, while

both the myt2 and MYT2OE strains showed reduced virulence

compared to the wild-type and MYT2com strains (p,0.05). The

symptoms merely spread to nearby spikelets on the same wheat

heads for the myt2 and MYT2OE strains (Figure 5B).

The level of trichothecene synthesized by both the myt2 and

MYT2com strains was not significantly different than that of the

wild-type strain. However, the MYT2OE mutant produced

a significantly reduced level of trichothecene (Figure 6A). Tran-

scription of the trichothecene synthetic genes Tri5 and Tri6 was

also significantly reduced in the MYT2OE strain (Figure 6B).

MYT2-GFP localization
To examine MYT2 localization, the MYT2-GFP fusion

construct under the control of its native promoter was transformed

into the MYT2 deletion mutant. We selected six MYT2com strains

carrying a single MYT2-GFP copy and found a GFP signal in the

nuclei of all of the examined strains. To confirm nuclear

Figure 2. MYT2 overexpression. (A) The MYT2 promoter region was replaced with the EF1a promoter. The left and right panels show the strategy
of MYT2OE strain construction and Southern hybridization, respectively. In the blot, lane 1 and lanes 2–4 represent the wild-type strain and the MYT2-
overexpressed mutants, respectively. (B) Expression of MYT2 in the wild-type, MYT2 deletion, and MYT2 overexpression strains. MYT2 transcript
accumulation was analyzed by quantitative real time-PCR (qRT-PCR) during the vegetative and sexual induction stages. WT, wild-type strain Z-3639;
MYT2OE, transgenic strain where the MYT2 promoter region was replaced with the EF1a promoter; P, PstI. The sizes of DNA standards (kb) are
indicated to the left of the blot.
doi:10.1371/journal.pone.0037859.g002
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localization of MYT2-GFP, MYT2comr (Dmyt2::MYT2-GFP-hyg;

hH1-RFP-gen) was generated by an outcross between mat1r [36]

and MYT2com. MYT2-GFP in the MYT2comr strain co-

localized with hH1-RFP and was highly fluorescent in conidia

and ascospores (Figure 7A). However, the GFP signals became

blurred after germination and were undetectable 24 h later

(Figure 7B).

Discussion

The Myb DNA-binding domain is typically found in eukaryotic

transcription factors. Previous reports demonstrated that Myb

gene family members play diverse roles as transcriptional

regulators in multiple cellular processes in animals and plants,

including cell proliferation, apoptosis, differentiation, metabolic

pathways, cell fate and identity, and stress responses

[45,46,47,62,63,64,65]. In fungi, the roles of the transcription

factors containing the Myb domain remain largely unknown.

However, from the limited studies available, Myb family proteins

still show functional diversity and play particularly important roles

in cell differentiation and proliferation [49,50].

In this study, through gene deletion, genetic complementation,

and overexpression approaches, we characterized the novel

putative transcription factor MYT2, which has functions in

various developmental stages including vegetative growth, conidia

production, spore morphogenesis, virulence, toxin production, and

perithecium development in G. zeae. Interestingly, the deletion of

MYT2 resulted in a larger perithecium, while its overexpression

resulted in a smaller perithecium when compared to the wild-type

Figure 3. Self-fertility and asci rosettes of the G. zeae strains. (A) Perithecia of the G. zeae strains. Five-day old carrot agar culture was mock-
fertilized to induce sexual reproduction and incubated for an additional 7 d. The upper and lower panels show the photographs of perithecia formed
on a whole carrot agar plate and the photographs taken with a dissecting microscope, respectively. Scale bar = 200 mm. (B) Diameter of the
perithecia of the G. zeae strains. The diameters of 300 perithecia were measured for each strain using a dissecting microscope. Values with different
letters are significantly different (p,0.05) based on Tukey’s test. (C) Asci rosettes of wild-type and MYT2 overexpression strains. Perithecia were
dissected seven days after sexual induction. Scale bar = 20 mm. WT, G. zeae wild-type strain Z-3639; myt2, MYT2 deletion mutant; MYT2com, myt2-
derived strain complemented with MYT2; MYT2OE, transgenic strain that has the EF1a promoter in place of the MYT2 promoter region.
doi:10.1371/journal.pone.0037859.g003
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strain. Additionally, the ascospores produced by each strain had

a relatively consistent perithecial volume. Because MYT2 contains

the Myb DNA-binding domain and is localized in nuclei, MYT2

might have an important regulatory role as a transcription factor

for the regulation of genes required for cell proliferation and

differentiation during perithecium development in G. zeae.

Moreover, Sordariomycetes-specific conservation of MYT2 de-

monstrates a conserved function for perithecial development.

MYT2 seems to be a negative regulator for perithecial size

differentiation in G. zeae. The perithecial size difference shown in

the MYT2 deletion and overexpression mutants suggests that the

MYT2 expression level is negatively related to perithecium size.

The MYT2 transcriptional profile during sexual development in

the wild-type strain also supports its function as a negative

regulator of perithecium size. The MYT2 expression level was the

highest at 5 d after sexual induction when the perithecial wall had

mostly matured and perithecial cell wall proliferation needed to be

stopped. Many previously characterized genes related to sexual

development are highly expressed from the beginning of sexual

induction and increase expression as the perithecia mature, much

like MYT2 [25,66]. Because the ‘‘giant perithecium’’ in the MYT2

deletion mutant is a novel mutant phenotype, further character-

ization of the regulons under MYT2 control may reveal a novel

pathway of perithecial development.

Similar to other proteins containing the Myb DNA-binding

motif in fungi [48,49,50], our results suggest that MYT2 is also

related to cell differentiation and proliferation in various de-

velopmental stages. The deletion and overexpression of MYT2

resulted in enhanced and reduced vegetative growth, respectively,

which is similar to the results seen for perithecial development.

Compared to the wild-type strain, the MYT2 deletion mutant

produced bigger spores, while the overexpression mutant pro-

duced smaller spores (Table 2). These results indicated that MYT2

is a suppressor for cell proliferation in various developmental

Table 2. Production and morphology of conidia and ascospores.

Strain Conidiation (number/ml)a Conidiab Ascosporesc

Length Width Septa Length Width Septa

WT 1.76106A 48A 4.8A 4.5A 23A 5.0A 2.4A

myt2 1.76106A 49A 4.9A 4.5A 22A 5.3B 2.5A

MYT2com 1.86106A 48A 4.9A 4.5A 22A 4.9A 2.4A

MYT2OE 0.76105B 39B 4.7B 3.9B 20B 4.9A 1.4B

aConidiation was measured by counting the number of conidia produced after a 3-d incubation in CMC.
bMacroconidia were produced on YMA. A total of 100 macroconidia were observed for each examination.
cAscospores were collected from culture plate lids 10 d after sexual induction. A total of 300 ascospores were observed for each examination.
dAll experiments were repeated three times with three replicates each. Values within a column with different letters are significantly different (p,0.01) based on Tukey’s
test.
doi:10.1371/journal.pone.0037859.t002

Figure 4. Asci rosettes and ascospores per perithecium of the
G. zeae strains. Each strain was inoculated on carrot agar and was
mock fertilized. (A) The perithecia from each strain were softly squeezed
with cover slides to exude whole asci rosettes. The picture of each strain
is representative of more than 20 repetitions. (B) All discharged
ascospores were collected from the culture plate through 14 days after
sexual induction. The number of ascospores per perithecia was
obtained by dividing the number of perithecia by the number of
discharged ascospores. Values with different letters are significantly
different (p,0.05) based on Tukey’s test. WT, G. zeae wild-type strain Z-
3639; myt2, MYT2 deletion mutant; MYT2com, myt2-derived strain
complemented with MYT2; MYT2OE, transgenic strain that has the EF1a
promoter in place of the MYT2 promoter region.
doi:10.1371/journal.pone.0037859.g004

Table 3. Radial growth and germination rate.

Strain Radial growth (mm)a Germination (%)b

CMc MM CM MM

WT 74Ad 80A 86A 48A

myt2 79B 84B 90A 54A

MYT2com 73A 82A 85A 45A

MYT2OE 61C 58C 86A 42A

aRadial growth was measured after a 5-d incubation.
bThe germination percentage was measured after a 6-h incubation.
cCM, complete medium; MM, minimal medium.
dAll experiments were repeated three times with three replicates each. Values
within a column with different letters are significantly different (p,0.05) based
on Tukey’s test.
doi:10.1371/journal.pone.0037859.t003
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stages in G. zeae. Decreased MYT2-GFP expression during

conidial germination also supports our hypothesis (Figure 7B).

Taken together, MYT2 negatively affects cell proliferation during

perithecial development.

There could be two kinds of possibilities to regulate the size of

perithecium by MYT2. First, MYT2 could stop cells from dividing

at certain point during perithecial development to control the

numbers of cells. Second, it could arrest the growth of

differentiated cells to regulate the size of individual cell. Our

observation showed that the cell size of perithecia formed by myt2

selfing were not different from that of wild-type strain, suggesting

that MYT2 is involved in the former case. Several previous works

also support that the fungal Myb-domain containing transcription

factors regulate cell division. For example, cdc5p of Schizosacchar-

omyces pombe was found to be essential for G2/M progression [67],

and Reb1 of S. pombe is required for fertility. Reb1was originally

found to be involved in the termination of ribosomal RNA (rRNA)

transcription through binding to 39 end of the rDNA-coding

region [68]. The binding of Reb1 also blocks DNA replication,

giving rise to two natural rDNA replication fork barriers (RFBs)

[69]. Recently, it was reported that Reb1 binds to a upstream of

ste9+, resulting in ste9+ up-regulation and G1arrest in response to

nitrogen starvation [48].

Overexpression of MYT2 influenced most of the observed

phenotypes in the fungus including vegetative growth, sexual

development, trichothecene production, and virulence. As a sup-

pressor for cell proliferation, excessive expression of MYT2 might

negatively affect conidia production, although MYT2 deletion

failed to cause a mutant phenotype in conidiation. In trichothe-

cene production, however, we quantified total trichothecenes

based on biomass to reduce the effects of decreased mycelial

growth on the result. Markedly reduced transcript accumulations

of the genes involved in trichothecene production in the MYT2

overexpression mutant demonstrated that MYT2 additionally

functions as a transcriptional repressor for these genes, either

directly or indirectly (Figure 6).

The MYT2OE mutant also demonstrated a defect in wheat

head virulence. We suspected that a reduction in vegetative

growth and trichothecene production, of the MYT2OE mutant

would be the reason for reduced virulence [70]. However, the

MYT2 deletion mutant also showed reduced virulence even

though radial growth was increased and trichothecene production

was similar to the wild-type strain. G. zeae virulence is frequently

altered by changed hyphal characteristics and the absence of

secreted enzymes [23,32,60,71]. Because the mycelial colony of

the MYT2 deletion mutant differed from the wild-type strain, the

MYT2 deletion mutant appears to possess a defect in other

biological functions required for virulence.

One of the important steps in the sexual differentiation process

is the morphological transition from spherical pre-fruiting bodies

Figure 5. Mycelia growth and wheat head virulence of theMYT1
mutants. (A) Mycelial growth on complete media (CM) and minimal
media (MM) 5 d after inoculation. (B) A center spikelet of each wheat
head was injected with 10 ml of conidia suspension. Values with
different letters are significantly different (p,0.05) based on Tukey’s
test. Mock, negative control mock inoculated with 0.01 % Tween 20;
WT, G. zeae wild-type strain Z-3639; myt2, MYT2 deletion mutant;
MYT2com, myt2-derived strain complemented with MYT2; MYT2OE,
transgenic strain that has the EF1a promoter in place of the MYT2
promoter region.
doi:10.1371/journal.pone.0037859.g005

Figure 6. Total trichothecene (deoxynivalenol and 15-acetyl-
deoxynivalenol) production and transcriptional analyses of
trichothecene synthetic genes. (A) Each strain was grown in
minimal medium supplemented with 5 mM agmatine for 7 d.
Trichothecenes were analyzed by GC-MS and quantified based on the
biomass produced by each strain. Asterisks indicate data that
significantly differed (p,0.05) based on Tukey’s test (B) Expression of
Tri5 and Tri6 in the wild-type, MYT2 deletion, and MYT2 overexpression
strains. Gene transcription was analyzed by quantitative real time-PCR
(qRT-PCR) 4 d after inoculation in MMA. WT, G. zeae wild-type strain Z-
3639; Dmyt2, MYT2 deletion mutant; MYT2com, Dmyt2-derived strain
complemented with MYT2; MYT2OE, transgenic strain that has the EF1a
promoter inserted in place of the MYT2 promoter region.
doi:10.1371/journal.pone.0037859.g006
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(protoperithecia) to flask-like fruiting bodies (perithecia). Much

effort has been put forth to understand this developmental stage.

Several developmental mutants that arrest after protoperithecia

formation were selected and designated as pro series in S.

macrospora. The perithecial morphogenesis of another eight sexual

developmental mutants blocked at different stages during perithe-

cia formation has recently been described in detail [9]. However,

none of these mutants produce larger perithecia than the MYT2

deletion mutant. Therefore, further in-depth studies of the

regulatory roles of MYT2 in perithecial morphogenesis will

provide a novel angle for understanding sexual development in

filamentous fungi.

Supporting Information

Table S1 Primers used in this study.

(PDF)

Author Contributions

Conceived and designed the experiments: YL HS KM JL YWL. Performed

the experiments: YL HS KM JL GJC JCK YWL. Analyzed the data: YL

HS KM JL GJC JCK YWL. Contributed reagents/materials/analysis

tools: GJC JCK YWL. Wrote the paper: YL HS JL YWL.

References

1. Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Ames, IA:

Blackwell Pub.

2. Desjardins AE (2006) Fusarium mycotoxins: chemistry, genetics, and biology.

AE Desjardins, ed. editor. St. Paul, MN: APS Press.

3. Trail F, Xu H, Loranger R, Gadoury D (2002) Physiological and environmental

aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum).

Mycologia 94: 181–189.

4. Trail F, Common R (2000) Perithecial development by Gibberella zeae: a light

microscopy study. Mycologia 92: 130–138.

5. Parry DW, Jenkinson P, Mcleod L (1995) Fusarium ear blight (scab) in small grain

cereals-a review. Plant Pathol 44: 207–238.

6. Sutton JC (1982) Epidemiology of wheat head blight and maize ear rot caused

by Fusarium graminearum. Can J Plant Pathol 4: 195–209.

7. Nowrousian M, Frank S, Koers S, Strauch P, Weitner T, et al. (2007) The novel

ER membrane protein PRO41 is essential for sexual development in the

filamentous fungus Sordaria macrospora. Mol Microbiol 64: 923–937.

8. Lord KM, Read ND (2011) Perithecium morphogenesis in Sordaria macrospora.

Fungal Genet Biol 48: 388–399.

9. Engh I, Nowrousian M, Kück U (2010) Sordaria macrospora, a model organism to

study fungal cellular development. Eur J Cell Biol 89: 864–872.

10. Son H, Min K, Lee J, Raju NB, Lee Y-W (2011) Meiotic silencing in the

homothallic fungus Gibberella zeae. Fungal Biol 115: 1290–1302.

11. Read ND, Beckett A (1996) Ascus and ascospore morphogenesis. Mycol Res

100: 1281–1314.

12. Raju NB (1992) Genetic control of the sexual cycle in Neurospora. Mycol Res 96:

241–262.

13. Dyer PS, Ingram DS, Johnstone K (1992) The control of sexual morphogenesis

in the ascomycotina. Biol Rev 67: 421–458.

14. Raju NB (2009) Neurospora as a model fungus for studies in cytogenetics and

sexual biology at Stanford. J Biosci 34: 139–159.

15. Raju NB (2008) Six decades of Neurospora ascus biology at Stanford. Fungal Biol

Rev 22: 26–35.

16. Zickler D (2006) From early homologue recognition to synaptonemal complex

formation. Chromosoma 115: 158–174.
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