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One of the most common neurological disorders is epilepsy, which disturbs the nerve cell activity in the brain, causing seizures.
Electroencephalography (EEG) signals are used to detect epilepsy and are considered standard techniques to diagnose epilepsy
conditions. EEG monitors and records the brain activity of epilepsy patients, and these recordings are used in the diagnosis of
epilepsy. However, extracting the information from the EEG recordings manually for detecting epileptic seizures is a difficult
cumbersome, error-prone, and labor-intensive task. +ese negative attributes of the manual process increase the demand for
implementing an automated model for the seizure detection process, which can classify seizure and nonseizures from EEG signals
to help in the timely identification of epilepsy. Recently, deep learning (DL) andmachine learning (ML) techniques have been used
in the automatic detection of epileptic seizures because of their superior classification abilities. ML and DL algorithms can
accurately classify different seizure conditions from large-scale EEG data and provide appropriate results for neurologists. +is
work presents a feature extraction-based convolutional neural network (CNN) to sense and classify different types of epileptic
seizures from EEG signals. Different features are analyzed to classify seizures via EEG signals. Simulation analysis was managed to
investigate the classification performance of the hybrid CNN-RNN model in terms of different achievement metrics such as
accuracy, precision, recall, f1 score, and false-positive rate. +e results validate the efficacy of the CNN-RNN model for
seizure detection.

1. Introduction

Epilepsy is the most serious and prevalent neurological
disorder [1].+e number of people suffering from epilepsy
has crossed 50 million [2], which is nearly 0.6–0.8% of the
whole population of the globe [3]. +e most common
symptom of epilepsy is the occurrence of epileptic sei-
zures, which can occur regardless of any circumstances
[4].

Electrical signals are used to detect an epileptic seizure.
+e normal amplitudes lie between 10 and 100 μV, and the
seizure patient’s brain signal amplitude lies between 0.5 and
1.5mV [5]. +ere are different types of seizures which in-
clude partial seizures and generalized seizures. Partial Sei-
zure is categorized into a simple-partial seizure and
complex-partial seizure while the generalized seizure is

categorized into a generalized convulsive seizure and gen-
eralized nonconvulsive seizure [6].

Epileptic patients suffer from these highly impulsive
seizures, which often cause severe damage to the nervous
system, such as abnormal behaviors, loss of memory, and
hypersensitivity. +e electroencephalography (EEG) tech-
nique is extensively used to identify epileptic seizures from
EEG recordings. Analysis of EEG signals is very important
in diagnosing neurological disorders such as epilepsy. EEG
monitors record the neural activities of the human brain in
the form of electric signals. +e EEG analyzes the electrical
activities of the brain and generates patterns to classify the
electrical activities as normal or abnormal. In general, EEG
records brain wave patterns, and the signals are collected
using an implanted device such as electrodes, which are
positioned on the scalp. +e collected signals are analyzed
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by the researchers to detect seizures from EEG signals and
to record disease-related information such as type of sei-
zure and frequency of occurrence. However, manual
analysis of EEG signals is a highly complicated and in-
tensive task since it takes many hours for neurologists to
examine the recordings of EEG signals from a single patient
[7, 8]. To overcome the drawbacks of the conventional
process, various researchers have suggested implementing
automated methods for detecting epileptic seizures. One of
the major complexities associated with seizure classifica-
tion is the varying morphology of seizures, which makes
them difficult for neurologists to identify manually. Pre-
vious techniques focus on recognizing different patterns of
neural activities that appear in EEG recordings. However,
these techniques do not provide accurate results if the brain
patterns are complex and unexpected. Additionally,
techniques that are used for dimensionality reduction,
filtration, and feature selection, cannot handle more design
attributes and cannot discriminate against new patterns.
+ese limitations often reduce their performance. Recently,
deep learning (DL) and machine learning (ML) techniques
have been used to overcome the limitations of conventional
techniques. ML and DL algorithms are capable of
extracting relevant information for identifying and clas-
sifying epileptic seizures. Several research works have
validated the potential of ML algorithms in developing
patient-specific models for detecting epileptic seizures
[9–13]. Previously, hand-crafted attributes were employed
to characterize epileptic seizures. With the advancements
in EEG techniques, various researchers have suggested the
application of DL-based models for detecting seizures
[14–17].

Among various DL models, CNNs are used prominently
in classification and object detection tasks [18–21]. +is is
due to the ability of CNN to process complex patterns using
automated preprocessing, feature extraction, and dimen-
sionality reduction. +e superior attributes of CNNs make it
an excellent choice for detecting epileptic seizures and hence
CNNs are incorporated in this work.

+e key contributions of this work can be summarized as
follows:

(i) +is study suggests a CNN-based framework for
detecting epilepsy from EEG signals

(ii) +e proposed work performs feature extraction
where the temporal and frequency domain features
such as LBP, EMD, FFT, and DWTare extracted for
epilepsy detection

(iii) A RNN-CNN classifier is used to recognize data
sequential characteristics and classify different
patterns of EEG signals to detect epilepsy

+e local binary patterns (LBP) feature vector is returned
as a 1-by-N vector of length N, which represents the number
of features. Classification, recognition, and detection use the
local texture information of LBP features.

Using empirical mode decomposition (EMD), intrinsic
mode functions are extracted from the signals. It is used in
finding the local minima and maxima of signals.

+e fast Fourier transform (FFT) is helpful in detecting
the information about frequency from the EEG signals.

A discrete wavelet transforms (DWT) is used in
decomposing the signals into different sets. It is helpful in
finding the evolution of time in frequency.

+e paper is further organized as follows: Section 2
discusses the review of existing literary works related to
seizure detection using automated learning models. Section
3 provides a comprehensive analysis of the proposed
framework, which includes the design experimental pro-
cedure, which includes different stages of feature extraction.
Section 4 details the proposed CNN architecture for clas-
sification. Section 5 presents the results of the simulation,
and Section 6 concludes the paper with prominent research
observations and future scope.

2. Related Works

Several research works have investigated the application of
different detection for categorizing EEG signals to find epi-
leptic seizures [22–26]. Conventional techniques used for
detecting epileptic seizures employ hand-crafted techniques
to extract relevant information from electroencephalogram
signals such as time and frequency domain-related features
[27–29]. +ese features are further used by the classifiers to
categorize different EEG signals. ML and DL-based classifiers
are used predominantly to classify seizures from EEG signals
because of their superior classification and prediction accu-
racy. +ese classifiers use their learning mechanisms to au-
tomate the detection process and thereby allow the automatic
detection of epileptic seizures with maximum accuracy.
Hamad et al.,[30] used a hybrid approach known as GWO-
SVM, which is composed of grey wolf optimizer (GWO)
enhanced support vector machines (SVMs) for classification.
+e appropriate features from EEG signals were extracted
using a discrete wavelet transform (DWT) technique, and the
extracted features were used to train the SVM with a radial
basis function. Results showed that the SVM-GWO model
can effectively detect epilepsy seizures. A similar approach
was proposed by Subasi et al. [13]. +ey proposed a hybrid
approach for optimizing SVM algorithms using two-hybrid
optimization algorithms such as the genetic algorithm (GA)
and the particle swarm optimization (PSO) algorithm. It is
shown that the hybrid SVM model is highly effective in
finding epileptic seizures from EEG signals. However, these
techniques depend on manual feature extraction [31], which
is one of the primary limitations of these approaches. Feature
extraction is an important phase for classifying seizures from
EEG signals. It enhances the accuracy of classification and
detection. +e present work emphasizes performing classi-
fication without involving any complex feature extraction,
and the potential capacity of DL algorithms has provided a
new roadmap to reduce the complexity of feature extraction.
Different deep learning algorithms, such as decision tree [32],
SVM [33], random forest [34, 35], and recurrent neural
networks (RNN) [36], based approaches are used widely for
epileptic detection. Feature extraction is essential to perform
before classification since it can directly process EEG samples
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before feeding them into the classifier. Extraction of relevant
features will simplify the process of classification and improve
classification accuracy. However, some of the recent works do
not perform feature extraction and the DL-basedmodels were
trained directly using EEG signals [16, 37]. While the majority
of these works use time-domain signals, some of the works
have also used data from the frequency domain for catego-
rizing EEG signals. It can be inferred from the existing literary
works that it is essential to extract both time and frequency
domain signals for analyzing the spatial characteristics of EEG
signals.

Epilepsy is not a disease, but a neurological disorder.
Many people with epileptic seizures hide their problem, and
they lead a lonely life. Authors have made efforts to suggest a
new epileptic seizure detectionmethod. CNN gives very high
accuracy. Deep learning techniques have the advantage of
allowing the features to be automatically deduced and op-
timally changed for the desired outcome.

3. Research Methodology

+e preliminary aim of the preferred research is to detect
epileptic seizures from EEG signals using a feature extrac-
tion-based technique. A hybrid RNN-CNN classifier is
employed for classifying different forms of EEG signals. +e
RESNET50 classifier is used after the feature extraction and
the performance is measured. +e implementation of the
proposed framework involved different steps that are dis-
cussed in the following subsections.

3.1. Dataset Description. +e data for experimental analysis
was collected from an Epileptic Seizure Recognition Dataset.
+e obtained data is Multivariate, Time-Series data with an
overall 11500 number of instances and 179 attributes. +e
data consists of both Integer and Real data type attributes
and is suitable for performing classification and clustering
tasks. More than 10 electrode systems were used for col-
lecting the EEG signal data. +e obtained data were cate-
gorized into five sets ranging from A to E with each set
containing 100 one-channel instances. +e EEG data col-
lected from 5 healthy people were grouped into two sets
namely set A and set B. Set A consists of the data when the
people were in a relaxed state and Set B consisted of the data
collected from the people with their eyes open. Set C
consisted of the signals collected from the hippocampal
formation of the opposite hemisphere of the brain. And, the
EEG data collected during seizure-free intervals were
grouped into set C and set D. Set E contained EEG signals
which were measured during the seizure activity.

3.2. Data Preprocessing. Data processing is a preliminary
step before performing feature extraction or classification
tasks. In general, the obtained input EEG signals consist of
redundant data with unwanted noise and artifacts. It is
essential to filter out these uncertainties in order to make the
data suitable for further processing. Preprocessing will en-
sure that only relevant signal-related information is
implanted into EEG signals. +e artifacts, along with ex-
ternal noise (usually generated due to electrode movement),
get mixed with actual EEG recordings and deteriorate the
quality of EEG signals and affect the classification accuracy.
In this stage, the obtained EEG signal data is transformed
into a two-dimensional table format in order to simplify the
analysis and provide relevant information for seizure de-
tection. For processing the input data, different feature
selection models are used. In this work, the dataset used is a
preprocessed, restructured dataset and is a supervised
dataset that provides the class features with possible class
values.

3.3. Feature Extraction. In this stage, appropriate features
from a particular part of the input signal are taken out to
reduce the feature values. Generally, raw EEG signals have
different signal attributes, and they differ in terms of quality
and length. Besides, they also possess uncertainties due to
motion artifacts and noise in the background where the EEG
signals are recorded. To overcome this problem, only re-
quired features are selected using feature extraction tech-
niques. By doing so, the data dimensionality of the EEG
signal data is also reduced with the help of DL algorithms.
DL-based models are used for feature extraction, where
these algorithms process large-scale feature sets swiftly and
reduce the computational time required for processing.
Feature extraction will reduce the size of the dataset and
make it suitable for grouping the data into specific cate-
gories, thus eliminating the need for additional computing
resources for processing large-scale data. Different feature
extraction techniques such as LBP, FFT, DWT, EMD, time
domain, and frequency domain features.

3.3.1. Local Binary Pattern (LBP). +e LBP method iden-
tifies the intensity level of a sample in neighborhood values.
In this work, a one-dimensional LBP [38] is used to take out
distinct features from EEG signals. In this work, the effec-
tiveness of LBP is investigated for classifying seizure and
non-seizure EEG signals. +e computation of LBP for each
EEG signal is given as follows [39]:

LBPLHS(x[n]) � 
L−1

k�0
S(x[n + k − L] − x[n])22L− 1− k

,

LBPRHS(x[n]) � 
2L−1

K�L

S(x[n + k + 1 − L) − x[n])22L− 1− K
,

LBP(x[n])� LBPLHS(x[n])+LBPRHS(x[n]),

(1)
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where L defines the entire number of samples, x[n] defines
the sample of EEG signals for which the LBP is evaluated,
and the term S is given as shown in the following equation:

S(p) �
1, if p≥ 0,

0, otherwise.
 (2)

+e LBP of the signal is obtained by comparing the value
of the EEG signal sample with its adjacent neighbors, and
thereby it records the variations in the signals. Further,
histograms of the LBPs from all samples are aggregated to
obtain the final representation of the signals.

3.3.2. Fast Fourier Transform (FFT). FFT is one of the
common methods used for analyzing EEG signals in the
frequency domain. FFT can analyze distinct frequencies
which are difficult to identify in the time domain [40]. +e
relative power spectral density is analyzed using FFT coef-
ficients and, using these, the features of EEG signals are
extracted and classified to detect epileptic signals using deep
learning algorithms. +e filtered signals, which are free from
artifacts and noise, are obtained by multiplying the FFTwith
a high-pass filter. +e FFT technique is supported by a
thresholding approach to remove low-intensity signals from
the filtered signals. FFT is applied to convert an image
belonging to the spatial region to the frequency domain. +e
FFTapplied to the EEG signals segments a signal sample into
two different parts, namely, real and imaginary parts, which
actually represent the image in the frequency domain.
+e Fourier transform of a signal f (i, j) is defined as shown
in (3) [41]:

F(k, 1) � 
N−1

i�0


N−1

j�0
f(i, j)e

− i2π
,

ki

N
+

lj

N
 , (3)

where f (i, j) represents the signal instance in the spatial
region and the exponential component defines the basis
function for every point present in the domain F (k, l) in the
Fourier region. However, in the Fourier transform the
segmented samples can be retransformed using an inverse
Fourier transform, i.e., IFT. +e IFT of the frequency of an
image in the spatial region is given as

F(i, j) � 
N−1

i�0


N−1

j�0
F(k, l)e

− i2π ki

N
+

lj

N
 . (4)

3.3.3. Discrete Wavelet Transform. DWT [42] based feature
extraction is effective for detecting epileptic seizures due to
its ability to extract features considering the dynamic and
impulsive nature of EEG signals. +e varying window size of
the DWT allows it to provide accurate frequency-related
information. +e main advantage of DWT is its ability to
provide accurate results even for nonstationary signals. +e
unique attribute of the DWTcompared to Fourier analysis is
the temporal resolution. +e DWTrecords all image-related
information along with its location, unlike Fourier trans-
formation. +e 4 sub-bands of high-frequency (LL, LH, HL,

and HH) consist of functionalities in the higher frequency
range of an input image. DWT finds the difference between a
low-frequency sub-band image and a denoised image. After
computing the difference, interpolation is performed
wherein the high-frequency sub-bands are interpolated into
two individual bands.

+is convolution operation in DWT is given as follows:

x[n]∗ h[n] � 
∞

k�−∞
x[k]∗ h[n − k]. (5)

+e convolution of operation is defined using (5). +e
subsampling process used after the interpolation process in
DWT maintains the quality of the images and information
which are not related to the process are filtered out without
compromising on the resolution and image quality. +is
process is illustrated in (6).

y[n] � 
∞

k�−∞
h[k]∗x[2n − k]. (6)

+e original signal sample x[n] is subjected to filtering
using a half-band high pass filter g[n] and a low-pass filter h
[n]. A major portion of the redundant signal information is
filtered out during the filtering process, and only the high-
frequency samples are left out in the signal, which is further
subsampled by factor 2. +is constitutes a fundamental
component of the image decomposition process, which is
given as

Yhigh[k] �  x[n]∗g[2k − n],

Ylow[k] 
n

x[n]∗ h[2k − n].
(7)

Where yhigh [k] and ylow [k] represent the outputs of the high
and low-frequency filters, respectively, after the subsampling
of the signals.

3.3.4. Empirical Mode Decomposition (EMD). An EMD is a
multiresolution decomposition method that segments a
signal sample into multiple distinct frequency components
known as intrinsic mode functions (IMFs) and a residue.+e
segmentation process is called the sifting process. Since
EMD processes do not use any basis functions, it is more
appropriate for nonlinear and nonstationary data analysis
[43]. A signal is decomposed into ‘r1’ rows and ‘c1’ columns
and the function g1(m, n) is given as

g1(r1, c1) � f(r1, c1) − E1(r1, c1). (8)

If the above equation satisfies the conditions of IMFs,
then it is considered the first IMF, denoted as BIMF1 (m, n).
Furthermore, the sifting process is continued till all IMFs are
obtained. By aggregating all the individual BIMFs, a
reconstructed signal sample is obtained.

Comparison of different extraction methods is given in
Table 1 where different researchers have worked on many
extraction methods and also mentioned the accuracy as per
their work.

4 Journal of Healthcare Engineering



4. RNN-CNN Architecture for Classification

Classification is performed using the hybrid CNN-RNN
network, which is designed using a convolutional stack
similar to the structure of RESNET50, with some minor
modifications in the layer structure. +e hybrid CNN-RNN
architecture consists of three components: a convolutional
layer, recurrent layers, and a transcription layer. +e con-
volutional layers follow a RESNET50 style architecture
where the fully-connected layers are not included while
designing the system architecture. +e convolutional layer
can provide better feature representations of the sample
images. +ese features are further fed to the recurrent layers,
which transform them into an output sequence of labels that
classify different types of EEG signals.

+e primary layers of the proposed hybrid architect
consist of convolutional layers to integrate CNN with RNN
to extract epileptic seizure-related features.+e performance
of the convolutional layer is further given to the layers of
RNN for identifying different signal patterns [44]. In this
work, the convolutional layers identify the local and spatial
patterns more accurately compared to RNNs.

In addition, the convolution operation of the CNN layers
allows faster operation of the RNN and hence enhances its
ability to detect more unique patterns. +e proposed ap-
proach uses hand-crafted features along with CNN-RNN, as
shown in Figure 1, to recover the accuracy and efficiency of
epileptic seizure detection from EEG signals. +e proposed
CNN-RNN architecture consists of three convolution layers
for extracting features, with one max pooling layer for re-
ducing the dimensions of the extracted features. A fully-
connected (FC) layer transforms the extracted features into
feature vectors. +e RNN features are extracted using the
LSTM model, which is further combined with CNN layers
and hand-crafted features. Finally, the FC layers are used for
classifying the data.

+e description of the CNN layers are as follows:

(i) Convolutional layer. +is layer convolves the con-
tributions of vertical and horizontal inputs along

with filters, computing the dot product of the
weights and the input, and then adding a bias term
like a signal.

(ii) Max pooling layer. +is layer is the second most
layer in the CNN architecture, which reduces the
dimension of the extracted features. It overcomes
the issue of overfitting by reducing the required
number of parameters and running time.

(iii) Fully-connected layer (FC). +e FC layer is planned
in such a way that it connects the output of the
previous layer. +e FC layer operates at the final
stages of the operation to establish a connection
between the output layer using the activation
functions of the previous CNN layers. +ey con-
struct the desired number of outputs and generate
high-level features and determine which feature has
the highest correlation among others.

(iv) Softmax layer. +e softmax layer predicts the output
based on the features obtained from the fully-con-
nected layer. It analyses the features and determines
the probability of each class. Furthermore, the output
of the class that has the highest probability value will
be provided as the classification result.

5. Simulation Results

+e classification performance of the proposed hybrid CNN-
RNN framework is analyzed in terms of various perfor-
mance indicators such as accuracy, precision, recall, F1
score, and false-positive rate. +e output of the hybrid
classifier is constructed using the elements of the confusion
matrix such as true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). TP defines the
number of signals identified correctly as epileptic seizures,
TN represents the sample sets that can cause false impli-
cations, FN defines the signals that are wrongly identified as
epileptic seizures, and FP represents the falsely optimistic
signals. +e performance parameters are defined in Table 1.

Table 1: Comparison of feature extraction methods with existing work, NG means not given.

Reference Feature extraction method Accuracy
Acharya et al. Continuous wavelet transform 96%
Gupta et al. Entropy features 94.41%
Orhan et al. Wavelet transform 99%
Guo et al. Genetic programming-based feature extraction 98%
Fatima et al. Wavelet transform 99.5%
Subasi Discrete wavelet transform NG
Sharma et al. Frequency domain features 96.2%
Raghu et al. Sigmoid entropy 94.21%
M. Sharma et al. Entropy measures 94.25%
L. Wang et al. Multidomain features model 99.25%
Jaiswal and Banka PCA 97%
Abdelhameed and
Murugavel Wavelet-based features 95%

Sukuriti and Mitra Variational mode decomposition 98.7%
Diykh et al. Graph-based machine learning technique 98%

Proposed Discrete wavelet transforms, local binary patterns, empirical mode decomposition, and fast
Fourier transform 97%
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EEG Signals

Datasets

LBP Feature

FET Feature

DWT Feature

EMD Feature

Time & Frequency
Feature 

Feature Extraction

RNN-CNN Classifier
(RESNET 50) 

Performance
Measure 

Figure 1: +e flow diagram of using feature extraction methods for performance measure.

Figure 2: +e detection result of signals for dataset A of healthy people with open eyes.
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+e equations for determining the performance metrics
are defined as

Accuracy �
TP + TN

TP + TN + FP + FN
. (9)

Recall for a function is determined as the ratio of the
cracks identified and those that are accurately classified and
is given as

Recall �
TP

TP + FN
. (10)

Similarly, precision defines the accuracy of positive
predictions.

Precision �
TP

TP + FP
. (11)

+e F1 score is also defined as the F-measure, which is
determined as the weighted harmonic mean of its precision
and recall.+e F1 score is used for measuring the accuracy of
the system, which can possess values between 1 and 0.Where
1 represents the best value and 0 represents the worst value,
correspondingly, the F1 score is defined as

F1score �
2∗Precision∗Recall
Precision + Recall

. (12)

5.1. Performance Evaluation. +e output signal for the five
dataset samples is illustrated in the following figures:

(i) Dataset A (Healthy people with open eyes)
(ii) Dataset B (Healthy people with closed eyes)
(iii) Dataset C (Hippocampal formation in the opposite

hemisphere of the brain)
(iv) Dataset D (Epileptogenic Zone)
(v) Dataset E (Seizure Activity)

+e output of different datasets from dataset A to dataset
E is shown in Figures 2–6. +e confusion matrix repre-
senting the performance metrics of the CNN-RNN is
conveyed in Figure 7.

+e results in terms of different performance metrics are
tabulated in Table 2.

Figure 3: +e detection result of signals for dataset B of healthy people with closed eyes.
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Figure 4: +e detection result of signals for dataset C with Hippocampal formation in the opposite hemisphere of the brain.
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Figure 5: +e detection result of signals for dataset D with epileptogenic Zone.
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5.2. Comparative Analysis. +e outcome of the proposed
method was distinguished from the existing MultiSVM
approach.+e confusionmatrix and parameter evaluation of
MultiSVM are illustrated in Figure 8 and the results are

tabulated in Table 3. Evaluation of different performance
metrics is given in Table 4. +e comparative results of
different parameters using CNN-RNN with MutliSVM are
shown in Table 5.

Figure 6: Detection result of signals detecting seizures from EEG signals.

1 76 4 95.0% 5.0%
2 80 100.0%
3 8 72 90.0% 10.0%
4 16 8 48 8 60.0% 40.0%
5 8 15 57 71.3% 28.7%

90.5% 80.0% 81.8% 76.2% 87.7%
9.5% 20.0% 18.2% 23.8% 12.3%

1 2 3 4 5
Predicted Class

Tr
ue

 cl
as

s

Figure 7: Confusion matrix of hybrid CNN-RNN classifier.

Table 2: Performance parameters.

Observations Epileptic seizure Normal
Found Positive in all ways (TP) Falsely optimistic (FP)
Nothing was found Negative false (FN) True negative (TN)
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Table 4: Evaluation of different performance metrics.

Sl No Parameters MultiSVM (%)
1 Accuracy 67.20
2 Precision 76
3 Recall (sensitivity) 18
4 Specificity 79.50
5 F1 score 66
6 Error 82
7 False-positive rate 20.50

Table 5: Comparative results of CNN-RNN and MultiSVM.

Sl No Parameters CNN-RNN MultiSVM (%)
1 Accuracy 93.30% 67.20
2 Precision 83.2354% 76
3 Recall (sensitivity) 83.25% 18
4 Specificity 95.8125% 79.50
5 F1 score 82.6079% 66
6 Error 16.75% 82
7 False-positive rate 4.1875 20.50

0

25

50

75

100

Accuracy Precision Sensitivity Specificity F1 Score Error False Positive
Rate

Performance Comparison 

CNN-RNN
MultiSVM

Figure 9: Graphical illustration of comparative analysis.

1 72 1 7 100.0%
2 2 38 7 33 47.5% 52.5%
3 8 6 7 59 7.5% 92.5%
4 2 40 16 22 100.0%
5 2 44 8 3 23 28.7% 71.3%

19.6% 19.4% 16.0%
100.0% 80.4% 80.6% 100.0% 84.0%

1 2 3 4 5
Predicted Class

Tr
ue

 C
la

ss

Confusion matrix 

Figure 8: Confusion matrix of the MultiSVM classifier.

Table 3: Evaluation of different performance metrics.

Sl No Parameters CNN-RNN
1 Accuracy 93.30%
2 Precision 83.2354%
3 Recall (sensitivity) 83.25%
4 Specificity 95.8125%
5 F1 score 82.6079%
6 Error 16.75%
7 False-positive rate 4.1875
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+e outcomes in terms of different performance metrics
are shown in Table 2. A graphical illustration of the com-
parative analysis is given in Figure 9.

+e feature extraction comparison table is given as
+e comparative results of the proposed CNN-RNN and

MultiSVM are tabulated in Table 6 and are graphically il-
lustrated in Figure 9.

6. Conclusion

+is paper extends a new epileptic seizure detection approach
using the feature extraction method. A hybrid CNN-RNN
architecture was applied to EEG signals to classify and detect
epileptic seizures. +e proposed approach analyzes different
patterns from EEG signals and provides accurate information
to the neurologists to identify different seizure types. Different
feature extraction techniques, such as LBP, FFT, DWT, and
EMD, were analyzed for feature extraction. +e output of the
proposed approach was compared with the existing MultiSVM
approach. Outcomes of the experimental analysis show that the
proposed approach achieved a superior classification accuracy
of 93.30% in comparison to MultiSVM, whose accuracy was
found to be 67.20%. In addition, the proposed approach
outperforms the existing MultiSVM approach in terms of
different performance metrics. For future research, this study
intends to investigate other deep learning techniques for EEG
signal categorization for diagnosing epilepsy.

Data Availability

+e simulation experiment data used to support the findings
of this study are available with the first author.
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