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Single-Cell RNA-Sequencing Integration 
Analysis Revealed Immune Cell 
Heterogeneity in Five Human Autoimmune 
Diseases
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Background

One of the most important features of the 
immune system is the complex composition 
involving many different types of organs, 
tissues, cells, and molecules that carry out 
immune functions. Autoimmune diseases 
refer to immunopathologic states in which 
the immune system reacts to self-organs, 
tissues, cells, and molecules when regula-
tion on immune tolerance regulation is out 
of balance or destroyed, thus resulting in 
damage to self-organs [1, 2]. Autoimmune 
diseases have complex, varied pathogene-
ses [3]. Studies in recent years have shown 

that immune cells and their interactions 
have an important role in the initiation and 
development of diseases [4–7]; however, 
due to the heterogeneity of immune cells, 
the detailed molecular mechanisms by 
which these cells induce autoimmune dis-
eases have not been established.

To date, greater than 80 types of auto-
immune diseases have been identified; 
however, the precise causes and patho-
genesis of these autoimmune diseases 
remain largely unknown. A large number 
of studies have shown that immune cells 
display strong heterogeneity in autoim-
mune diseases, yet increasing evidence 
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Abstract

Background: Autoimmune diseases are a group of diseases caused by abnormal immune responses to func-
tional body parts. Single-cell RNA-sequencing (scRNA-seq) technology provides transcriptomic informa-
tion at the single-cell resolution, thus offering a new way to study autoimmune diseases. Most single-cell 
RNA-seq studies, however, have often focused on one type of autoimmune disease.
Methods: We integrated scRNA-seq data from peripheral blood cells of five different autoimmune diseases 
(IgA nephropathy [IgAN], Kawasaki disease [KD], multiple sclerosis [MS], Sjogren’s syndrome [SS], and 
systemic lupus erythematosus [SLE]). We performed dimensionality clustering, cellular communication 
analysis, re-clustering analysis of monocytes, NK cell populations, differential gene expression analysis, and 
functional enrichment for all immune cells in these data.
Results: We integrated the scRNA-seq results of peripheral blood cells from five different autoimmune 
diseases (IgAN, KD, MS, SS, and SLE). We showed that all samples contained 18 different immune cell 
subsets, although the cell cluster populations were different among the 5 diseases. Through intercellular 
communication network analysis, we determined that the signals of classical and non-classical monocytes 
were significantly enhanced in patients with IgAN and SLE. The signals of naïve B cells were increased in 
patients KD. Interestingly, the signals of NK and NK-T cells were enhanced in patients with SS, but reduced 
in patients with IgAN and SLE. Transcriptomic analysis of classical and non-classical monocyte subsets fur-
ther revealed that pro-inflammatory cytokines and interferon-related genes, including CCL3, IL1B, ISG15, 
and IFI6, were specifically increased in patients with IgAN and SLE. Unlike monocytes, the number and NK 
marker genes were decreased in patients with IgAN and KD, but increased in patients with SS. Meanwhile, 
two NK-T cell subsets were exclusively found in SS.
Conclusions: In summary, based on an integration of the single-cell RNA-seq results, we demonstrated 
changes in the immune cell landscape of five different autoimmune diseases with respect to immune cell sub-
sets, populations, differentially-expressed genes, and the cell-to-cell communication network. Our data pro-
vide new insight to further explore the heterogeneity and similarity among different autoimmune diseases.
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also suggests that immune cells in these diseases share 
similarities. For example, recent studies have suggested 
that the monocyte phenotype is responsible for the patho-
genesis of specific autoimmune diseases. Several mono-
cyte susceptibility genes, including HLA, PTPN22, IRF5, 
IL-1β, IFN-λ, C-X-C motif chemokine 10 (CXCL10), 
and C-C motif chemokine ligand, are considered to be 
involved in multiple sclerosis (MS), Sjogren’s syndrome 
(SS), and systemic lupus erythematosus (SLE) [8–10]. Our 
group and others have demonstrated that monocytes also 
contribute to the pathogenesis of IgA nephropathy (IgAN) 
[11, 12]. Natural killer (NK) cells are a type of white 
blood cell that have an important role in the recognition 
and elimination of virus-infected and tumor cells, as well 
as in the regulation of tissue inflammation [13]. Studies 
have shown that NK cells are dysregulated in a number of 
autoimmune diseases, including IgAN and SLE [14–16]. 
In some autoimmune diseases, the number of NK cells is 
decreased and NK cell activity in response to stimuli is 
often impaired in these diseases, but in other diseases, the 
number of NK cells are positively correlated with disease 
progression. The mechanisms underlying the dysregula-
tion of NK cells in autoimmune diseases have not been 
determined.

Single-cell sequencing technology has developed rap-
idly in recent years. Indeed, dozens of different single-cell 
transcriptomic sequencing platform shave been developed 
since 2009 [17–19]. Single-cell sequencing technology 
is a powerful and increasingly popular method by which 
gene expression is profiled in individual cells. Using sin-
gle-cell RNA-sequencing (scRNA-seq), researchers can 
study differences in gene expression and other character-
istics among different types of cells to provide insight into 
the underlying cause of the disease. The first step in scR-
NA-seq is to isolate individual cells, then the RNA is ana-
lyzed. The RNA is typically isolated from a tissue sample, 
such as a blood, then converted into complementary DNA 
(cDNA), which can be sequenced. The cDNA is sequenced 
using a variety of sequencing technologies, which provide 
information about the genes being expressed in each cell. 
This information can then be used to identify the types of 
cells present, the levels of gene expression levels, and other 
characteristics. The rapid development of high-throughput 
and low-cost scRNA-seq technology makes scRNA-seq 
technology applicable in various fields, including autoim-
mune diseases [20–22]. By combining this data with other 
data sources, such as patient medical records or imaging 
data, researchers can build a comprehensive picture of the 
underlying causes of autoimmune diseases and provide 
insight into the autoimmune response and the potential for 
future treatments.

The majority of scRNA-seq studies have often focused 
on one type of autoimmune disease, which did not pro-
vide sufficient information regarding the heterogeneity 
and similarity of the immune cells among different auto-
immune diseases. Herein we have integrated and analyzed 
the scRNA-seq results of peripheral blood cells from five 
different autoimmune diseases (IgAN, Kawasaki disease 
[KD], MS, SS, and SLE) [11, 23–26]. We discovered 
that several types of immune cells are markedly altered 

in these diseases compared with health controls (HCs). 
Interestingly, the activity of several immune cell pop-
ulations was significantly increased in some diseases, 
including classical and non-classical monocytes and NK/
NK-T cells. Although immune cells in these five differ-
ent autoimmune diseases showed strong heterogeneity, 
we found similarities in specific immune cell subsets 
within different diseases, suggesting that the pathogenesis 
of these diseases may be closely relate to these cell sub-
populations. In summary, our results provide new insight 
to further understand the heterogeneity and similarity of 
immune cells in the pathogenesis among different autoim-
mune diseases.

Results

Integration of peripheral blood 
mononuclear cell scRNA-seq data 
from five autoimmune diseases

To generate an integrative immune cell landscape of auto-
immune diseases, we integrated public-available scRNA-seq 
data of five typical autoimmune diseases, including IgAN, 
KD, MS, SS, and SLE [11, 23–26]. We downloaded the 
matrix and performed data quality control, batch effect 
correction, dimension reduction with Uniform Manifold 
Approximation and Projection (UMAP), and downstream 
analysis using Seurat (Supplementary file 1A). The amount 
of RNA per cell, the RNA signature per cell, and the num-
ber of mitochondrial and ribosomal genes per cell before 
and after QC were calculated (Supplementary file 1B and 
C). We observed that these scRNA-seq datasets could be 
clustered based on transcriptome profiles, although there 
were some variations between each scRNA-seq experi-
ment. After batch effect correction, the data from the eight 
batches were clustered together. The batch numbers and the 
inter-batch integration clustering are shown in the UMAP 
(Table 1, Supplementary file 1D and E). We profiled 
55,284, 29,090, 34,985, 25,373, 29,345, and 24,287 cells 
for HCs, and patients with IgAN, KD, MS, SS, and SLE, 
respectively. We first divided immune cells into 18 clusters 
using unsupervised methods. Of 18 clusters, we removed 
CD45-negative cells and erythrocytes. All cell clusters were 
observed in the UMAPs of HCs and five autoimmune dis-
eases (Figure 1A). Major cell types were identified by the 
following known unique marker genes: CD14, S100A8, and 
S100A9 for monocytes; GNLY, NKG7, and GZMB for NK 
cells; NKG7 and CD3G for NK-T cells; CD3G and CD8A 
for CD8 T cells; CD3G and CD4 for CD4 T cells; CD19 
and IGHM for naïve B cells; and CD19 and JCHAIN for 
memory B cells (Figure  1B). We then compared the cell 
percentage of each cell cluster among HCs and five autoim-
mune diseases (Figure 1C). Interestingly, compared to the 
HC cell percentage of each cell cluster, there was a signifi-
cantly increased percentage of naïve CD4 T cells (cluster 0) 
and IGHMhigh naïve B cells (cluster 4) in patients with KD, 
and an increased number of classical monocytes (cluster 1) 
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in SLE, but a significantly decreased number of NK cells 
(cluster 2) in patients with IgAN and KD, as well as a signifi-
cantly decreased number of NK-T cells (cluster 6) in patients 
with KD. We also performed differentially-expressed gene 
(DEG) analysis of all immune cells in the five autoim-
mune diseases and functional enrichment of the DEGs 
(Supplementary file 2). Functional enrichment suggested 
that the DEGs were primarily related to regulation of multi-
ple immune cells. Specifically, CD14 was highly expressed 
in IgAN patients, allowing the involvement of monocytes in 
the activated immune response, as demonstrated by availa-
ble data [27]. Genes associated with B-cell cloning, such as 
IGVC-27, were upregulated in KD patients, and functional 
enrichment was associated with B cell-mediated immune 

responses. This finding suggests a possible involvement of 
B cells  in the disease process underlying KD, and is consist-
ent with the results of previous study showing that CD20+ 
B cells were heavily infiltrated in coronary artery biopsies 
of patients with early-stage patients KD, while an abnormal 
cell count of plasma cells was present in specimens from 
late-stage patients [28, 29]. These data are consistent with 
our volcano mapping and functional enrichment results. 
With respect to the function enrichment results of SS, T cell 
activation is also consistent with the theory advanced in the 
literature, i.e., SS is mainly due to a large number of T cells 
infiltrating secretory glands, which leads to the occurrence 
of diseases [30, 31]. These results suggest that there is sig-
nificant heterogeneity of immune cells among these autoim-
mune diseases.

scRNA-seq analysis revealed 
the dynamics of the cell-to-cell 
communication network among 
five autoimmune diseases

Intercellular communication of immune cells is an important 
feature of host immunity. Mounting evidence links changes 
in the cell-to-cell communication network to the varied 
pathogeneses of autoimmune diseases [32, 33]. Therefore, 
we compared the cell-to-cell communication network in 
HCs and patients with five autoimmune diseases by evalu-
ating the interaction strength and probability (i.e., informa-
tion flow) using CellChat. First, we plotted the interaction 
strengths of the incoming and outgoing signals in each cell 
cluster of HCs and patients with the five autoimmune dis-
eases. Three cell clusters, including NK (cluster 2), naïve 
CD8 (cluster 5), and NK-T (cluster 6) cells, displayed the 
strongest incoming and outgoing interaction strength, while 
the other cell clusters showed similar levels of interaction 
strength in HCs. As expected, this interaction strength pat-
tern was significantly affected in the five autoimmune dis-
eases (Figure 2A). Classical monocytes (cluster 1) exhibited 
the strongest incoming and outgoing interaction strength in 
IgAN and SLE. This observation is consistent with previ-
ous studies [11, 26], suggesting classical monocytes have an 
important role in IgAN and SLE. Interestingly, the interac-
tion strength of NK (cluster 2) and NK-T (cluster 6) cells 
was decreased in IgAN, KD, and SLE. In contrast, the inter-
action strength of NK (cluster 2) and NK-T (cluster 6) cells 
was remarkably increased in SS, suggesting the activity of 
NK and NK-T cells may be reduced in IgAN, KD, and SLE, 
but increased in SS. In addition, the interaction strength of 
CD22high naïve B cells was increased in KD, suggesting that 
this subset of naïve B cells may be closely related to the patho-
genesis of KD. Unlike the above-mentioned autoimmune 
diseases, MS exhibited a similar interaction strength pattern 
with HCs; the interaction strength of naïve CD8 (cluster 5) 
and NK-T (cluster 6) cells was slightly decreased. We sub-
sequently dissected the interaction strength of the identified 
signaling pathways in each cell cluster by aggregating the 
incoming and outgoing strengths. The interaction strength of 
the individual signaling pathway in each cell cluster of HCs 

Table 1  Sample Batch Numbers in this Study

Sample Id   Group   Project Source   Batch
HC_09   HC   HRA000831   1

HC_10   HC   HRA000831   1

IgAN_01   IgAN   HRA000831   1

IgAN_02   IgAN   HRA000831   1

HC_11   HC   HRA000831   2

IgAN_03   IgAN   HRA000831   2

IgAN_04   IgAN   HRA000831   2

IgAN_05   IgAN   HRA000831   2

HC_12   HC   HRA000831   3

IgAN_06   IgAN   HRA000831   3

IgAN_07   IgAN   HRA000831   3

IgAN_08   IgAN   HRA000831   3

IgAN_09   IgAN   HRA000831   3

HC_13   HC   HRA000831   4

IgAN_10   IgAN   HRA000831   4

HC_01   HC   GSE157278   5

HC_02   HC   GSE157278   5

HC_03   HC   GSE157278   5

HC_04   HC   GSE157278   5

HC_05   HC   GSE157278   5

pSS_01   SS   GSE157278   5

pSS_02   SS   GSE157278   5

pSS_03   SS   GSE157278   5

pSS_04   SS   GSE157278   5

pSS_05   SS   GSE157278   5

SLE_01   SLE   GSE142016   6

SLE_02   SLE   GSE142016   6

SLE_03   SLE   GSE142016   6

HC_06   HC   GSE168732   7

HC_07   HC   GSE168732   7

HC_08   HC   GSE168732   7

KD_01   KD   GSE168732   7

KD_02   KD   GSE168732   7

KD_03   KD   GSE168732   7

KD_04   KD   GSE168732   7

KD_05   KD   GSE168732   7

KD_06   KD   GSE168732   7

MS_01   MS   GSE138266   8

MS_02   MS   GSE138266   8

MS_03   MS   GSE138266   8

MS_04   MS   GSE138266   8

MS_05   MS   GSE138266   8
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and patients with the five autoimmune diseases was plotted 
as a heat map (Figure 2B). The heat maps exhibited changes 
in the interaction strength of the corresponding signaling 
pathways in immune cells of HCs and patients with the 
five autoimmune diseases. Each disease displayed a distinct 
phenotype compared to HCs. For example, consistent with 
Figure 2A, several important signaling pathways, including 

MIF, BAFF, and OCLN, were only increased in classi-
cal monocytes (cluster 1) in patients with IgAN and SLE. 
Several signaling pathways, including OX40, CD30, and 
TWEAK, were exclusively increased in NK (cluster 2) and 
NK-T (cluster 6) cells in patients with SS. To further investi-
gate the contribution of each signal pathway in the diseases, 
we evaluated the intercellular communication probability by 
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Figure 1  Single-cell landscape of peripheral blood mononuclear cells (PBMCs) from healthy controls and patients with five autoimmune 
disease. (A) UMAP illustration of the integrated scRNA-seq data clustering of PBMCs from HCs and patients with five autoimmune diseases. 
(B) Feature plot for identification of genes in major cell populations: CD14, S100A9, and S100A8 were used as subpopulation genes of mono-
cytes; GNLY, NKG7, and GZMB were used as subpopulation genes of NK cells; CD3G, CD8A, and CD4 were used as subpopulation genes 
of T cells; and CD19, IGHM, and JCHAIN were used as a B cell subpopulation genes. (C) Histograms of the percentage of cells in each cell 
cluster among HCs and patients with five autoimmune diseases. *P < 0.05, **P < 0.01, ***P < 0.001,****P < 0.0001 vs. HC.
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calculating overall information flow in each signal pathway. 
Surprisingly, we found that there are distinct signaling path-
ways in each autoimmune disease (Figure 2C). The strength 
of the interactions of each cluster of cells in the pathways 

were exhibited in heatmaps (Supplementary file  3). For 
example, CNTN, CDH5, FSH, NGF, IFN-I, GDNF, and 
BMP10 pathways were exclusively present in patients 
with IgAN. JAM, CD34, VTN, NMU, and VEGI were 
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Figure 2  CellChat analysis of the intercellular communication networks in PBMCs from HCs and patients with five autoimmune diseases. 
(A) Dot plots of the cell-cell interaction strength in each cell cluster of different groups. (B) Heat maps of the interaction strength for the 
identified pathway across the cell clusters in each group. (C) Information flow intensity histograms of the major interaction pathways among 
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exclusively present in patients with KD, while MTSN were 
present in patients with IgAN and KD. OX40, CD30, and 
TWEAK were exclusively present in patients with SS, while 
THY1 and WNT were present in patients with IgAN and SS. 
CD226 and APRIL were present in patients with KD and 
SS. In addition, BAFF was increased in patients with SLE. 
These results revealed the distinct dynamics of the intercel-
lular communication network in these autoimmune diseases.

scRNA-seq revealed a CCL3high 
classical monocyte subset in 
patients with IgAN and SLE

Accumulating evidence indicates that monocytes are 
involved in the pathogenesis underlying IgAN and SLE, 
but the specific mechanism has not been established. 
According to cell-to-cell communication network analy-
sis, the activity of monocytes was shown to be increased 
in patients with IgAN and SLE. Therefore, we re-analyzed 
the classical monocyte cluster and divided the cluster into 
the following 3 subsets according to transcriptional pro-
files: CCL3high monocyte (cluster 0); CCL3low monocyte 
(cluster 1); and HSPA1high monocyte (cluster 2; Figure 3A). 
The expression and distribution of the fractionated marker 
of classical monocytes were in UMAP (Supplementary 
file 4). CCL3high monocytes expressed a high level of pro-
inflammatory genes, including CCL3, CXCL8, and IL1B, 
while HSPA1high monocytes expressed a high level of heat 
shock protein genes, including HSPA1A, HSPA1B, and 
HSP90AA1; cluster 1 monocytes expressed a low level of 
both gene sets (Figure 3B). Surprisingly, HSPA1high mono-
cytes (cluster 2) were exclusively present in HCs, but not 
any patients with autoimmune diseases. HSPA1 encodes 
heat shock 70 kDa protein 1 (Hsp72), a member of the heat 
shock protein 70 family, which facilitates the proper fold-
ing of newly-translated proteins and stabilizes or degrades 
mutant proteins [34]. In addition, Hsp72 also facilitates 
DNA repair [35]. Hsp72 functions contribute to biological 
processes, including signal transduction, apoptosis, protein 
homeostasis, and cell growth and differentiation [36]. This 
result indicates that monocytes in autoimmune diseases have 
an impaired ability to regulate misfolded proteins and DNA 
damage. The number of CCL3low monocytes (cluster 1) was 
significantly increased in patients with SS and SLE, while 
the number of CCL3high monocytes (cluster 0) was increased 
in patients with IgAN and SLE, although there was no sta-
tistical difference (Figure 3C and D). We then compared 
the level of marker gene expression in HCs and patients 
with autoimmune diseases. Two pro-inflammatory genes, 
including CCL3 and IL1B, were increased in the cluster 0 
monocytes in patients with IgAN and SLE, but decreased 
in patients with KD and MS. LY6E was increased in clus-
ters 0 and 1 monocytes of patients with SLE. We also found 
that two interferon-related genes (IFI6 and IFITM3) were 
increased in the cluster 0 monocytes of patients with KD, SS, 
and SLE (Figure 3E and F). In addition, we compared the 
gene expression differences in patients with SLE and IgAN 
and high CCL3 expression in cluster 0 compared to other 

subgroups and performed functional enrichment. These 
results indicated that there is a group of classical monocytes 
with high CCL3 expression in patients with SLE that may 
enable classical monocytes to function in the disease pro-
cess by enhancing cell chemotaxis, response to interferon 
(IFN)-γ, and cytokine production through high expression 
of CCL3 and IFI6 genes. We simultaneously compared 
the expression of differentially-expressed genes in cluster 
1 with lower CCL3 expression to other groups in the SLE 
groups and performed functional enrichment analysis of 
the resulting DEGs, suggesting that the genes in this clus-
ter also function in interferon signaling. Interestingly, in the 
group of cells with high expression of CCL3 in patients with 
IgAN, CCL3L3 was differentially-expressed and CCL3L3 
gene was specifically upregulated with HLA-E gene expres-
sion, which may be related to the cellular response to IFN-γ 
(Supplementary file 5). Previous studies have suggested that 
the expression of IL-1β, IFN-γ, chemokines, and chemokine 
ligands is upregulated in the macrophages of SLE patients, 
which leads to inflammation. Our findings are in agreement 
with previous studies [37–39]. In previous studies of mouse 
models of autoimmune arthritis, it was reported that exces-
sive production of chemokines by macrophages exacerbate 
the disease and accelerate macrophage infiltration into the 
joints, thus leading to increased inflammation [40–42]. 
Therefore, we presumed that this group of cells exacerbated 
the disease in patients with IgAN and SLE by expressing 
large amounts of the CCL3 chemokine gene. These results 
suggested that CCL3high classical monocytes are closely 
associated with IgAN and SLE.

scRNA-seq identified four non-
classical monocyte subsets closely 
associated with SLE

It was previously concluded that non-classical monocytes 
also have important roles in the initiation and progression 
of autoimmune diseases [43]. Therefore, we re-analyzed 
and divided the non-classical monocytes into 5  subsets: 
LYPD2highVMO1high (cluster 0); CCL3highS100A8high 
(cluster 1); CRIP1low (cluster 2); and CXCL10highGBP1high 
(cluster 3) monocytes (Figure 4A and B). The expression 
and distribution of the fractionated marker for non-classical 
monocytes are shown in Supplementary file 6. All groups 
contain these five subsets of non-classical monocytes; how-
ever, compared to HCs, four of these subsets were signif-
icantly increased in SLE (Figure 4C and D). To further 
explore the transcriptomic changes in the immune cells of 
SLE, we analyzed the DEGs of non-classical monocytes 
between SLE and the other groups. The volcano plot indicated 
that several interferon-related genes, including ISG15, IFI6, 
IFI27, and LGASL1, were significantly upregulated in the 
non-classical monocytes of SLE (Figure 4E). Furthermore, 
the violin plots showed that ISG15, IFI27, LY6E, and FYB 
were specifically upregulated in SLE, while IFI6 and IFI44L 
were upregulated in SLE and IgAN. In addition, CXCL8, 
CD74, and CST3 were shown to be down-regulated in 
SLE (Figure 4F). These results highlight that non-classical 
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monocytes are closely associated with SLE compared with 
the other four autoimmune diseases.

scRNA-seq revealed the opposite 
phenotypes of NK and NK-T cells in 
five autoimmune diseases

Previous studies indicated that NK cells, which are key 
components of the innate immune system, have been impli-
cated in the development of multiple autoimmune dis-
eases, including SLE [44, 45]. We also demonstrated that 
both the number and cell-cell communication networks are 
affected in autoimmune diseases, including IgAN, SS, and 
SLE. We then re-analyzed the NK cells and divided the NK 
cells into 5 clusters: CLIC3high (cluster 0); HLA-DRB1high 
(cluster 1); GZMKhigh (cluster 2); and IL7RhighLTBhigh 
(cluster 3; Figure 5A and B). The expression and distribu-
tion of the identified marker for non-classical monocytes are 
shown in Supplementary file 7. Interestingly, the number 
of CLIC3high (cluster 0) NK cell subsets was significantly 
reduced in IgAN, and was also reduced in KD, although 
there was no statistical difference. The number of HLA-
DRB1high (cluster 1) and GZMKhigh (cluster 2) NK cell sub-
sets was significantly reduced in KD, and was also increased 
in SS and SLE, although there was no statistical difference 
(Figure 5C and D). Violin plots indicated that receptors for 
NK cells, including KLRC2, KLRC3, and KIR3DL2, were 
significantly upregulated in SS. CTSD was upregulated in 
MS and SS; however, NR4A2, FYB, CXCR4, and NKG7 
were downregulated in IgAN and KD (Figure 5E), indicat-
ing impaired NK cell development and functions in these 
diseases. The feature plots showed that KLR2 and NKG7 are 
increased in SS and decreased in IgAN and KD (Figure 5F).

We then performed differential gene expression and func-
tional enrichment of whole NK cells from patients with 
IgAN, KD, and SS (Supplementary file 8). The results of 
functional enrichment showed that KLRC3 genes that were 
downregulated in IgAN were mainly associated with cellular 
defense responses of biological processes, while other down-
regulated genes, such as HLA-A and HLA-B, were associ-
ated with negative regulation of immune cells. Similarly, 
downregulated genes, such as HLA-A and KIR family genes 
(KIR2DL1) were associated with intrinsic immune response 
and cell killing by NK cells in KD patients. In contrast, 
KLRC3 gene expression was upregulated in NK cells of SS 
patients, while KIR family genes, such as the HLA-A gene, 
showed opposite trends to NK cell expression in IgAN. This 
finding suggests that NK cells exhibit different phenotypes 
and may have exercises different functions in the IgAN, KD, 
and SS groups. Previous studies indicated that classical HLA 
I molecules (HLA-A, HLA-B, and HLA-C) are key regula-
tory factors for NK cell activation, and enable NK cells to 
recognize self or non-self and diseased cells by presenting 
peptides from intracellular proteins on the cell surface [46]. 
In addition, classical HLA I molecules interact with inhib-
itory and activating NK cell receptors of the KIR family. 
During functional maturation of NK cells, the interaction 
with members of the inhibitory KIR (iKIR) family results 

in activation of NK cells, and activated NK cells are more 
responsive to the activation of potential target cells than 
non-activated NK cells [47, 48]. The results of our differ-
ential gene expression analysis showed a consistent down-
regulation of HLA class I molecules and KIR family genes 
in IgAN and KD patients, whereas these genes showed an 
upregulated trend in SS patients. Given that the proportion 
of NK cells was downregulated in IgAN and KD and upreg-
ulated in SS, we concluded that NK cells in IgAN and KD 
exhibit a different phenotype compared to SS.

Natural killer T (NK-T) cells are a heterogeneous group 
of T cells that share properties of T and NK cells, which 
has been shown to be closely related to innate and adap-
tive immunity [49–51]. We therefore analyzed the NK-T 
cells and divided the NK-T cells into 8 clusters (Figure 
6A). Cluster 1 expressed high level of CD4, while the other 
clusters expressed a high level of CD8 (Figure 6B). As can 
be seen in the clustering of NKT cells in each group, clus-
ters 1, 2, 4, 6, and 7 were not equally represented in HCs 
and other groups (Figure 6C). Interestingly, we showed 
that HSPA1Bhigh (cluster 2), TRBV24-1high (cluster 4), and 
TRBV15high (cluster 7) NK cell subsets were highly present 
in HCs, but not in patients with autoimmune diseases, while 
CD4high (cluster 1) and CMC1high (cluster 6) NK cell subsets 
were highly present in SS, but not the other autoimmune dis-
eases (Figure 6D). Cluster 1 expressed high levels of IL7R 
and CD40L, which might increase the development of this 
NK cell subset and stimulate other immune cells through 
the CD40-CD40L pathway [52, 53]. Cluster 6 expressed 
high levels of CD8, TRAV12-2, and CMC1 (Figure 6E). 
TRAV12-2 belongs to the TCR family and the V alpha gene 
segments belong to 12 different subfamilies, each contain-
ing 1-7 members [54]. We found that TRAV12 family genes 
were highly expressed in the cluster 6 NK cell subset, which 
was highly related to SS. CMC1, a component of the mito-
chondrial translation regulation assembly intermediate of 
cytochrome c oxidase complex (MITRAC) complex, regu-
lates cytochrome c oxidase assembly [55]. A study showed 
that CMC1 regulates the turnover of newly-synthesized 
COX1 [56], indicating the NK and NK-T number and mito-
chondrial function might be affected in SS. Taken together, 
these results suggest opposite phenotypes of NK and NK-T 
cells in different autoimmune diseases.

Discussion

Immune cell heterogeneity has a major role in the devel-
opment of autoimmune diseases, such as IgAN, MS, and 
SLE. The immune system is composed of various cell types, 
including T cells, B cells, macrophages, and NK cells, which 
have different roles in the defense against foreign antigens. 
While a healthy immune system effectively recognizes and 
responds to invading pathogens, an autoimmune response 
occurs when the immune system incorrectly attacks the 
body’s own cells and tissues. In the case of autoimmune dis-
eases, the immune system misidentifies self-tissues, result-
ing in an inflammatory response that causes damage to cells 
and tissues.
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Figure 5  scRNA-seq revealed the different phenotypes of NK cells in five autoimmune diseases. (A) UMAP illustrating NK cell subsets 
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With the development of single-cell sequencing tech-
nology, researchers have a deeper understanding of the 
varied pathogeneses underlying autoimmune diseases. 

More-and-more studies have applied this technology to 
explore the novel immune cell populations and the genes that 
may contribute to the pathogenesis of autoimmune diseases, 
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Figure 6  scRNA-seq identified two unique NK-T subsets in SS. (A) UMAP illustrating NK-T cell subsets in all groups. (B) Dot plot of the 
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including IgAN, KD, MS, SS, and SLE [11, 23–26]. The 
motivation to perform scRNA-seq integration analysis was 
based on the observation that in different autoimmune dis-
eases, even though immune cells have strong heterogeneity, 
the immune cells also share similarities. For example, aber-
rations in monocyte/macrophage number and function are 
increasingly recognized in both mice and humans with SLE. 
Studies have shown that monocytes have a positive role in 
accelerating inflammation and injury in skin and glomerular 
lesions [57]. Our group and other groups both demonstrated 
that the number and function of monocytes in patients with 
IgAN were highly associated with the pathogenesis underly-
ing IgA [11, 12]. Together, these results indicated that mono-
cyte share similar phenotypes in patients with IgAN and 
SLE, which partially explained why targeting the monocyte/
macrophage-derived molecule, BAFF, is effective in these 
two diseases [58, 59].

In addition to monocytes, recent studies have provide evi-
dence for the involvement of NK cells in the pathogenesis 
of SLE. The number of NK cells is significantly reduced 
in Lpr mice, a model of SLE, and adoptive transfer of NK 
cells delays the onset of autoimmunity, suggesting a protec-
tive role of NK cells in SLE [60]. Some studies also demon-
strated that NK cells delay the onset of SLE by inhibiting the 
secretion of autoantibodies in B cells. Increased cytotoxic 
and proinflammatory phenotypes of NK cells are associated 
with downregulation of CD3ξ expression in SLE patients 
[61]. Our group also demonstrated that NK cell number and 
cytotoxicity function are decreased in IgAN [11]. These 
results indicate that NK cells may share similar function in 
different autoimmune diseases.

After integration analysis of five autoimmune diseases, we 
showed that all samples contained 18 different immune cell 
subsets, although the cell cluster populations were different 
among five diseases. Based on intercellular communication 
network analysis, we showed that classical and non-classical 
monocyte signaling was significantly enhanced in IgAN and 
SLE, and further analysis demonstrated that non-classical 
monocytes were highly associated with SLE. Transcriptomic 
analysis of classical and non-classical monocyte subsets fur-
ther revealed that pro-inflammatory cytokines and interfer-
on-related genes, including CCL3, IL1B, ISG15, and IFI6, 
were specifically increased in IgAN and SLE. Although the 
signals of NK and NK-T cells were reduced in IgAN and 
SLE, the number and function of NK and NK-T cells were 
increased in SS, indicating an opposite immune phenotype 
of NK cells in these diseases.

Conclusions

In summary, by integration of the scRNA-seq results, we 
discovered various changes in the immune cell landscape of 
five different autoimmune diseases with respect to immune 
cell subsets, populations, DEGs, pathway enrichment, and 
cell-cell communication network. Our data provide new 
insight to further determine the heterogeneity and similarity 
among different autoimmune diseases.

Methods

Data acquisition

All single cell RNA seq matrices were obtained from the 
Gene Expression Omnibus (GEO) public database. The HC 
matrix were obtained from the IgAN, KD, and SS cohorts. 
The scRNA-seq matrix of 10 IgAN patients and 6 age-
matched HCs were retrieved from The BIG Submission (BIG 
Sub [No. HRA000831]) [11]. The scRNA-seq matrix of 6 
KD patients and 3 HCs were obtained from the GEO (acces-
sion number, GSE168732) [23]. The scRNA-seq matrix of 
5 MS patients were acquired from GEO (accession number, 
GSE138266) [24]. The scRNA-seq matrix of 5 SS patients 
and 5 age-matched HCs were obtained from GEO (acces-
sion number, GSE157278) [25]. The scRNA-seq matrix of 
3 SLE patients were obtained from GEO (accession number, 
GSE142016) [26].

Data processing and analysis

Quality control and data filtering
We used the Seurat v4.0.2 Bioconductor package [62] for 
quality control, normalization, dimensional reduction, batch 
effect removal, clustering, and visualization. The count data 
of all inter-cluster samples were used for the following crite-
ria: all unique molecular identifiers (UMI) between 200 and 
2500; and < 15% of mitochondrial genes to quality control 
and filter low-expression cells.

Integration of count data

We grouped the data from number HRA000831 into batches 
1-4 according to the original literature description, and 
the data from all samples from GSE157278, GSE142016, 
GSE168732, and GSE138266 were sequentially coded 
as batches 5-8. We then used the code-numbered data 
with canonical correlation analysis (CCA), an analysis of 
identifying the cross-sample pairs in matching biological 
states as anchors, which correct for technical differences 
between samples. We used default parameters to retain as 
much biological heterogeneity as possible between groups, 
except the non-classical monocyte cluster. Because of the 
lower cell number of non-classical monocytes, we amended 
the k.weight of IntegrateData () function parameer in analyz-
ing the batch effect of non-classical monocytes.

Clustering

The integrated matrix was scaled and the first 30 dimensions 
derived from principal component analysis (PCA) were 
used for unified stream shape approximation and projection 
(UMAP). We used the Wilcox test to find differential expres-
sion between diverse immune cells. The cut-off of output 
result follows the standard, min.pct=0.25, logfc.threshold=1.
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Differentially-expressed gene (DEG) 
analysis
We used the function FindMarkers () with the default Wilcox 
test to find the differential expression for a single cluster 
compared to all other cells. DEGs had the following crite-
ria: (1) P-value ≤ 0.05; and (2) log2 FC ≥ 0.32, where log2 
FC means the log fold-change of the average expression 
between the two groups.

Intercellular communication 
network analysis
We used the R package of Cellchat to perform the intercellu-
lar communications between immune cells [63]. In brief, we 
used the backend database and network modeling to predict 
major signaling between input and output communications, 
and also classified the signaling pathway in the diversity bio-
logical environment to identify context-specific pathways.

Enrichment

The R package (clusterProfiler 4.1.4) [64] was applied to 
Gene Ontology (GO) [65] to perform functional enrichment 
of differential gene expression. It is possible that the DEGs 
were abundantly enriched with mitochondrial- and riboso-
mal-related genes due to the different sequencing depth and 
annotation version of the raw data. Therefore, the entries 
related to immune cell function were selected for functional 
enrichment results.

Statistics

We used GraphPad 9.0 for the statistical analysis. One-
way ANOVA analysis was used to analyze the differences 
between the data and Dunn’s test was used to detect the 
results of ANOVA. All data are presented as the mean±SEM 
unless otherwise described.
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