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ABSTRACT
Introduction  Sustained viral suppression, an indicator of 
long-term treatment success and mortality reduction, is 
one of four strategic areas of the ‘Ending the HIV Epidemic’ 
federal campaign launched in 2019. Under-represented 
populations, like racial or ethnic minority populations, 
sexual and gender minority groups, and socioeconomically 
disadvantaged populations, are disproportionately affected 
by HIV and experience a more striking virological failure. 
The COVID-19 pandemic might magnify the risk of 
incomplete viral suppression among under-represented 
people living with HIV (PLWH) due to interruptions in 
healthcare access and other worsened socioeconomic and 
environmental conditions. However, biomedical research 
rarely includes under-represented populations, resulting 
in biased algorithms. This proposal targets a broadly 
defined under-represented HIV population. It aims to 
develop a personalised viral suppression prediction model 
using machine learning (ML) techniques by incorporating 
multilevel factors using All of Us (AoU) data.
Methods and analysis  This cohort study will use data from 
the AoU research programme, which aims to recruit a broad, 
diverse group of US populations historically under-represented 
in biomedical research. The programme harmonises data 
from multiple sources on an ongoing basis. It has recruited 
~4800 PLWH with a series of self-reported survey data (eg, 
Lifestyle, Healthcare Access, COVID-19 Participant Experience) 
and relevant longitudinal electronic health records data. We 
will examine the change in viral suppression and develop 
personalised viral suppression prediction due to the impact of 
the COVID-19 pandemic using ML techniques, such as tree-
based classifiers (classification and regression trees, random 
forest, decision tree and eXtreme Gradient Boosting), support 
vector machine, naïve Bayes and long short-term memory.
Ethics and dissemination  The institutional review 
board approved the study at the University of South 
Carolina (Pro00124806) as a Non-Human Subject study. 
Findings will be published in peer-reviewed journals and 
disseminated at national and international conferences 
and through social media.

INTRODUCTION
Sustained viral suppression, an indicator of 
long-term treatment success and mortality 
reduction,1 is one of four strategic areas of the 

‘Ending the HIV Epidemic (EtHE): A Plan 
for America’2 federal campaign launched in 
2019. According to the Centers for Disease 
Control and Prevention (CDC) national 
surveillance data, approximately 66% of all 
people living with HIV (PLWH) were virally 
suppressed in the USA.3 The COVID-19 
pandemic uniquely affects PLWH and has 
a mixed impact on viral suppression across 
different countries or settings. In the USA, 
a few studies revealed the decreased prob-
ability of viral suppression due to the nega-
tive impact of the pandemic,4 5 but one study 
in San Francisco did not report the same 
findings.6 Similar inconsistent results were 
reported in European and Asian studies.7 8 
The mixed results might be caused by small 
sample sizes, lack of sample diversity and/or 
insufficient phenotypic data.

Individuals with inadequate access to 
medical care, low household incomes, 
low education attainment, and racial or 
sexual and gender minorities are often 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ The diverse group of populations recruited in the 
All of Us research programme enables us to have 
a large representative sample of under-represented 
populations in biomedical research and reduce al-
gorithmic bias.

	⇒ The data integration from multiple data sources in 
the All of Us research programme for cohort analy-
ses allows us to robustly evaluate the viral suppres-
sion prediction for the under-represented population 
with a long follow-up.

	⇒ The machine learning-based approach to develop-
ing personalised prediction for viral suppression has 
the benefit of accurately modelling a different data 
structure of many risk factors.

	⇒ We expect missing data in both electronic health re-
cord data and survey results; thus, caution may be 
needed when interpreting the risk prediction results.
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under-represented in biomedical research (hereafter 
referred to as ‘under-represented population’).9 HIV and 
COVID-19 both have a disproportionate impact on under-
represented populations. For instance, 45% of new HIV 
infections were among gay and bisexual men under 35 
years and 26% among black gay and bisexual men.10 More-
over, these vulnerable populations experience a more 
striking virological failure.3 The United Nations11 report 
has indicated that increases in food costs and market 
stockpiling during the COVID-19 pandemic have had the 
most harmful impact on under-represented populations. 
Those with stigmatised or marginalised intersecting iden-
tities often experience the highest HIV burden, including 
men who have sex with men, transgender women, people 
who inject drugs, commercial sex workers and youths, 
who account for a third of all new HIV infections.12 Thus, 
the pandemic might magnify the risk of incomplete viral 
suppression among the under-represented PLWH popu-
lation due to interruptions in healthcare access and other 
worsened socioeconomic and environmental conditions.

The increasing availability of electronic health records 
(EHRs) has presented the opportunity to discover new 
knowledge via extensive data linkage and integration. 
However, as a real-world clinical routine data source, EHR 
data are not designed for a specific research purpose. 
Thus, it has a limited capacity to recruit an adequate 
sample of under-represented populations due to their 
historically limited access to specialty care and academic 
medical centres that serve as the primary sources for EHR 
data. Consequently, it poses more challenges in under-
standing the viral suppression among under-represented 
populations, particularly those facing the COVID-19 
pandemic.

The All of Us (AoU) research programme is an ongoing 
national, historic effort supported by the NIH. The 
cohort in AoU includes a broadly diverse group of the 
US population, with more than 50% of the participants 
from racial and ethnic minority groups and more than 
80% from populations historically under-represented in 
biomedical research (eg, sex orientation, socioeconomic 
status, geographical location, physical disability). There-
fore, this protocol aims to target under-represented popu-
lations using AoU data, which includes ~4800 PLWH with 
a series of self-reported survey data (eg, Lifestyle, Physical 
Measurement, Healthcare Access, COVID-19 Participant 
Experience (COPE)) and relevant longitudinal EHR data 
(laboratory and medication). The variables collected 
include longitudinal observations of clinical, environ-
mental, lifestyle and genetic data. With the data inte-
gration, the current exploratory study has the following 
specific aims:

Aim 1: Examine the impact of the COVID-19 pandemic 
on viral suppression among a broadly defined under-
represented HIV population by harnessing the AoU big 
data resources.

Aim 2: Develop personalised viral suppression predic-
tion models using machine learning (ML) techniques 
by incorporating COVID-19 interruption, antiretroviral 

therapy history, pre-existing conditions (comorbidities), 
psychological well-being (eg, depression, resilience), 
healthcare utilisation and social, environmental factors 
in AoU.

A deeper understanding of the impact of the pandemic 
on viral suppression among under-represented PLWH 
populations is essential to promote health equity and 
better direct clinical management and guideline devel-
opment. The proposed personalised viral suppression 
prediction can provide data-driven evidence on tailored 
HIV treatment strategies for different under-represented 
populations, particularly during unexpected interrup-
tions like the COVID-19 pandemic. Thus, the results 
could facilitate the clinical identification of PLWH among 
under-represented populations with poor viral control, 
provide them with tailored HIV care management and 
eventually serve towards the goal of EtHE in the USA. 
The availability of comprehensive phenotypic data and 
researcher workbench in AoU platform fully ensures the 
transparency and reproducibility of the proposed project.

METHODS AND ANALYSIS
Overview of the study design
To guide our proposed research, we have developed 
a conceptual framework (figure  1) that depicts how 
we harness the comprehensive phenotypic data from 
different domains of AoU researcher workbench to 
achieve the specific aims. The cohort building and 
outcomes will be defined from EHR data and survey 
data. For example, the intrapersonal factors (level 1), 
including demographic characteristics (eg, age, race 
and gender) and overall health, will be extracted from 
‘The Basics’ survey. The COVID-19-related experiences 
(levels 2 and 5) refer to the impact of the pandemic on 
their health and psychosocial well-being, such as social 
support, depression, anxiety, drug and alcohol abuse, 
and resilience, will be extracted from ‘COPE’ and ‘Life-
style’ surveys. The neighbourhood-level factors (level 3), 
including the neighbourhood economic environment 
(eg, poverty, education, health insurance coverage) and 
healthcare access (type of healthcare facility, structural 
barriers to healthcare access), will be defined from the 
‘healthcare access and utilisation’ survey. With the appro-
priate data management/preprocessing, we will examine 
the change in viral suppression and develop the person-
alised viral suppression prediction due to the impact of 
the COVID-19 pandemic using ML techniques, which will 
have translational potential to inform future HIV care 
among under-represented populations.

Data sources
Overview of the AoU programme
The AoU research programme seeks to recruit persons in 
demographic categories that have been and continue to be 
under-represented in biomedical research; such persons typi-
cally have relatively poor access to good healthcare.13 AoU 
opened for enrolment in May 2018, and the inclusion criteria 
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are age ≥18 years with the capacity to provide consent. The 
recruitment methods and scientific rationale for AoU have 
been described previously.13 Through 19 November 2021, 
AoU has harmonised data from over 340 institutional sites 
contributing data for about 331 360 participants using the 
Observational Medical Outcomes Partnership (OMOP) 
Common Data Model. We anticipate an ample size to conduct 
the proposed analysis since AoU is harmonising data on an 
ongoing basis. Each participant completed informed consent 
for sharing their EHR data with the Data and Research 
Centre and provided survey responses across different 
domains. Each participating institutional site contributes 
demographics, medications, laboratory tests, diagnoses and 
vital status to the central data repository for data harmonisa-
tion. A dedicated institutional review board, the AoU insti-
tutional review board, has approved the AoU protocol and 
materials. Deidentified data were shared through the AoU 
researcher workbench (www.allofus.nih.gov) for analyses 
through institutional data use agreements. All analyses will 
be conducted within a secure informatic workspace provided 
by the National Institutes of Health that allows users to access 
and analyse a centralised version of the AoU data.

‘HIV and COVID-19’ project in the AoU researcher workbench 
platform
AoU research programme data in its final format, after 
harmonisation and refinement, are referred to as a 
curated dataset. Three different levels of information are 
available: Public tier, registered tier and controlled tier. 
We have obtained access to data at the registered tier. 
Following the AoU instructions, we have created a project 

entitled ‘HIV and COVID-19’ in the AoU researcher 
workbench platform. This is a cloud-based platform that 
enables researchers to cluster participants into cohorts, 
select certain health information within each cohort, and 
perform direct analysis and query using R (R Foundation 
for Statistical Computing) and Python V.3.0 (Python Soft-
ware Foundation) programming languages within Jupyter 
Notebooks. The purpose of our workspace is twofold: (1) 
cohort building: to determine the data inclusion and 
exclusion criteria for HIV cohort building (computable 
phenotype) and create and maintain a set of scripts to 
execute the computable phenotype and extract relevant 
data for this cohort and (2) model building: to examine 
the impact of COVID-19 on HIV and its potential predic-
tors and build the prediction model for viral suppression.

Cohort building and data extraction in AoU
In biomedical research, a phenotype is an observable 
manifestation of a clinical entity (eg, a disease). Comput-
able phenotypes are essential for analysing large clinical 
observational data. The development process for comput-
able phenotypes occurs iteratively by identifying and 
refining concepts from controlled healthcare terminolo-
gies (also known as ‘concept sets’). The concept/disease 
condition (eg, diabetes) is the base instance, combined 
with all possible feature representations in data (eg, Inter-
national Classification of Diseases codes (ICD) codes 
for diabetes+insulin; or ICD codes for diabetes+haemo-
globin A1c). The combination of all possible ‘concept/s’ 
and feature/logic representations of the concept (AND, 
OR, NOT) allows the computer to interpret or determine 

Figure 1  Multilevel factors from multidomains in All of Us programme.

www.allofus.nih.gov
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the right computable phenotype automatically for further 
analyses.14 Given our understanding of disease signs and 
symptoms, we will define computable phenotypes that 
can accurately identify both the study cohort (eg, HIV 
population) and relevant variables (eg, COVID-19 infec-
tion) from EHR data and survey data (figure 2). The EHR 
data derived from captured data including billing codes 
and encounter records will be used to cluster participants 
into disease cohorts based on Systemised Nomenclature 
of Medicine-Clinical Terms diagnosis codes (the stan-
dardised vocabulary in AoU sourced from corresponding 
ICD). In contrast, other data will be extracted from survey 
responses. Examples of the surveys can be found through 
the publicly available Data Browser.15 We will map survey 
and EHR data to the OMOP common data model V.5.2. 

We will extract data from the EHR domains and available 
survey results via the AoU researcher workbench.

HIV cohort
To build the HIV cohort, we will adopt the existing inclu-
sion criteria and code sets from several organisations—for 
example, PCORnet,16 OHDSI,17 LOINC,18 etc into a ‘best-
of-breed’ phenotype and extract data from both EHR 
and survey questionnaires. The best-of-breed phenotypic 
characterisation approach helps identify and document 
diversity within and between distinct traits of subjects 
(known as ‘breeds’).14 In practice, we apply phenotyping 
algorithms, which map to various domains (eg, condi-
tion domain, drug domain) to best identify individuals 
with a particular clinical entity (‘best of breed’) (eg, HIV 

Figure 2  Flow chart for data extraction and integration.
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infection). In EHR data, we will define HIV by docu-
mentation of any of the following: (1) HIV condition 
(ICD, 9th/10nth Revision (ICD-9/10) diagnostic codes, 
ICD-9/10 procedure codes) in the ‘condition’ domain; 
(2) HIV-related laboratory results (eg, HIV antibody) in 
the ‘Labs &Measurements’ domain or (3) HIV-related 
medications (eg, tenofovir disoproxil) excluding pre-
exposure prophylaxis in the ‘drug Exposures’ domain. 
In the survey data, we will define HIV based on affirma-
tive answers to the following questions: ‘Has a doctor or 
healthcare provider ever told you that you have or had any 
of the following infectious diseases?’ or ‘Are you currently 
prescribed medications and/or receiving treatment for 
HIV/AIDS?’ in the ‘Personal Medical History’ survey. 
Individuals who answered yes to ‘infectious disease condi-
tion: HIV/AIDS’ or ‘HIV/AIDS Currently’ will be counted 
as the HIV population. Patients who meet at least one of 
these inclusion criteria in either EHR data or survey data 
and those who meet all of these inclusion criteria will be 
calculated and compared with other national initiatives to 
develop precision rule-based algorithms for data analysis. 
A template of concept sets19 based on all the above infor-
mation will be built for the HIV cohort (see table 1 for 
summary characteristics).

Note, we estimate the final sample size will be greater 
than 1000 even after we exclude the missing and other 
unknown information.20 As mentioned in Figueroa et 
al, 560 trained samples are adequate to achieve a mean 
average and root mean squared error below 0.01 based 
on supervised learning.21 That means using 60% of data 
for training the model should be adequate for supervised 
learning. We will use the remaining data for testing and 
validation (see figure 3).

COVID-19 cohort
AoU study participants in all 50 US states have provided 
blood specimens since January 2020 for COVID-19 

testing. Similar to defining the HIV population, 
COVID-19 patients will be identified using EHR data 
and survey data. In the EHR data, the COVID-19 positive 
cases will be defined as patients with any encounter on or 
after 1 January 2020 with either: (1) a positive result for 
one of a set of a priori defined SARS-CoV-2 laboratory 
tests (SARS-CoV-2 immunoglobulin G (IgG) antibodies 
with the Abbott Architect SARS-CoV-2 IgG ELISA and 
the EUROIMMUN SARS-CoV-2 ELISA in a sequential 
testing algorithm). Through March 2020, over 24 000 
samples tested for COVID-19 antibodies and showed high 
sensitivities and specificities (~99%–100%)22; or (2) one 
or more diagnosis codes from the ICD-10 or SNOMED 
tables, or (3) one or more diagnosis codes from ICD-10 
procedure codes. In the survey data, COVID-19 infection 
will be defined by answering affirmatively to the following 
questions: ‘Were you tested for COVID-19?’ and ‘Was 
the test(s) for COVID-19 positive?’ in the ‘COVID-19 
Participant Experience (COPE)’ survey. Individuals 
who answered yes to this question will be considered to 
have potential COVID-19 infection. We will apply similar 
precision rule-based algorithms described in HIV cohort 
building will be developed to ensure the accuracy of the 
cohort definition.

Variable definitions
AoU uses several means to collect longitudinal health 
data, including continuous abstraction of EHR data in 
the form of billing codes, laboratory and medication 
data, radiology reports and narrative content and linkage 
with other data sources.

Viral suppression and other HIV-related factors
The historical VL measure will be extracted from the 
‘Labs &Measurements’ domain. HIV VL will be classi-
fied into: <200 copies/mL (virally suppressed) and ≥200 
copies/mL (incomplete viral suppression) and stratified 

Table 1  Characteristics of under-represented population of people living with HIV in All of US programme data

Characteristics N (%) Characteristics N (%)

Data from EHR and survey Data from survey only

Total HIV population 4794 (100%) Sex/gender (n=1080)

Age  � LGBTQIA+, no 291 (26.94)

 � <75 years 4619 (96.35)  � LGBTQIA+, yes 789 (73.06)

 � ≥75 years 175 (3.65) Education (n=1067)

Race  � High school degree or more 977 (90.46)

 � White 1232 (25.70)  � Less than a high school degree 90 (8.33)

 � Black or African American 2448 (51.06) Household Income (n=980)

 � Asian 29 (0.60)  � >US$35 000 621 (63.37)

 � Other/unknown 1085 (22.63)  � <US$35 000 359 (36.63)

COVID-19 infection Physical disability (n=1069)

 � Yes 402 (8.39)  � No 958 (89.62)

 � No 4392 (91.61)  � Yes 111 (10.38)

EHR, electronic health record; LGBTQIA+, Gay, Lesbian, Bisexual, Transgender, Queer, Intersex, and Asexual people collectively.
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by the COVID-19 status/time periods. The absolute CD4 
cell count will be treated as a continuous variable and 
a categorical variable (categorised into <200, 200–500, 
>500 cells/mm3). The patients’ antiretroviral therapy 
records will be extracted from drug exposure domain 
in EHR data and the responses from personal medical 
history survey data. The available ART medications will be 
examined as (1) any drug use, (2) drug classes (eg, NRTI-
based, NNRTI-based, PI-based or multiclass regimen with 
three or more classes of ART) or (3) specific drug regi-
mens (eg, tenofovir disoproxil) as appropriate depending 
on data availability.

Baseline health surveys
Initial surveys include information on sociodemographic 
characteristics, overall health, lifestyle and substance use 
(smoking and alcohol use), with subsequent modules 
covering personal and family medical history and access 
to healthcare. Per-protocol measurements include blood 
pressure, heart rate, weight, height, body mass index and 
hip and waist circumferences.

COPE survey for COVID-19
The COPE survey asked questions about the impact of 
COVID-19 on participants’ mental health, well-being and 
everyday life. The survey was deployed six times between 
May 2020 and February 2021 to help researchers under-
stand how COVID-19 impacted participants over time. 
The COPE survey includes information on COVID-19-
related symptoms, self-reported perception of COVID-19 
infection, COVID-19 testing, COVID-19 related impact, 
such as anxiety and mood disorders, general well-being, 
social support status, stress, physical activity, loneliness, 
substance use, resilience and discrimination. In addition, 

it also collects the health basics include pregnancy status, 
health insurance coverage and marital status. Through 
June 2022, over 99 000 participants completed the COPE 
survey 1 or more times, with over 1000 PLWH represented.

Medical history
The AoU medical history survey includes a self-report 
questionnaire about diagnoses of over 150 medical 
conditions organised into 12 disease categories.23 We 
will use a combination of self-reported responses to the 
medical history survey and data from diagnosis codes in 
the EHR data to ascertain the presence of all comorbidi-
ties, such as cardiovascular risk factors, including hyper-
tension (OMOP code 316866), hyperlipidaemia (OMOP 
code 432867) and type 2 diabetes mellitus (OMOP 
code 201826), and use self-reported data from the life-
style survey to ascertain smoking status. Individuals with 
comorbidities will also be defined by answering affirma-
tively to either of the following questions: ‘Has a doctor 
or healthcare provider ever told you that you have or 
had any of the following circulatory conditions/respira-
tory conditions/ cancers/digestive conditions/kidney 
conditions?’ In addition, we will use data from ‘physical 
measurements’ to calculate the body mass index.

Healthcare utilisation
The healthcare utilisation information is extracted from 
the ‘healthcare access and utilisation’ survey data. It 
includes health insurance, type of healthcare facility visits 
(eg, urgent care, emergency room), healthcare specialties 
(eg, nurse practitioner, physician assistant, mental health 
professional), frequency of healthcare visits, patient–
provider communication, structural barriers of health-
care access (eg, lack of transportation, long distance to 

Figure 3  Machine learning pipeline and relative data flow.
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a healthcare provider, the affordance of medical cost), 
compromised adherence due to unaffordability, and stig-
matised environment.

Statistical analysis
Association analysis
We will conduct the data cleaning and management for 
the integrated analysis and then conduct the correlation 
analysis. The distributions of demographic variables for 
the HIV cohort with respect to the under-represented 
population will be summarised (mean, SD, counts) and 
compared using the t-test, analysis of variance test or χ2 
test as appropriate. If test assumptions are not satisfied, 
non-parametric tests (Wilcoxon rank test and Kruskal-
Wallis test) will be applied. The box plot and heat map 
will depict the difference between continuous measures 
over time, and a bar graph will be applied to the cate-
gorical measures. We will employ generalised linear 
mixed regression with different prespecified correlation 
matrix as appropriate such as autoregression covariance 
matrices and choose the best model based on Quasi infor-
mation criterion (QIC) to evaluate the differences in the 
probability of viral suppression between prepandemic 
and peripandemic periods (using March 2020 as a time 
cut-off, when the first COVID-19 case was reported in 
the USA) adjusting for key demographic characteristics 
(eg, under-represented population) and other variables. 
The model will be built sequentially by (1) including the 
characteristics of under-represented individuals only for 
the crude model, (2) adding the COVID-19 indicators, 
(3) the interaction between the under-represented popu-
lation and COVID-19 status and (4) stepwise selection 
of all variables. The lasso regression will be used if the 
standard stepwise selection cannot work due to the high 
dimension of risk factors. The best model will be selected 
based on Akaike Information Criterion (AIC) or Bayesian 
Information Criterion (BIC) criteria. Depending on the 
sample size of subset of interest in the integrated data, 
we could (1) conduct a stratified analysis for each under-
represented population using similar generalised linear 
mixed regression models and (2) add the interaction term 
between under-represented population and COVID-19 
pandemic indicator. We will use forest plots will be used 
to display the regression results.

Personalised prediction model
ML techniques predominantly target the prediction 
performance of single-subject outcomes. Given the 
multiple input features, such as sex orientation, antiret-
roviral therapy, comorbidities, healthcare utilisation, HIV 
markers, COVID-19 infection/interruption and other 
socialenvironmental factors, several most common and 
popular supervised ML algorithms will be trained to 
predict viral suppression in the context of the COVID-19 
pandemic, to get the highest achievable prediction 
performance for under-represented populations. We 
will investigate and evaluate the performance of several 

well-known ML algorithms to classify individuals at higher 
risk of virological failure.

ML algorithms
We will split the unique patient IDs into training IDs 
(60%), testing IDs (20%) and validation IDs (20%). The 
training, testing and validation sets will be entries with 
corresponding training IDs, testing IDs and validation 
IDs. The training and testing sets will be used to train 
predictive models, and predictive performance metrics 
will be calculated based on the validation set. More specif-
ically, we will consider the traditional logistic regression 
technique (generalised linear mixed model), tree-based 
classifiers (classification and regression trees, random 
forest,24 decision tree, and eXtreme Gradient Boosting25), 
support vector machine,26 naïve Bayes, and long short-
term memory. The input feature includes all information 
extracted from the integrated dataset. To account for 
time-dependent variables (ie, VL indicators, comorbidi-
ties and substance use), we will consider the time lag for 
a prediction purpose such as 1, 3 and 5 months as appro-
priate. We will apply these seven common ML approaches 
for different time windows accordingly.

For the potential unbiased comparison of each distinct 
learning algorithm, we will use a nested cross-validation27 
workflow followed by final validation on the validation 
data set and then compare seven methods based on their 
predictive accuracy (figure 3). The validation data will be 
used to assess each method based on multiple measures 
using a confusion matrix. Fine-tuning of the specific 
hyperparameters of each algorithm will be performed 
automatically in an inner cross-validation loop (innerCV) 
nested inside an outer cross-validation loop (outerCV), 
which will be used for the proper estimation of each 
predictive model. The best hyperparameters are deter-
mined based on the F measure. To preserve the class ratio 
in each split of the training data, a 10-fold stratified CV 
will be applied to inner and outer loops.

Accuracy evaluation
All the ML algorithms will be compared for prediction 
accuracy based on the validation data set. We will examine 
performance and prediction accuracy using the mean 
precision (positive predictive value), sensitivity (recall, 
true positive rate), specificity (true negative rate), F1 
score, Youden’s index, Area Under the Curve (AUC) and 
Matthew’s correlation coefficient (MCC). The optimal 
threshold of Youden’s index or AUC can be determined 
through sensitivity, specificity and MCC. Data with high 
Youden’s index or AUC values near 1 indicate a high 
chance of correct classification, whereas low Youden’s 
index and AUC values of models near 0 indicate a higher 
probability of making incorrect classifications. Plans for 
external validation include using a comprehensive state-
wide population database of all PLWH in South Carolina. 
Second, we will also leverage a patient engagement studio 
specific for HIV to validate findings with PLWH and HIV 
care providers.
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Patient and public involvement
None.

ETHICS AND DISSEMINATION
The institutional review boards approved the study 
at the University of South Carolina (Pro00124806) as 
a Non-Human Subject study on 26 October 2022. A 
deeper understanding of the impact of the pandemic 
on viral suppression among under-represented 
PLWH populations is essential to promote health 
equity and better direct clinical management and 
guideline development. The proposed personalised 
viral suppression prediction can provide data-driven 
evidence on tailored HIV treatment strategies for 
different under-represented populations, particularly 
during unexpected interruptions like the COVID-19 
pandemic. Thus, the results could facilitate the clin-
ical identification of PLWH among under-represented 
populations with poor viral control, provide them 
with tailored HIV care management, and eventually 
serve towards EtHE in the USA.

We will publish the findings in peer-reviewed 
scientific journals and present the study findings at 
national and international professional conferences 
and through appropriate social media outlets. We will 
capitalise on social media and professional networks 
that can increase the reach and accessibility of find-
ings, such as open-access publications, webinars, files 
and videos available on websites and publicly avail-
able channels (eg, YouTube), to increase the visibility 
and impact of the scientific publications and presen-
tations. The dissemination efforts of this project will 
extend beyond the scientific arena and also target 
our stakeholders in the healthcare system and policy-
makers in the USA at local (SC Department of Health 
and Environmental Control (DHEC), Prisma Health) 
and national levels (CDC) through various policy 
forums, policy papers and special presentations.
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