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This paper covers similarity analyses, a subset of multivariate pattern analysis techniques that are based on similarity spaces defined
by multivariate patterns. These techniques offer several advantages and complement other methods for brain data analyses, as
they allow for comparison of representational structure across individuals, brain regions, and data acquisition methods. Particular
attention is paid to multidimensional scaling and related approaches that yield spatial representations or provide methods for
characterizing individual differences. We highlight unique contributions of these methods by reviewing recent applications to
functional magnetic resonance imaging data and emphasize areas of caution in applying and interpreting similarity analysis
methods.

1. Introduction

Researchers who engage in neuroimaging methods face
many daunting challenges associated with the vastness and
complexity of the data gathered in even a modest exper-
iment with few participants. These data can be analyzed
at several different levels, each of which may serve a dif-
ferent theoretical purpose. Recent methodological advances
in multivariate pattern analyses (MVPA) have shifted the
focus from examining the responses of individual voxels
to examining patterns of neural activity associated with
different cognitive processes and mental representations (for
reviews of MVPA approaches, see [1–4]). This paper covers
a subset of MVPA techniques that are based on similarity
spaces defined by multivariate patterns. These methods,
which includemultidimensional scaling and representational
similarity analyses, have been gaining increasing popularity
in the neuroimaging literature. Applications of thesemethods
range from the examination of the internal representation
of objects (e.g., [5]) to the examination of the functional
connectivity of different brain regions (e.g., [6]).

Similarity based methods are very flexible. A variety
of methods can be used to construct a pairwise similarity
matrix to represent the proximity relationships among the

entities of interest. In fMRI research these entities are often
voxel activation patterns associated with the corresponding
states or cognitive representations elicited by presentation
of different stimuli, tasks, or conditions. Additionally they
may correspond to different brain regions or even individuals
themselves. While many MVPA methods use patterns of
activity to classify different states or representations, simi-
larity based methods examine the relationships among those
patterns to make inferences about relationships in the data
at the neural, cognitive, or behavioral levels of analysis.
These methods provide valuable insights into processes and
representations that may be inferred from the data. They
have received a considerable interest in recent neuroimaging
literature, as seen from numerous applications, as well as
methodological advances [7–10]. For example, Kriegeskorte
and colleagues [7] have proposed representational similarity
analysis (RSA) as a framework for comparing activity-pattern
dissimilarity matrices generated by different data gathering
methods, such as behavioral and neuroimaging. Some of the
advantages of these analytic methods have been discussed by
Connolly et al. [11]. The goals of this paper are to introduce
similarity analyses to the broader neuroimaging commu-
nity, highlight the advantages of abstracting from activation
patterns to the similarity structure among these patterns,
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and illustrate the utility of these techniques by reviewing
recent applications. We will focus on fMRI data, although
the methods are equally applicable to other neuroimaging
modalities as well, such as MEG or EEG.

Similarity analyses have a long history of wide-ranging
applications in the sciences. For example, multidimensional
scaling (MDS) has been used to visualize data in such
diverse fields as psychology, biology, geography, marketing,
sociology, physics, and political science. Many applications
in psychology have been directed toward understanding
perceptual and conceptual representations and processes
associated with interobject similarity (e.g., [12–15]). An
advantage of similarity analyses is that they can take place
at many different levels. For example, neural representations
may be compared through the analysis of differences between
neural activation patterns [16].More broadly, decoding across
individuals may be considered to take place within a shared
similarity space, with commonalities and differences in the
similarity matrix of each individual used as input for further
analysis [9]. While the focus of visualization techniques,
such as MDS, is primarily to derive a spatial representation
of entities being compared (e.g., stimuli, states, and neural
regions), other techniques, such as RSA, can provide a
comparison across brain-activity measurements, behavioral
measurements, physical measurements, and computational
modeling at a level of dissimilarity matrices [7]. Thus,
these methods are both flexible and general. We begin with
outlining the advantages of similarity analyses. We then
discuss the data used with these techniques and describe two
multivariate methods for visualization of similarity structure:
multidimensional scaling and cluster analysis. We conclude
by reviewing current applications of similarity analyses in
neuroimaging.

2. Similarity Analyses

2.1. Advantages. When used in conjunction with MVPA
methods, the examination of similarity relationships offers
several advantages over simply focusing on activation pat-
terns of conditions directly. Analyzing the similarity structure
of activation patterns allows one to evaluate hypotheses with-
out specifying brain regions or locations [7, 17]. Moreover,
the individuals’ data are compared at the level of similarity
matrices generated from response patterns, thus allowing
for different spatial correspondences of individual patterns
as well as different number of variables (e.g., voxels) per
individual. An additional advantage is that these methods
do not require spatial normalization of the individual’s data
[1, 9, 10, 18].The similarity matrices can be directly compared
across people, brain regions and data collection methods.

The flexibility of similarity based methods allows for
comparison of internal representations derived from fMRI
data to those based on behavioral responses, computation,
or physical characteristics of stimuli. These comparisons can
ground hypotheses about neural representations [1] and form
the basis of RSA [7]. Furthermore, these methods allow
for comparison of similarity matrices across individuals to
examine the consistency of internal representations [1, 10].

The construction of similarity measures of activation
patterns between conditions, instead of distributed patterns
themselves, has been successfully used for object decoding
across individuals [9]. In cases when assumptions of additiv-
ity and linearity are not met, similarity based methods still
provide for comparisons based strictly on ordinal relation-
ships. Additionally, examination of similarity structure allows
for abstract depiction of representations using multivariate
techniques such asMDS and cluster analysis.Thus, similarity
analyses are flexible and can be incorporated into many
different types of analyses as well as used for comparisons
across people, brain regions, and data collection methods.

2.2. Data. We will refer to the entities under investigation
as objects, for consistency with the multidimensional scaling
literature. For example, objects can refer to stimuli, brain
regions, or individuals. Similarity analyses focus on the
object-by-object matrix of proximities, a generic term that
refers to either similarity or dissimilarity. The 𝑖𝑗th cell of
the proximity matrix is a proximity value for the pair of
objects 𝑖 and 𝑗. For behavioral data, proximities can be either
collected directly or derived. However, for neuroimaging
data, proximities among pairs of objects are typically derived
from comparing patterns of pairwise brain activity. When
activity patterns match, distance is minimal, and similarity
is maximal. The degree of match is often measured by simple
correlation. An alternative method for computing proximity
between objects is to use confusability derived from clas-
sification models. We begin by discussing the formation of
multivoxel patterns.

2.2.1. Multivoxel Patterns. Each object can be represented by
a multivoxel pattern of brain activity values. These patterns
of activity can be viewed as points in a multidimensional
space with dimensionality equaling the number of voxels.
Multivoxel patterns of activity can be either estimated or
extracted from neuroimaging data. The reader may benefit
from general discussions of data used for MVPA [19, 20].
Functional activity corresponding to a single object for each
voxel can be estimated using general linear modeling (e.g.,
[21]). In that case the pattern of activity for each object will
consist of beta values.The advantages of this approach are the
ability to include nuisance regressors into the model and to
dealwith overlapping hemodynamic responses. Alternatively,
in cases when the trials are minimally overlapping, the
pattern of activity can be formed by single or temporally
averaged normalized signal intensity values (e.g., [10, 22–28]).

2.2.2. Feature Selection. Once the multivoxel activity pattern
has been abstracted from the data, one has to decide which
voxels to include in the analysis. The total number of
voxels is typically large, and inclusion of voxels that are not
relevant introduces noise that will obscure the systematic
relationships in the data. There are several possibilities,
and a particular choice largely depends on the application
area. Analyses often focus on theoretically motivated regions
of interest (ROI) and may additionally be constrained by
further criteria. For example, Kriegeskorte and colleagues [21]
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examined object representations in inferior temporal cortex
with an additional feature selection based on visual object
responses from an independent data set. Other approaches
have been to restrict the analyses to gray matter voxels [10] or
to those voxels whose activation exceeds a certain threshold
not related to the contrast of interest [5]. Another possibility is
to limit the data to a smaller number of principal components,
relative to the number of voxels. It is critical that voxel
selection criteria do not bias the results; otherwise the results
may simply be an artifact of the selection process. Once
selection has taken place, each object is represented by the
multivoxel pattern of activity, and pairwise proximity values
can be computed.

2.2.3. Proximities. There are several ways to measure prox-
imities between pairs of objects. Generally, measures of
dissimilarity (e.g., distances) are used to compare items, and
measures of similarity (e.g., correlation) are used to compare
variables. Proximities for each pair of objects are organized
into a square matrix of proximities. A proximity matrix
is assumed to be symmetric with minimum distances (or
maximum similarities) on the diagonal. When proximities
are calculated from patterns of activities, these assumptions
generally hold.

In summary, proximities are easily computed with neu-
roimaging data based on correspondence between pairwise
activation patterns. One difficulty lies in the selection of
relevant input variables (i.e., voxels), as the inclusion of
large numbers of irrelevant variables will typically mean that
relevant proximities are obscured by noise. Extreme caution
should be exercised in choosing unbiased variable selection
criteria.

In the neuroimaging literature, there are examples of
proximity matrices created from activation patterns or con-
fusability patterns. Proximity for a pair of objects has been
defined as pairwise Euclidean distances [5, 6, 29], correlation
distances, computed as one minus the Pearson correlation
[7, 30], oneminus the absolute value of the partial correlation
[31], as well as Pearson correlation [9, 32–34] computed
between activation patterns for pairs of objects. Other
researchers have used the absolute difference of responses
between conditions [35] or the squared deviation of responses
[36]. Proximity matrices can also be constructed from con-
fusability patterns generated from classification models. For
example, several studies that examined classification between
objects have used the information based on the frequency of
correct andmisclassification results [1, 29, 36–38]. In a similar
vein, Greenstein et al. [39] defined the proximity between
participants by how often they were classified to the same
group. Shinkareva et al. [22] compared brain regions in terms
of the confusion patterns based on the most likely prediction
of the classifier for object classification.

2.3. Direct Comparison of Similarity Structures. Objects ×
objects proximity matrices can be derived from many differ-
ent sources. For example, they may correspond to different
brain regions, individuals, or data collection methods. The
relatedness of two proximity matrices can be evaluated with

a correlation coefficient and tested by randomization [7].The
rows and columns of one of the matrices can be permuted,
and the correlation can be recomputed.The procedure can be
repeated a large number of times, simulating the distribution
of the correlation coefficient under the null hypothesis of
no relationship between the two matrices. The observed
correlation coefficient can then be compared to the permuta-
tion distribution of correlation coefficients. For readings on
additional tests for comparison of correlation matrices and
their elements the reader is referred to Steiger [40].

3. Visualization of Similarity Structure

We discuss two sets of exploratory multivariate techniques
that are commonly used in neuroimaging applications for
visualization of similarity structure, multidimensional scal-
ing, and cluster analysis.

3.1. MDS. Multidimensional scaling is a set of techniques
for analysis of proximities (similarities or dissimilarities)
that reveals structure and facilitates visualization of high
dimensional data. MDS has a long history in psychology
and neuroscience and has been used extensively for ana-
lyzing behaviorally derived data (e.g., [41]) and single-cell
recordings data (e.g., [42–47]). Multidimensional scaling
seeks to find a lower dimensional representation for a set
of 𝑛 objects (e.g., stimuli, brain regions, individuals, etc.) by
representing the interobject proximities as distances in some
lower dimensional space. We give a brief account of MDS.
There are a number of good references that provide a more
in-depth overview of MDS for the interested reader [48–50].

Assume that a measure of proximity (𝑝
𝑖𝑗
) is given for

every pair (𝑖, 𝑗) of 𝑛 objects.The proximity matrix is assumed
to be symmetric with nonnegative dissimilarity values. Thus
for 𝑛 objects there are 𝑛(𝑛 − 1)/2 proximities. Let 𝑋 be an
𝑚-dimensional configuration of objects, such that 𝑚 < 𝑛.
The mapping from proximities to distances is accomplished
through a representation function,𝑓, which specifies how the
proximities should be related to distances, 𝑓 : 𝑝

𝑖𝑗
→ 𝑑
𝑖𝑗
(𝑋),

where the distances (in an Euclidean model) are computed
as 𝑑
𝑖𝑗
(𝑋) = [∑

𝑚

𝑎=1
(𝑥
𝑖𝑎
− 𝑥
𝑗𝑎
)
2
]
1/2. It is a special case of a

general distance measure, a Minkowski metric, defined as
𝑑
𝑖𝑗
(𝑋) = [∑

𝑚

𝑎=1
(𝑥
𝑖𝑎
− 𝑥
𝑗𝑎
)
𝑘
]
1/𝑘

. For 𝑘 = 1, 𝑑
𝑖𝑗
(𝑋) measures

the city-block distance in 𝑚 dimensions, and for 𝑘 = 2,
𝑑
𝑖𝑗
(𝑋) measures Euclidean distance in 𝑚 dimensions. In

general, choice of 𝑘 changes the weight for larger and smaller
differences.When 𝑘 is 1, the spatial solution cannot be rotated
without changing underlying distances. It has been shown
that perceived similarities for stimuli that are not perceptually
analyzed into separate features conform with a Euclidean
metric, while perceived similarities for stimuli that vary along
perceptually distinct dimensions depend on subject’s state of
attention and are better described by a city-block metric [51].
ForMDS the Euclideanmetric is often chosen as the solutions
that are robust andnot as limited by problems of localminima
[52, 53].

MDS attempts to find a configuration 𝑋 that satisfies 𝑓
as closely as possible. The choice of 𝑓 specifies the MDS
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model. In metric MDS the dissimilarity data are assumed to
be measured on a ratio or interval scale. In the behavioral
literature, metric MDS is often used to determine starting
values forminimizing distances; however, it is rarely used as a
final model because the assumption of metric data is typically
not satisfied. Instead, the most common assumption is that
proximities are measured on an ordinal scale. The rank order
of proximities between objects can be used to determine
the dimensionality of the space and metric configuration of
the points representing the objects [54, 55], referred to as
nonmetric MDS. While proximities are assumed to only be
ordinal, the resulting distances are assumed to be measured
at a ratio level.

Determining the MDS solution is typically an iterative
process in which the badness-of-fit measure for the MDS
representation, called stress, is minimized. The objective
function that is minimized is a normed sum-of-squares of
representation errors, 𝑒

𝑖𝑗
= 𝑓(𝑝

𝑖𝑗
) − 𝑑
𝑖𝑗
(𝑋). A useful tool for

visualizing the fit of the model is the Shepard diagram, which
plots proximities 𝑝

𝑖𝑗
against the corresponding distances

𝑑
𝑖𝑗
and modeled distances �̂�

𝑖𝑗
. When the scatterplot in a

Shepard diagram is well approximated by a linear function,
then metric MDS is appropriate. When Euclidean distance
is assumed, the MDS solution is indeterminate with respect
to translation, rotation, and reflection. For interpretation
purposes, properties of the objects measured on unidimen-
sional scales may be regressed onto the solution and plotted
as vectors in the MDS space [48]. To compare solutions, a
Procrustes rotation may be applied to match the orientation
of the configuration as closely as possible to a fixed design
matrix without distorting distance information [56].

3.1.1. Assessing Fit and Selecting the Number of Dimensions.
There is no statistical test for selecting the correct number of
dimensions. Typically researchers conduct the MDS analysis
for several successive values of the number of dimensions
and select the solution that seems most appropriate. A plot
of dimensionality versus fit, called a scree plot, is useful in
selecting the appropriate number of dimensions when there
is a clear elbow. Increasing the number of dimensions reduces
stress values. Choosing too many dimensions results in over
fitting the data, so that the configuration reflects unstable
influences of noise. For 𝑛 objects, zero stress value can be
obtained for𝑚 ≥ 𝑛 − 1 dimensions; however, this solution is
undesirable. On the other hand, choosing too few dimensions
may result in the true structure being distorted. Ultimately,
the interpretability of dimensions is an important factor in
deciding on the number of dimensions, as uninterpretable
dimensions are not useful.

3.1.2. Number of Stimuli. There are a number of factors to
consider in deciding on the number of stimuli to use in a
prospective study or the appropriateness of using MDS on
a given data set. The number of fitted dimensions depends
on the number of stimuli, as a perfect solution may be
achieved with 𝑛 − 1 dimensions. For instance, four points
may be perfectly represented in three dimensions. When
distances are inferred from ordinal relationships, a relatively

large number of stimuli are required, so that accurate distance
information may be derived. Finally, it is useful to have
multiple stimuli of the same type to demonstrate that these
fall in similar locations within the MDS space, helping to
gauge the reliability of the inferred representation.

3.1.3. MDS with Multiple Matrices. The previous basic algo-
rithm was presented for a single matrix of proximities (two-
way data: objects × objects). However, most neuroimag-
ing data is collected for a group of individuals, and so a
methodological question arises concerning how to aggregate
individual proximity matrices into a single analysis. If little
commonality exists between individual proximity matrices,
aggregating the data is not meaningful, as the average will
not represent any of the constituents. On the other extreme,
if the differences between individual proximity matrices are
not systematic, interpreting the differences is notmeaningful.
Most data sets, however, lie between these two extremes. Each
proximity matrix can be analyzed separately, although it is
difficult to summarize the results for a group of individuals or
compare the results across groups. Moreover, additional data
may be needed to obtain stable results for an individual [57].
Another approach is to analyze the mean proximity matrix
and to generalize the results to an “average” individual (e.g.,
[31]). This approach is straightforward, but the results may
not accurately capture the consistent relationships shared by
individuals, and all individual differences will be lost [57].

Several algorithms have been proposed to simultane-
ously analyze multiple proximity matrices (three-way data:
objects × objects × individuals). These approaches offer
two key advantages over analyzing each proximity matrix
individually or averaging thematrices together. First, in cases
when individual proximity matrices are noisy, these methods
take advantage of commonalities among individuals. Second,
group space provides a useful basis for comparison of
individuals [58]. We review two sets of techniques that have
been extensively used in neuroimaging literature: individual
differences scaling [25, 33–35, 59, 60], an iterative set of tech-
niques, and STATIS [1, 10, 22, 61–63], an eigen decomposition
based set of techniques.

The most popular algorithm for individual differences
scaling is INDSCAL [58]. It assumes that some number of
dimensions, 𝑚, is common to all individuals. Individuals
are assumed to differentially weight the several dimen-
sions of a common space, such that the effective distance
between objects 𝑖 and 𝑗 for individual 𝑠 is 𝑑

𝑖𝑗𝑠
(𝑋) =

[∑
𝑚

𝑎=1
𝑤
𝑠𝑎
(𝑥
𝑖𝑎
− 𝑥
𝑗𝑎
)
2
]
1/2, where 𝑤

𝑠𝑎
is the weight of dimen-

sion 𝑎 for individual 𝑠. Thus the weights represent the
relative importance that each individual places on a given
dimension. Nonlinear iterative least squares are used to
obtain a metric configuration. Unlike the MDS solution
based on a single proximity matrix discussed previously, the
INDSCAL solution is not rotation invariant.Theoutput of the
algorithm is an objects-by-dimensions matrix of coordinates
defining the group space and participants-by-dimensions
matrix of weights defining individual spaces.The group space
represents an individual that places equal importance on
all the dimensions. In cases where groups of individuals all
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have different patterns of weights, the group space is merely
a compromise configuration and may not be representative
of any of the individual matrices. The model accounts for
individual differences in terms of differential salience of
a common set of dimensions. Each individual’s space is
estimated by weighting a common set of dimensions in the
group space. Because INDSCAL is a dimensional model,
it is inappropriate for clustered data, where values do not
differ continuously along a dimension. One limitation of the
approach is that individual spaces in INDSCAL are related by
linear transformation of a common space along the specified
dimensions, and nonlinear distortions of a common space
may require too many dimensions [58].

STATIS, which stands for Structuration des Tableaux à
Trois Indices de la Statistique, is a generalization of prin-
cipal component analysis for multiple data matrices [64].
Individuals’ data are combined into an optimum weighted
matrix called a compromise. The weights of individuals’ data
are chosen, such that the compromise is as representative
of all the data as possible. Thus, the compromise matrix
expresses the agreement among the interobject distances
across individuals and is constructed, such that individuals
with configurations of objects similar to those of other
individuals are assigned larger weights, and individuals with
configurations of objects most different from those of others
are assigned lower weights. As a consequence, unusual or
atypical observations have less influence on the result. The
compromise matrix is further analyzed by the eigen decom-
position to reveal structure that is common across indi-
viduals. Individual data can be projected into the common
compromise space. STATIS works with individual objects-
by-variables data matrices. COVSTATIS and DISTATIS are
generalizations of STATIS for objects-by-objects covariance
and distance matrices, respectively. Thus, like individual
differences scaling, STATIS indexes the relative contribution
of individuals to a common configuration, but it does so
by differentially weighting individual matrices instead of
fitting differential dimension weights across individuals. For
in-depth treatment of the STATIS procedure the reader is
referred to Abdi and Valentin [65] and Abdi and Williams
[8].

3.2. Cluster analysis. Cluster analysis seeks to discover nat-
ural nonoverlapping groupings of objects. Hierarchical clus-
tering techniques are perhaps most popular in neuroimaging
applications for similarity structure visualization. Hierar-
chical clustering techniques produce a nested sequence of
partitions and can be either agglomerative or divisive. In
agglomerative hierarchical clustering each object starts out
in its own group. In a series of successive mergers similar
objects get grouped together until finally all objects are
grouped together. Divisive hierarchical methods operate in
an opposite direction. Types of hierarchical clustering vary
on how the similarity is defined for groups of objects.
For instance, average linkage computes an average distance,
complete linkage computes maximum distance, and single
linkage computes minimum distance between clusters. Once
objects have been grouped together in hierarchical clustering,

they cannot be regrouped. Hierarchical clustering results
are visualized with a dendrogram, a tree diagram showing
successive groupings of the objects. Selecting a partition is
thus equivalent to cutting the dendrogram at a given height.
The clustering results depend both on choice of proximity and
linkage methods. A challenging decision in cluster analysis is
to select a number of clusters and to check the validity of the
solution. For a detailed treatment of the cluster analysis the
reader is referred to Johnson and Wichern [66], Arabie et al.
[67], and Landau and Ster [68].

4. Applications

We will next review the applications of similarity analyses
in fMRI literature. Both MDS and cluster analysis have
been used as exploratory tools for visualization of similarity
structure derived from fMRIdata. Additionally, RSAhas been
used to test hypothesized relationships between similarity
matrices. We will group the studies based on entities under
investigation: stimuli (focusing on internal representations),
individuals, and brain regions.

4.1. Similarity of Internal Representations. Object representa-
tion in the brain has been extensively studied with the aid
of similarity analyses of single-cell recordings data (e.g., [42–
47]) and, to a lesser extent, fMRI data [69] in monkeys. Here,
we review the role of similarity analyses in examining the
internal representation of objects from fMRI data in humans.
Edelman and colleagues [5] used MDS to visualize the inter-
nal representation of objects based on distributed patterns
of voxel activity in the human visual cortex. They found a
close association between the representational space of object
categories derived from fMRI data and that derived from
perceptual similarity judgments. Furthermore, the internal
representation of shape using novel objects derived from
fMRI data in the lateral occipital complex (LOC) was shown
to be similar to the subject perceptual similarity space but less
so to the pixelwise physical space [33]. The representational
similarity in posterior LOC was found to correlate with
the physical stimulus similarity, while the anterior LOC
correlated with the perceived similarity [70]. Such physical-
to-perceptual shifts along the ventral visual pathwaywere also
found in the visual perception of different texture types [29].
Thus, by examining similarity structure derived from neural
data in different regions, the resulting configurations could
be compared to similarity structure derived from physical
stimuli (pixelwise space) and similarity structure derived
from perceptual judgments (perceptual space) to show how
these representations were captured by different areas in the
brain.

Object representation across different tasks has been
examined by Tzagarakis et al. [35] who used individual differ-
ences scaling withmultiple cortical areas to investigate neural
mechanisms associated with viewing and copying geometric
shapes in the absence of visual feedback. Using predefined
features, the study identified different perceptual and motor
features of geometric shapes that were associated with the
dimensions in MDS solutions for viewing and copying tasks.
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The extent to which each cortical area contributed to the
dimensions could also be identified. In this investigation
of object representation, INDSCAL was used to compare
representations across different brain regions.

Representation of objects that come from different cat-
egories has also been examined. O’Toole et al. [1] used
the DISTATIS method on fMRI data in the ventrotemporal
cortex collected while viewing pictures from different object
categories [71] and have showed that the internal representa-
tion of objects derived from fMRI data is consistent across
participants and is similar to physical space. Shinkareva
et al. [10] used STATIS to examine the commonality of
object representation across individuals and have showed
consistency of separation for tools and dwellings categories
across individuals. Thus, in the object domain, dimensional
visualization techniques have proven useful in comparing
representations across individuals.

In an investigation of category structure of objects, Op de
Beeck et al. [34] used MDS to visualize the perceived shape
similarity and the neural representational similarity spaces
for six subordinate categories of objects from human faces,
human bodies, and buildings. Results showed that although
the hand images were distinct from other categories in the
perceived shape space, two clusters of human body/head
and buildings were identified in the neural space. Similarity
of neural activity patterns in various regions in the ventral
visual pathway was found to be correlated with behavioral
similarity ratings on pictures of 18 mammals [36]. Connolly
et al. [30] investigated subordinate relations of objects within
the animate domain in the ventrotemporal cortex and have
shown that patterns of activity reflect the biological classes of
the stimuli. Moreover, the cortical representational similarity
was also correlated with behavioral judgments of biological
similarity of the same stimuli. Converging evidence came
from cluster analysis on the trained classifier for multivoxel
pattern analysis [72]. Cluster analysis on the trained hidden
units of a neural network classifier of eight object categories
revealed distinctions among the eight categories as well
as the distinction between two animate and six inanimate
categories. These results suggest an animate-to-inanimate
gradation represented in the ventral temporal cortex.

Some of the aforementioned studies have used represen-
tational similarity analysis and compared the internal repre-
sentation derived from fMRI data to another representation.
The internal representation of objects derived from fMRI data
has been compared to internal representation derived from
perceptual space [1, 5, 29, 33–35, 70], stimulus parameters
or image-based physical similarity measures [29, 33, 70],
or subjective conceptual similarity ratings [36]. Perhaps
the most elegant application of representational similarity
analysis is an investigation of object representation in inferior
temporal cortex in monkeys and humans showing that the
internal representation of objects is similar across species
[21]. The authors used both multidimensional scaling and
hierarchical cluster analysis to explore whether the inferior
temporal cortex response patterns form clusters correspond-
ing to natural categories for human and monkey, in data
sets collected in independent experiments. They have shown

separation for animate and inanimate classes, as well as faces
for both humans and monkeys.

In addition to object representation studies, MDS has
been used to examine the internal representation of affective
states [25, 73], internal organization of the visual word
form area [74], and categorization tasks [75]. In another
application, Aguirre [76] used the correlations between per-
ceptual and distributed neural similarity matrices in color
perception to illustrate the continuous carry-over design for
fMRI experiments, which was developed for assessing the
neural adaptation effects. In summary, the studies reviewed
in this section illustrate the utility and flexibility of similarity
analysis methods, particularly for investigating representa-
tion of objects linked to measures of neural activity.

4.2. Similarity of Individuals. Similarity analysis techniques
can also be applied to an individuals × individuals proximity
matrix. For example, MDS has been used as part of the
algorithm for assessing group homogeneity [62, 77] and
detecting outliers in fMRI data sets [62]. It has also been
used to visualize proximities between participants based on
mutual information [78] or the frequency of being classified
in the same group as complementary information on the
classification accuracy [39].

4.3. Similarity of Brain Regions. Another application of MDS
focuses on the representational space of cortical areas. In
one of the earlier applications of MDS to neuroimaging
data, Friston et al. [79] examined the representational spaces
of voxelwise connectivity during word generation tasks on
healthy participants and patients with schizophrenia. Results
suggested an abnormal prefrontal-temporal integration in
schizophrenic groups. Resting state connectivity in healthy
participants has been investigated with MDS on a connec-
tivity matrix defined for anatomical regions of interest [31].
An INDSCAL variant was used to examine functionally
connected brain regions in schizophrenia [6] and Asperger’s
Syndrome [59]. Shinkareva et al. [22] compared brain regions
in terms of the confusion patterns based on the most likely
prediction of the classifier for object classification. Hervé
et al. [80] used MDS to visualize the similarity structure
of interregional correlations in a study examining affective
speech comprehension. Multidimensional scaling has also
been used for visualization of coactivation relationships
from meta-analyses [81]. In summary, similarity analysis
techniques are useful in providing a visual representation of
similarity of representations across neural regions.

5. Software

MDS and cluster analysis are implemented in most statis-
tical packages. MATLAB (statistics toolbox), R, SAS, SPSS,
and SYSTAT provide functions for classical and nonmetric
multidimensional scaling and cluster analysis. Individual dif-
ferences scaling is implemented in R with indscal() function
in the SensoMineR package and the smacof package [82].
STATIS is implemented with statis() function in the ade4
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package [83] in R. A highly versatile MATLAB toolbox for
cluster analysis is available from Hubert et al. [84].

6. Summary

Wehave reviewed the advantages and applications of different
methods for examining similarity structures of activation
patterns, along with potential cautions for interpreting these
analyses. Using similarity as a level of analysis allows for
comparison of representational structures across individuals,
brain regions, and data collection methods. These analytic
methods provide useful exploratory visualization tools. More
importantly, used in conjunctionwith othermethods of fMRI
data analysis, similarity analysismethods provide ameans for
testing correspondence between similarity structure derived
from imaging data and that derived from other sources,
such as physical similarity or perceptual similarity. Simi-
larity based methods, representational similarity analysis in
particular, have been instrumental in examining hypotheses
of neural representation of objects through comparison of
internal representations derived from fMRI data to those
derived frombehavioral data and those derived fromphysical
stimulus attributes.
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