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ABSTRACT

Genetic circuits can be assembled from
standardized biological parts called BioBricks.
Examples of BioBricks include promoters,
ribosome-binding sites, coding sequences and tran-
scriptional terminators. Standard BioBrick assembly
normally involves restriction enzyme digestion and
ligation of two BioBricks at a time. The method
described here is an alternative assembly strategy
that allows for two or more PCR-amplified BioBricks
to be quickly assembled and re-engineered using
the Clontech In-Fusion PCR Cloning Kit. This
method allows for a large number of parallel
assemblies to be performed and is a flexible way
to mix and match BioBricks. In-Fusion assembly
can be semi-standardized by the use of simple
primer design rules that minimize the time involved
in planning assembly reactions. We describe the
success rate and mutation rate of In-Fusion
assembled genetic circuits using various homology
and primer lengths. We also demonstrate the
success and flexibility of this method with six
specific examples of BioBrick assembly and re-
engineering. These examples include assembly of
two basic parts, part swapping, a deletion, an inser-
tion, and three-way In-Fusion assemblies.

INTRODUCTION

Synthetic biology is an emerging discipline that aims to
design and construct novel biological organisms
programmed by genetic circuits. Many synthetic biologists
assemble genetic circuits from standardized biological
parts called BioBricks. Examples of BioBricks include
promoters, ribosome-binding sites (RBS), protein or
RNA-coding sequences, and transcriptional terminators.
Currently every BioBrick is a physical DNA sequence on a
circular plasmid that is stored and distributed by the
Registry of Biological Parts (http://www.partsregistry
.org) as lyophilized DNA in 384-well plate format.
Standardized sequences on BioBricks enable Standard

Assembly of two BioBricks via restriction enzyme diges-
tion and ligation in an idempotent fashion (Figure 1a)
(1–5). Standard Assembly involves digestion of two
plasmids with different restriction enzymes that leave com-
patible sticky ends which can be ligated together into a
new plasmid. This effectively replaces the restriction sites
between the assembled parts with a ‘scar’ sequence,
allowing for the new BioBrick to be later combined with
other BioBricks. This standardized procedure takes much
of the planning out of DNA fragment assembly since the
same restriction enzymes can be used for every assembly
reaction.

Currently several BioBrick assembly standards
(http://openwetware.org/wiki/The_BioBricks_Foundation
:RFC) have been proposed to improve upon the original
BioBrick standard, largely due to the fact that this original
standard produces an 8-bp scar between assembled
BioBricks and hence does not allow for the creation of
fusion proteins. Nearly all of these current assembly
standards involve assembly by restriction enzyme diges-
tion and ligation. There are also several PCR-based
methods currently being used for DNA assembly that
have the potential for standardization. These methods
include In-Fusion (6,7), SLIC (8), T5 exonuclease recom-
bination (9), USER (10), oligonucleotide assembly (11)
and SOEing (12). The former four methods generally
involve converting overlapping, blunt-end PCR products
into fragments with sticky overhangs that can anneal to
form circular plasmids, but the method for generating the
overhangs differs. For example, the SLIC method (8) uses
T4 DNA polymerase while the USER method (10) uses a
uracil exonuclease. Unlike restriction digestion, the site at
which the overhangs are created is generally not con-
strained by a specific sequence. The latter two methods
involve overlapping oligonucleotides with a PCR-
amplified vector (11) or extending overlapping PCR
products (12) and do not use subsequent enzymatic
treatment.

Here, we describe an alternative BioBrick assembly
method that allows for BioBricks to be quickly assembled
and re-engineered using the Clontech In-Fusion PCR
Cloning Kit (6,7). The proprietary In-Fusion enzyme
with exonuclease activity fuses together any PCR
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Figure 1. Standard assembly versus In-Fusion assembly. (a) Standard Assembly of two BioBricks (Parts A and B) involves restriction digestion and
ligation. Both parts are on pSB1A2 vectors encoding ampicillin resistance. The Part A plasmid is digested with EcoRI (E) and SpeI (S), while the
second plasmid is digested with EcoRI (E) and XbaI (X). SpeI and XbaI restricted fragments have compatible sticky ends for ligation. The desired
digested fragments are gel purified and ligated together to create the assembled plasmid with both parts. A scar sequence is left between both parts
that does not have the original restriction site and the restriction sites flanking the parts are maintained. (b) In-Fusion assembly of two BioBricks
involves PCR, purification, and a subsequent In-Fusion reaction. Parts A and B are PCR-amplified (in this example the vector is amplified with Part
B) and purified without gel extraction. Each assembly requires four primers, where two are specific to the junction (parts to assemble) and two are
general vector primers. BioBrick Part A (blue) and Part B (red) are on pSB1A2 plasmids encoding ampicillin resistance. Primers described in
‘Materials and Methods’ section are color-coded to show their homology. The thick black line indicates BioBrick prefix or suffix homology on the
pSB1A2 vector. The yellow sequence is the scar that is normally between parts after standard BioBrick assembly, if this is desired, or can be a linker
sequence for a fusion protein. The purified PCR products are fused together in the In-Fusion reaction to create a circular plasmid. Restriction sites
flanking the parts maintain the standard BioBrick format.
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product with a linearized vector into a circular plasmid
when the fragments share at least 15 bp of homology on
both ends. To assemble two BioBricks, one
PCR-amplified BioBrick needs to have homology on
each end with the second PCR-amplified BioBrick
(vector amplified with the BioBrick) to allow for the frag-
ments to be fused together in the In-Fusion reaction
(Figure 1b). More than two BioBricks can be fused
together as shown in the examples below and four frag-
ments have been successfully fused (6). This method can
also be used to re-engineer BioBricks as shown in the
examples below and we have also successfully used
this method for vector replacement, site-directed
mutagenesis and cumbersome transcriptional terminator
re-engineering (results not shown).
In-Fusion Assembly greatly expands the possible

circuits to construct since in our experience, the individual
parts we want to construct into circuits often do not exist
as BioBricks on their own or in the correct order. For this
reason In-Fusion provides the flexibility to PCR-amplify
any sequence from any part, then assemble these frag-
ments together in one step. In our experience, the advan-
tages of In-Fusion BioBrick assembly over Standard
Assembly are that it is faster, more flexible, and has a
high success rate (see Supplementary Figure S1 for a
timeline and schematic overview for Standard and
In-Fusion BioBrick Assembly). In-Fusion Assembly is
fast once primers are available since BioBricks can be im-
mediately PCR-amplified from parts extracted from the
BioBrick Parts Distribution plate. Standard assembly
requires an initial amplification of the BioBrick through
transformation, overnight growth, and plasmid extrac-
tion. Standard assembly also requires tedious extraction
of restricted DNA fragments from a gel, more intermedi-
ate enzymatic reactions, and more time to quantitate and
optimize these reactions. In-Fusion assembly is more
flexible in the sense that there is more control over the
exact engineered sequence and mutations can be easily
introduced with mutagenic primers (6). We have found
this method to have a high success rate in that nearly
every assembly reaction yields the desired construct.
Standard assembly we have found to be less reliable.
The disadvantages of In-Fusion BioBrick assembly are

that the specific assembly supplies are more expensive
(�$15/assembly versus �$5/assembly for Standard
Assembly), custom primers are required, and occasionally
there are mutations in assembled plasmids. Mutations in
the construct may depend on a number of factors,
including primer quality and the error rate of the polymer-
ase. However, using reagents specified in the ‘Materials
and methods’ section, we demonstrate here that such mu-
tations are sufficiently rare that typically only a single
putative construct needs to be sequenced. In general,
In-Fusion assembly is ideal when re-engineering an
existing BioBrick with many parts since there are less
assembly reactions to perform, or when assembling a
circuit with specific parts distributed among several
BioBricks. On the other hand, if the BioBricks you want
to assemble already exist as digested fragments in the
freezer, then Standard Assembly may be ideal for this par-
ticular situation. The motivation for optimizing and

adapting the In-Fusion method for BioBrick assembly
is to improve the success rate, flexibility, and speed for
constructing genetic circuits and create a new BioBrick
assembly standard (13). Small synthetic biology labs that
do not perform high throughput restriction enzyme digests
and ligations will especially benefit from using this
method.

MATERIALS AND METHODS

Primer design rules

For the In-Fusion reaction to work, the forward primer of
the first PCR-amplified fragment must have at least 15-bp
homology to the reverse primer of the second fragment,
and vice versa. A longer homology length is used in this
protocol because in our experience it works better than
15 bp. There are two simple primer design rules that
allow for semi-standardized assembly, in the sense that
even though the same components cannot be used repeat-
edly as in a standardized assembly method, following
these rules will remove much of the planning required
for performing In-Fusion Assembly reactions. The two
rules are: (i) the reverse primer for Part A (AR) should
be the last 20 bases Part A+ scar (if wanted) + first 20
bases Part B (reverse complement of this entire sequence),
and (ii) the forward primer for Part B (BF) should be the
reverse complement of the AR primer. Since the primers
are exactly complementary, this gives at least 40 bp of
homology at the junction of Parts A and B in total. In
contrast, the forward primer of Part A (AF) and the
reverse primer of Part B (BR) do not need customization.
These primers are specific to the standard Biobrick ‘prefix’
(immediately upstream of each part) or ‘suffix’ (immedi-
ately downstream of each part) and may be re-used when
assembling different constructs. Of course optimization of
the primers may improve chances of a clean PCR product.
In the assembly examples described here using these
primer design rules, we found that every PCR product
amplified with a single amplicon (10/10 PCR products).
One particular PCR reaction required a gradient on the
primer annealing step during the PCR reaction to generate
a single PCR product, but in general a 55�C annealing
temperature worked well for all reactions. In general we
found these primer design rules to be robust and other
examples not described here have used these rules with
success.

Primer design software tool

We have designed a software tool for In-Fusion assembly
primer design (located at http://sys-bio.org/
primerdesign/). This tool allows you to input the DNA
sequences for each part to assemble, the scar sequence
between the parts, and the length of overlap with the ad-
joining part (the default length is 20). When 20 bases of
homology are added to the 50-end of each of the primers,
along with the 8-base scar, this gives a total junction
homology of 48 bp. The program outputs the forward
and reverse primers for the Part A and Part B junction
(AR and BF primers). The primer sequences generated are
based on the rule described above. A future version of this
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tool will check if there are repeated sequences (such as a
scar sequence) located at the 30-end of the primer and if
so, will extend the primer to two bases past the repeated
sequence to ensure specificity. Other future additions will
include Tm calculations, GC content, and other relevant
primer design specifications. The vector-specific primers
(AF and BR) are already standardized and do not need
to be designed with this tool.

Maximizing success rates

There are a few additional guidelines to follow to
maximize success with this method. First, do not use
repeated part sequences (e.g. scar sequences, transcription-
al terminators, etc.) on the 30 end of your primer to avoid
multiple PCR products. The primer design tool described
above will eventually check for this. Second, it is better to
PCR-amplify the vector (plasmid backbone) with the
smaller part to assemble especially if the part is less than
100 bp since the molar ratio between both fragments
should be as close as possible. Third, dilute the template
DNA as much as possible to avoid ‘background’ plasmids
from being transformed later (between 100 and 500 pmol
DNA works well for miniprepped plasmids, while
plasmids from the 2009 Parts Registry plate differ in
concentration).

Primers designed and used in this study

All primers were ordered from Integrated DNA
Technologies (IDT) unmodified with standard desalting
at the 25 nmol scale. Four primers specific to the
pSB1A2 vector (http://partsregistry.org/Part:pSB1A2)
were designed and used in this study. In Figure 2a, the
Part A forward primer (AF) is: 50-TTCTGGAATTCGCG
GCCGCTTCTAG-30 (specific to the pSB1A2 non-coding
sequence prefix+5 bases upstream of the prefix). The Part
B reverse primer (BR) is: 50-CTAGAAGCGGCCGCGA
ATTCCAGAA-30 (reverse complement of the AF primer).
In Figure 2b, the Part A forward (AF) primer is: 50-TACT
AGTAGCGGCCGCTGCAGGCTTC-30 (specific to the
pSB1A2 suffix+ 5 bases downstream of the suffix). The
Part B reverse primer (BR) is: 50-GAAGCCTGCAGCGG
CCGCTACTAGTA-30 (reverse complement of Part A
forward primer). AR and BF primers for both figures
were customized depending on the parts to assemble or
re-engineer. We used 48 bp of homology between parts for
assembly reactions as described above except in the
example shown in Figure 6 where we used 15 bp.

PCR and template DNA for PCR

Phusion High Fidelity PCR Mastermix was used for PCR
in a 25 or 50 ml reaction volume. Reaction steps were used
following the Phusion protocol. An amount of 100 pmol
forward and reverse primers were added to each reaction.
A volume of 1 ml of a 1:1000 diluted miniprepped plasmid
or plasmid extracted from the Registry plate (�100–
500 pmol total) was added to the PCR reaction for
template DNA. PCR was performed in an Eppendorf
Mastercycler EP S Gradient thermocycler according to
the manufacturer’s instructions with the annealing step
of 55�C for 30 s. Eppendorf PCR tubes (0.2ml) were

used for all reactions. Digestion with DpnI after the
PCR reaction may reduce background plasmids from
being transformed later, but in our experience diluting
the PCR template reduces background sufficiently that
DpnI digestion is unnecessary. In most cases, this elimin-
ates an extra step in the assembly process.

PCR product purification and quantitation

PCR products were purified with the Qiagen PCR
Purification Kit and eluted with 30 ml of molecular grade
water. PCR products were quantitated with a Nanodrop
(Thermo Scientific).

In-Fusion reaction and transformation

In-Fusion reactions were performed using the recom-
mended protocol with some extra details and exceptions
noted here. A 2:1 insert:vector molar ratio was normally
used with 100 ng of vector for two-way reactions and a
2:2:1 insert:insert:vector molar ratio was normally used
with 100 ng of vector for three-way assemblies (exceptions
noted below). The 10 ml volume consisting of insert,
vector, and molecular grade water was transferred into
the In-Fusion dry-down reaction tube and mixed by
pipetting up and down several times. This reaction was
transferred into a 0.2ml PCR tube and incubated in a
thermocycler for 15min at 37�C followed by 15min at
50�C. A volume of 30 ml TE Buffer (pH 8.0) was added
to the tube and mixed by pipetting up and down several
times. A volume of 2.5 ml of this mixture was added to one
50-ml tube of Fusion-Blue chemically competent cells
thawed on ice. Cells were incubated on ice for 30min,
heat shocked at 42�C for 45 s, and put back on ice for
1min. A volume of 200 ml SOC media was added to the
cells and mixed by pipetting up and down a few times. The
one hour incubation time was not necessary when trans-
forming plasmids conferring ampicillin resistance, but was
required with kanamycin resistance conferring plasmids.
A volume of 200 ml of the transformant culture was spread
on an LB plate supplemented with 100 mg/ml of ampicillin
(without the centrifugation steps in the protocol). This
procedure normally gives 30–1000 colonies after overnight
incubation at 37�C.

Quantitating success and mutation rates with different
homology and primer lengths

The assay described in Figure 3 and results in Tables 1 and
2 quantitated the effect of homology and primer lengths
on success and mutation rates. Success rate for each
assembly was measured by simply counting the number
of fluorescing versus non-fluorescing transformant
colonies on LB plates supplemented with 100 mg/ml of
ampicillin and 0.1mM IPTG. Mutation rate for each
assembly was determined by sequencing eight plasmids
extracted from fluorescing cultures grown from individual
clones.

Colony PCR

Screening for the desired construct was generally per-
formed by colony PCR, with the exception of functional
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Figure 2. General strategies for In-Fusion BioBrick assembly. There are two general strategies for In-Fusion assembly on pSB1A2 plasmids
depending on which BioBrick is PCR-amplified with the vector. The first strategy PCR-amplifies the upstream part by itself and the downstream
part with the vector (a). The second strategy PCR-amplifies the upstream part with the vector and the downstream part by itself (b). Each strategy
requires four primers, where two are specific to the parts to assemble and two are general vector primers. The vector primers are described in the
‘Materials and Methods’ section and can either be specific to the prefix or suffix. When Part B is amplified with the vector, prefix primers are used.
When Part A is amplified with the vector, suffix primers are used. All other details are described in Figure 1b.
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Figure 3. Assembly of two basic parts. (a) R0011 and E0240 plasmids are shown with the forward and reverse primers for PCR. R0011 is amplified
with the vector and E0240 is amplified as the insert. (b) Detailed schematic of the assembly strategy with the forward and reverse primers. The
R0011-amplified PCR product has an additional scar sequence and RBS that has homology to the E0240-amplified PCR product. (c) Primer design
schematic to test the effect of homology length on success and mutation rates. The desired sequence for R0011, scar sequence, and E0240 is shown.
For each primer pair, forward primers are shown as right arrows, reverse primers as left arrows, and the region of homology between primers is
boxed. Homology and primer lengths are shown where bolded numbers highlight differences between primer pairs. (d) Primer design schematic to test
the effect of primer length on success and mutation rates. Details are similar to that described in (c).
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screening described in the previous section. In these cases,
success rate is defined as the percentage of correct con-
structs out of the total number of colonies screened by
colony PCR. Colony PCR allows us to discriminate
between the desired construct and construction back-
ground (PCR template plasmid that co-transforms with
the newly assembled plasmid).
Colony PCR was performed on at least six colonies

using the VF2 (50-TGCCACCTGACGTCTAAGAA-30)
and VR (50-ATTACCGCCTTTGAGTGAGC-30)
primers specific to the pSB1A2 vector (�100 bp on either
side of the part) or primers specific to the desired con-
struct. Negative control reactions were also performed
using VF2/VR primers on the plasmid template DNA
for the original PCR reaction. Thus, a colony hosting
the desired construct will exhibit a mobility shift when
compared with the negative control reactions. Colony
PCR reactions were performed using 10 ml Fermentas
PCR Master Mix per reaction in 0.2ml PCR tubes. All
10 ml of the colony PCR products were run out on a 1%
agarose gel stained with SYBR Safe (Invitrogen) with 1-kb
ladder (NEB).

Plasmid extraction and sequencing

At least three correct colonies as identified by colony PCR
were grown in test tubes with 5ml LB supplemented with
ampicillin (100mg/ml) shaking overnight at 250 rpm. We
chose three to ensure that one plasmid was correctly con-
structed without mutations which tend to occur most
often at the junctions (regions of homology between frag-
ments). Minipreps were performed with the Qiagen
Miniprep Kit using 3ml culture volume and plasmids
were eluted with 30 ml of molecular grade water.
Plasmids were submitted for sequencing with VF2 and
VR or custom primers to sequence the entire genetic
circuit.

General strategies for In-Fusion assembly

We devised two general strategies for assembly depending
on which BioBrick is PCR-amplified with the vector

(Figure 2). Since both PCR products need to have
homology to each other on both ends for the In-Fusion
reaction to work, the simplest strategy was amplify each
PCR product to have homology to the vector at one end
and to have homology at the junction between parts at the
other end. As shown in Figure 2a, to amplify the upstream
part (Part A) as the insert and the downstream part (Part
B) as the vector, the vector specific primers need to be
upstream of each part (i.e. in the vector prefix).

Since the forward primer for Part A (AF) and reverse
primer for Part B (BR) are complementary sequences, the
resulting PCR products share 25 bp of homology at the
site where Parts A and B will be joined in the In-Fusion
reaction. Likewise, as shown in Figure 2b, to amplify the
upstream part (Part A) as the vector and the downstream
part (Part B) as the insert, the vector specific primers need
to be downstream of each part (i.e. in the vector suffix).
Use of these vector-specific primers allows for BioBrick
standard formats to be maintained so that new
In-Fusion assembled constructs can be submitted to the
Registry. These four primers described in the ‘Materials
and Methods’ section can be re-used for every In-Fusion
Assembly.

However, custom primers need to be designed in order
to provide homology at the junction between parts. The
AR and BF primers shown in both Figure 2a and b are
complementary, resulting in PCR products with homolo-
gous ends that will be fused in the In-Fusion reaction.
These primers were designed with simple rules of having
a sequence specific to the template DNA of one part at the
30-end and a 50 overhang that is homologous to the other
part (see ‘Materials and Methods’ section for details).
Following these simple rules will allow for primers to be
designed quickly and in a semi-standardized fashion.

RESULTS

We first describe the success rate and mutation rate of
In-Fusion assembly using different homology and primer
lengths. We then describe additional examples of
In-Fusion assembly and re-engineering reactions to dem-
onstrate the versatility and success of this method. These
examples include assembly of two basic parts, part
swapping (simultaneous promoter and RBS re-
engineering), a deletion (conversion of a polycistronic
transcribed sequence into a fusion protein-coding
sequence), an insertion (of a degradation tag), and three-
way assemblies (one to insert an antibiotic resistance gene
and swap out a terminator, and another to construct a
fusion protein). The insertion and deletion examples are
illustrated in Supplementary Figures S2 and S3.

Effect of homology and primer length on success rate and
mutation rate of In-Fusion assembly

To understand how homology and primer length affects
the success rate and mutation rate of assembly reactions,
we devised an assembly assay that would allow for these
rates to be determined for a large number of individual
clones. The two basic BioBrick parts used for the assembly
assay were R0011 (lacI-regulated promoter) and E0240

Table 1. Success and mutation rates of In-Fusion assembly using dif-

ferent homology lengths

Homology
level

Success
rate

Junction
mutation
rate

16 61.8% (222/359) 0% (0/7)
18 64.6% (197/305) 0% (0/8)
20 73.1% (196/268) 0% (0/8)
22 74.2% (291/392) 0% (0/6)
24 74.4% (314/422) 0% (0/8)
48a 84.8% (495/584) 0% (0/7)

Homology length is indicated with the success and mutation rates. For
success rates, numbers in parentheses after the rates indicate the
number of successful clones out of the number of total clones tested.
For mutation rates, numbers in parentheses after the rates indicate the
number of junction mutations out of the number successful clones
sequenced.
aPrimer length is 48 bases (all others are 36 bases).
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(consisting of an RBS, GFP-coding sequence and double
transcriptional terminator) (Figure 3a). By amplifying the
vector with R0011, the PCR product obtained (Part A)
starts with the suffix and ends with R0011 plus the E0240
junction sequence (Figure 3b). Part B starts with the
R0011 junction sequence and ends with the suffix
(Figure 3b). Fusion of these two PCR products occurs
at each end and creates a circular plasmid.
Transformation of the assembly reaction into competent
cells allows for the success rate to be easily determined
since colonies can only fluoresce if they have the correctly
assembled R0011 and E0240 together in the same plasmid.

We designed primers to vary the homology level from
16–24 bp in increments of 2 bp while keeping the primer
length constant at 36 bases (Figure 3c). We chose 16–24 bp
because the minimum homology length is 15 bp and this
would allow us to determine the relationship between
success rates around this minimum at a fine scale. We
predicted higher homology levels would increase success
rate, but also possibly increase mutation rate at the same
time. The 36-base primer length was chosen since it is
known that longer primer lengths increases the chances
of mutations occurring in the primer. We also used
primers that maximized the homology and primer length
with 48 bp of homology and a primer length of 48 bases.
We predicted that higher homology would increase
success rate since another study observed this relationship
(8), but at a cost of having a higher mutation rate. We also
designed primers to vary the primer length from 32 to 40
bases in increments of 2 bases since we predicted longer
primers would increase mutation rate (Figure 3d).
Therefore, there were a total of 10 assembly reactions per-
formed in parallel: five to test homology lengths, five to
test primer lengths (the 36-base length primers overlapped
with the 16 base homology length assembly), and one
extreme assembly of 48 bp of homology and a primer
length of 48 bases.

These 10 assembly reactions required 20 PCR products,
one insert and one vector for each. Remarkably, all
20 PCR products amplified using an annealing tempera-
ture of 55�C. Table 1 shows the results of homology length
on the success rate and mutation rate of In-Fusion
assembly. As homology level increases, the assembly
success rate also increases. There appears to be small dif-
ference between low homology (16–18 bp) and high
homology (20–24 bp) with high homology increasing
success by about 10% on average. The extreme case of
48 bp of homology had the highest success rate at nearly
85%. We therefore decided that 48 bp of homology should
be used for our primer design rules to maximize success
rates. Forty-eight base pairs should not be considered
the optimal length, but is a conservative choice
since no homology lengths were tested between 24 and
48 bp.

Remarkably, there were no mutations in any of the
junctions when we sequenced several successful clones.
For all 10 assemblies, we only found one mutation
among all of the clones sequenced (73 clean sequences
out of 80 attempts) for the entire �1-kb genetic circuit.
Table 2 shows the effect of primer length on the success
and mutation rates of In-Fusion assembly. There do not

appear to be any remarkable differences between primer
lengths of 32–40 bases with respect to either success or
mutation rate. Therefore, the optimal homology and
primer length is 48 bp because this achieves the highest
success rate without the cost of high mutation rate since
mutations are rare. The rare mutations in the circuit itself
are because Phusion is a very high fidelity polymerase
(4.4� 10–7 according to the product spec sheet), but we
can not rule out the possibility that the mutation existed
on the template DNA at a low level.

Part swapping: simultaneous promoter and RBS
replacement

Next we wanted to construct the same R0011+E0240
circuit, but with RFP (E1010) instead of GFP (E0040).
This would have taken three Standard Assembly steps:
to first construct R0011 with B0032, E1010 with B0010/
12, then to assemble all these parts together. Instead we
could simultaneously re-engineer the existing J04450
circuit with a new promoter and RBS in a single step
using In-Fusion (Figure 4a). To do this, for Part A,
R0011 and B0032 were first amplified with the E1010
junction sequence and vector (Figure 4b). E1010 and
B0010/12 were then amplified from J04450 with the
B0032 junction sequence to make Part B (Figure 4b).
Colony PCR results remarkably showed that all six
colonies had the correct construct, but we were able to
screen out negative colonies by the colony color for this
particular assembly. Two separate colony PCR experi-
ments were performed on the same six slightly red
glowing colonies, one to determine the size of the insert
(Figure 4c, left) and one to identify colonies that had the
correct RBS (Figure 4c, right). Since the negative control
J04450 plasmid (#7 in the right gel photo) did not amplify
with the B0032-specific primer and the six colonies did
amplify, it was assumed that all six colonies (100%) had
the correct construct and three of these were verified with
sequencing.

Table 2. Success and mutation rates of In-Fusion assembly using dif-

ferent primer lengths

Primer
length

Success
rate

Junction
mutation
rate

32 64.3% (198/308) 0% (0/8)
34 66.7% (246/369) 0% (0/8)
36 61.8% (222/359) 0% (0/7)
38 65.9% (245/372) 0% (0/7)
40 58.5% (220/376) 0% (0/6)
48a 84.8% (495/584) 0% (0/7)

Primer length is indicated with the success and mutation rates. For
success rates, numbers in parentheses after the rates indicate the
number of successful clones out of the number of total clones tested.
For mutation rates, numbers in parentheses after the rates indicate the
number of junction mutations out of the number successful clones
sequenced.
aHomology level is 48 bases (all others are 16 bases).
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Three-way assembly: insertion of an antibiotic resistance
gene and terminator swapping

Since insertion of DNA into the middle of a multi-part
construct takes several Standard Assembly reactions, we
demonstrate the efficiency of this construction in a
three-way In-Fusion reaction. We wanted to insert the
B0032 RBS and kanamycin resistance gene into the
T9002 (Lux receiver) circuit, while at the same time
change the second transcriptional terminator of T9002

to avoid repeated sequences (3) (Figure 5a). To do this,
we first amplified Part A from the prefix of T9002 to
upstream of the GFP-coding sequence with the B0032
junction sequence (Figure 5b). Next the B0032 and
kanR-coding sequence was amplified for Part B, having
the Part A and C junction sequences on either side
(Figure 5b). The B0011 terminator was then amplified
with the vector back to the prefix as Part C, having Part
A and B junction sequences on either side (Figure 5b).

Figure 4. Part swapping: simultaneous promoter and RBS re-engineering. (a) R0011+E0240 and J04450 plasmids are shown with the forward and
reverse primers for PCR. R0011+E0240 is amplified with the vector and J04450 is amplified as the insert. (b) Detailed schematic of the assembly
strategy with the forward and reverse primers. Only the promoter (R0011) and RBS (B0032) are PCR-amplified from the R0011+E0240 plasmid.
Only E1010 and B0010/12 are PCR-amplified from the J04450 circuit in order to change its promoter and RBS in one assembly step. (c) Since both
plasmids used as template DNA in the PCR reaction were approximately the same size as the desired construct, two colony PCR reactions were
performed on the same six colonies. The gel on the left shows six colonies amplified with VF2/VR primers and the gel on the right shows the same six
colonies (#1–6) and negative control J04450 plasmid (#7) amplified with the VF2 and R0011+E0240 AR primer. Correct colonies show a PCR
product of about 1.1 kb for the left gel and a PCR product of about 300 bp for the right gel (correct size indicated by arrow).

2632 Nucleic Acids Research, 2010, Vol. 38, No. 8



Figure 5. Insertion of an antibiotic resistance gene and terminator swapping through a three-way In-Fusion Assembly. (a) T9002, B0032/kanR, and
B0011 plasmids are shown with the forward and reverse primers for PCR. B0011 is amplified with the vector and both T9002 and B0032/kanR are
amplified as inserts. (b) Detailed schematic of the assembly strategy with the forward and reverse primers. The entire T9002 circuit is amplified
upstream of B0010 (Part A) with homology to connect an RBS and kanR gene downstream (Part B). To avoid the use of repeated transcriptional
terminators (as in T9002 but not shown in the figure), a B0011 terminator (Part C) was placed downstream of kanR. (c) Colony PCR results show
that 4 out of 12 colonies were positive for the correctly assembled construct (correct size indicated by arrow). A negative control was not necessary
since only a �3-kb fragment would indicate a successful colony.
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Colony PCR results showed that 4 out of 12 (33%)
colonies had the correct construct and three were
verified by sequencing (Figure 5c).

Three-way assembly: creation of a fusion protein

In this assembly, a luxR-GFP fusion protein is
incorporated in the middle of the I731014 transcriptional
cascade (Figure 6a and b). As in the previous example, an
otherwise complex construction using Standard Assembly
is efficiently streamlined using the In-Fusion cloning
method. The I731014 circuit comprises the backbone
assembly component. The GFP-coding sequence and a
terminator comprise one of the insert components. The
final component consists of a linker sequence amplified
from a non-Biobrick vector (pBAD/HisA, Invitrogen).
To determine the effect of the vector:inserts ratio for a

three-way assembly, we tested 1:2:2, 1:5:5 and 1:10:10
ratios. A 1:2:2 ratio resulted in 0/24 correct constructs, a
1:5:5 ratio resulted in 4 out of 24 (16.7%) successes, and
1:10:10 ratio resulted in 9 out of 24 (37.5%) correct con-
structs (Figure 6c). While three-way assemblies generally
exhibit a lower success rate compared with two-way
assemblies, optimizing the vector:inserts ratio improves
the odds of success. Furthermore, this example demon-
strates that assembly components representing a wide
range of sizes (3.8 kb, 0.8 kb and 0.2 kb) may be simultan-
eously assembled in a single assembly step. In this
example, the minimum 15 bp of homology was used. It
is likely that the success rate of three-way assemblies
could be further improved by increasing the length of
homology at the junctions.

DISCUSSION

There are currently several assembly methods used to con-
struct plasmids for synthetic biology research or other ap-
plications. In the synthetic biology community, Standard
Assembly is the most widely used method despite
competing standards. Custom DNA synthesis is still too
expensive for most synthetic biology labs to perform
routine constructs, but is ideal when constructing DNA
from scratch when there is no template DNA available for
PCR or when there are many assembly reactions to
perform (14). Overlap extension PCR methods (11,12)
are also useful to construct novel DNA sequences
without a template, but can be somewhat expensive de-
pending on the length of the construct. For many synthet-
ic biologists, the enormous number of parts available in
the Registry allows for diverse circuits to be constructed
without the use of DNA synthesis or overlap extension
PCR methods.
In our experience, there are three major advantages to

In-Fusion assembly over Standard Assembly. First,
In-Fusion provides a flexible method to perform
large-scale assemblies by mixing and matching parts
from the Registry. Second, this method is faster since gel
extraction is unnecessary, there are fewer experimental
steps, and fewer reactions to optimize, allowing for
many reactions to be performed in parallel. Third, we
find the success rate for In-Fusion to be high and

consistently are able to engineer the desired construct.
Our results indicate that the In-Fusion success rate in-
creases with the homology length without the cost of
frequent mutations in assembled plasmids which we
found to be rare. More homology between assembly com-
ponents requires longer primer lengths, increasing the
primer cost slightly, but the corresponding increase in
success rate may justify the extra cost when performing
difficult assemblies. We found that in general two-way
In-Fusion assemblies have >60% success rate, so in this
case using the minimal homology of 15 bp may be suffi-
cient. However, we found that three-way assemblies have
lower and more variable success rates (lower than 40% in
the examples shown here) depending on the construct. For
these more difficult assembly reactions, having more
homology will maximize the chances for success and
outweigh the extra primer costs. We also did not find it
necessary to purchase expensive purified primers because
the mutation rate is low enough for it to not be an issue.
Although we didn’t perform a systematic analysis, there’s
no obvious relationship between success rate and PCR
product size, consistent with (6), but in some special
cases optimizing the insert:vector ratio may be necessary.

In regard to assembly standards, ideally an assembly
standard will use the same laboratory components (e.g.
restriction enzymes and ligase) so that the same compo-
nents can be used to assemble any two (or more)
BioBricks together. This In-Fusion BioBrick assembly
method in its current state cannot be completely
standardized because custom primers need to be ordered
for each individual assembly and hence different compo-
nents are required. However, the assembly method
described here can be semi-standardized by two simple
primer design rules (described in the ‘Materials and
Methods’ section) that allow for much of the planning
to be removed from primer design. The primer design
tool we built will also decrease the time it takes to order
primers and maximize success with In-Fusion assemblies.
It would be possible to expand this method to use the
same standard vector primers for every assembly
reaction, but doing so would introduce large scar se-
quences between parts due to the minimum amount of
homology required between PCR-amplified BioBricks.
These large scar sequences would most definitely cause
problems for spacing between different parts [e.g. the
RBS and coding sequences (15,16), unless these sequences
were already together on one part and properly spaced].

In conclusion, we have optimized the In-Fusion
assembly protocol and adapted this method for BioBrick
Assembly and re-engineering. We used this method to
make several diverse constructs and simplified the
number of experimental steps as much as possible, as
illustrated by the six examples above. The cost per
reaction of In-Fusion assemblies is relatively high
compared with Standard Assembly, but the consistent
success of our diverse assemblies and the elimination of
intermediate assembly steps in complex constructions
make the cost worthwhile in our experience. We hope
this method can be expanded upon in the future to fuse
a large number of fragments together (17,18) and be
standardized to use the same laboratory components.
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