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Recent imaging science and technology discoveries have considered hyperspectral imagery and remote sensing. -e current
intelligent technologies, such as support vector machines, sparse representations, active learning, extreme learning machines,
transfer learning, and deep learning, are typically based on the learning of the machines.-ese techniques enrich the processing of
such three-dimensional, multiple bands, and high-resolution images with their precision and fidelity. -is article presents an
extensive survey depicting machine-dependent technologies’ contributions and deep learning on landcover classification based on
hyperspectral images. -e objective of this study is three-fold. First, after reading a large pool of Web of Science (WoS), Scopus,
SCI, and SCIE-indexed and SCIE-related articles, we provide a novel approach for review work that is entirely systematic and aids
in the inspiration of finding research gaps and developing embedded questions. Second, we emphasize contemporary advances in
machine learning (ML)methods for identifying hyperspectral images, with a brief, organized overview and a thorough assessment
of the literature involved. Finally, we draw the conclusions to assist researchers in expanding their understanding of the re-
lationship between machine learning and hyperspectral images for future research.

1. Introduction

Hyperspectral imagery is one of the most significant dis-
coveries in remote sensing imaging sciences and techno-
logical advancements. Hyperspectral imagery (HSI) is the
technology that depicts the perfect combination of Geo-
graphic Information System (GIS) and remote sensing.
Besides, HSI has several advantages such as ecological
protection, security, agriculture and horticulture applica-
tions, crop specification and monitoring, medical diagnosis,

identification, and quantification [1]. RGB images are made
up of three dimensions: width, height, and 3 color bands or
channels consisting of color information, that is, red, green,
and blue. -ey are stored as a 3D byte array that explicitly
holds a color value for each pixel in the image; a combination
of RGB intensities put down onto a color plane. However, in
contrast, HSI comprises thousands of hypercubes and hence
possesses a large resolution and an enormous amount of
embedded information of all kinds—spectral, spatial, and
temporal. -is information enables various applications to
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detect and characterize land covers, which are most sig-
nificantly explored [2]. RGB images are captured by digital
RGB cameras capable of characterizing objects only based on
their shape and color. Moreover, the embedded information
is minimal since only three visible bands are available in the
human visibility range. -e HSI, on the other hand, is
captured by specialized airborne hyperspectral sensors
placed on artificial satellites, that is, spectrometers. -ey
have a broad range of scenes by acquiring large numbers of
consecutive bands, not confined to the visible light spectrum
and through a wider spectral band-pass. However, compared
to the digital sensor that absorbs light in just three wide
channels, a hyperspectral sensor’s channel width is much
narrower, making the spectral resolution and data volume
much higher, resulting in hurdles to store, mine, and
manage [3]. Furthermore, processing these data with a
massive number of bands imposes many obstacles such as
noise-causing image calibration, geometric distortion, noisy
labels, and limited or unbalanced labeled training samples
[4–6], that is, Hughes phenomenon and dimensionality
reduction-related artifacts: overfitting, redundancy, spectral
variability, loss of significant features between the channels,
etc. [7].

Classifying HSIs is considered to be an intrinsically
nonlinear problem [8], and the initial approach by linear-
transformation-based statistical techniques such as principle
component analytical methods, that is, principal component
analysis (PCA) [9] and independent component analysis
(ICA) [10]; the discriminant analytical methods, that is,
linear [11] and fisher [12]; wavelet transforms [13]; and
composite [14], probabilistic [15], and generalized [16]
kernel methods, had shown promising outcomes. Still, their
focus was limited to spatial information. -ey emphasized
that the feature extractor techniques assisted by some basic
random classifiers that lead to complexity in terms of cost,
space, and time are not sufficiently accurate. After the
success of these traditional methodical techniques assigned
for HSI classification, researchers became keenly interested
in applying the most recent emerging but not tedious
computer-based methods that made the entire process
smoother and vicinal to perfection. Study advancements
suggest that the last decade can be considered the most
escalating era regarding computer-based technologies due to
the emergence of machine learning (ML). ML is an algo-
rithmic and powerful tool that resembles the human brain’s
cognition. It simply represents a complex system by holding
abstraction. Hence, it can reduce complexities and peep into
the insights of the vast amount of HS data to fetch out the
hidden discriminative features, both spectral and spatial
[17]. -us, it overcomes all the stumbling blocks to achieve
the desired accuracy in identifying the classes that the objects
of the target HSI data belong to. Hence, they act as all-in-one
techniques that can serve the purpose without further as-
sistance. Keeping this in mind, we conducted an extensive
survey based on the various discriminative machine and
deep learning (ML, DL) models for HSI. In most of the
literature studies, the HSI datasets that are commonly used
for landcover classification are AVIRIS Indian Pines (IP),
Kennedy Space Center (KSC), Salinas Valley (SV), and

ROSIS-03 University of Pavia (UP), along with less fre-
quently used Pavia Center, Botswana, University of Houston
(HU), etc. -ey are pre-refined and made publicly available
on [18] for download and perform operations.

-e motivation of our work is divided into three parts.
First, a novel methodology is proposed for the review
work that is entirely systematic and helps find the in-
spiration in forming the research gaps and embedded
questions after going through a large pool of research
articles. Second, this work focuses on the current ad-
vancements of ML technologies for classifying HSI, with
their brief, methodical description and a detailed review of
the literature involved with them. Finally, the inferences
are drawn and help the researchers boost knowledge for
their future research. -e key contributions made to the
research field on hyperspectral imagery by our novel effort
are as follows:

(1) -e thorough revision of the analytical and classi-
fication work carried out to date on HS imagery by
employing ML/DL techniques.

(2) Emphasis on the categorized methods explored and
practiced so far in an overly frequent manner. Also, it
includes a brief interpretation of the most recent
technologies and the highlighted hybrid techniques.

(3) An open knowledge base that acts as a reservoir of
relevant information that is listed out that interprets
all research on each mentioned technique in terms of
their methodology, convenience and limitations, and
future strategies. -is illustration might administrate
in making a proper choice of objective for further
research on the field of HSIs.

(4) Explicit idea of the growth of interest in the con-
cerned field that would attract researchers to invest
themselves with a coherent, substantial specification
(benefaction and drawbacks) of all the methods,
individually, that contributes academically to the
researchers about their favorable result and the
difficulties for a chosen technique.

(5) A transitory rendition of the most recent research on
HSIs signifies the currently adapted technologies as
hot spots. Also, focus on the research areas about the
interest that could apply to others, that is, the hy-
bridized methods popular among researchers to
address the problem and achieve the desired ex-
perimental results.

-e rest of the article is arranged as follows: Section 2
briefly explains the constraints faced by the researchers in
dealing with HSI; Section 3 represents the methodology for
the research along with the motive behind this review;
Section 4 describes seven ML techniques, namely, support
vector machine (SVM), sparse representation (SR), Markov
random field (MRF), extreme learning machine (ELM),
active learning (AL), deep learning (DL), and transfer
learning (TL); Section 5 shows up the complete summary of
the literature review work in the form of answers to the
research questions; Section 6 depicts the conclusions; and
Section 7 explains the limitations and future work.
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2. Constraints of HSI Classification

Since their emergence, several difficulties have caused issues
in analyzing and performing operations on hyperspectral
images. Initially, it suffered from spectroscopy technology
due to the bad quality of hyperspectral sensors and poor
quality with insufficient data. However, along with the
advancement in applied science, things have come to ease,
but there are still some well-known nondispersible hitches
that need to be overcome. Some of them are stated as follows:

(a) Lack of high-resolution Earth observation (EO)
noiseless images: During the initial stage of the
discovery of spectrometers, they were not very ef-
ficient. Due to this, noises caused by water vapor,
atmospheric pollutants, and other atmospheric
perturbations modify the signals coming from the
Earth’s surface for Earth observations. Several efforts
have been made over the last decades to produce
high-quality hyperspectral data for Earth observa-
tion and develop a wide range of high-performance
spectrometers that combines the power of digital
imaging, spectroscopy, and extracting numerous
embedded spatial-spectral features [19].

(b) Hindrances in the extraction of features: During data
gathering, redundancy across contiguous spectral
bands results in the availability of duplicated in-
formation, both spatially and spectrally, obstructing
the optimal and discriminative retrieval of spatial-
spectral characteristics [7].

(c) -e large spatial variability and interclass similarity:
-e hyperspectral dataset collected contains unus-
able noisy bands due to mistakes in the acquisition
that result in information loss in terms of the unique
identity, that is, the spectral signatures and excessive
intraclass variability. Furthermore, with poor reso-
lution, each pixel comprises broad spatial regions on
the Earth’s surface, generating spectral signature
mixing, contributing to the enhanced interclass
similarity in border regions, thus creating incon-
sistencies and uncertainties for employed classifi-
cation algorithms [19].

(d) Limitation of available training samples and insuf-
ficient labeled data: Aerial spectrometers cover sig-
nificantly smaller areas, so they can only collect a
limited number of hyperspectral data. -at leads to
the restriction of the number of training samples for
classification models [20]. In addition, HSIs typically
contain classes that correspond to a single scene, and
available classification models’ learning procedures
require labeled data. However, labeling each pixel
requires human skill, which is arduous and time-
consuming [21].

(e) Lack of balance among interclass samples: -e class
imbalance problems, where each class sample has a
wide range of occurrences, diminish the usefulness
of many existing algorithms in terms of enhancing
minority class accuracy without compromising

majority class accuracy, which is a difficult task in
and of itself [22].

(f ) -e higher dimensionality: Due to incorporating
more information in multiple channels, such high-
band pictures increase estimation errors. -e curse
of dimensionality is a significant drawback for su-
pervised classification algorithms, as it significantly
impacts their performance and accuracy [23].

-e possible solutions to the above limitations that also
represent the possible operations that are performed to
analyze and comprehend the HSIs can be (1) technological
advancement to make versatile and robust hardware for the
spectrometers to capture the scenes more accurately, (2)
spectral unmixing and resolution enhancement for better
feature extraction and distinguishing capability of the em-
bedded objects, (3) image compression-restoration and
dimensionality reduction for addressing the high-dimen-
sions and lack of data, and (4) use of robust classifiers that
are capable of dealing with the above issues as well as
promote fast computation ability [7].

-ese hurdles were very prominent for the methods that
classify HSI based on the feature extrication from HSI. After
ML/DL came into the scene, the operations on HSI became
effortless as explicit feature extraction is not needed, and it
has also many advantages such as great dealing with noise
and time complexity. However, ML/DL acquires a few
drawbacks in specific criteria [19], including parameter-
tuning and numerous local minima problems in training
procedures and compression [20] overfitting, optimization,
and convergence problems despite many positive aspects.

3. Research Methodology

-is section is divided into three categories that will assist in
understanding the review procedure and its ambition.

3.1. Planning of the Review. -ree systematic advances are
utilized that comprise the planning behind our work. First,
based on efficacy and frequency of applicability on classi-
fying HSIs, seven most recently used ML techniques have
been chosen in this article for review, which establishes the
operational relationship and compatibility with the issue of
categorizing the land covers of a particular scene captured as
HSI. Second, this relationship provides all the shortfalls and
benefits of those methods and their potential possibilities.
Finally, we identified the limitations of our present review
work and how to rectify them in the future.

3.2. Conducting the Review. -e entire review work has been
conducted in the following steps:

(a) Collection of literature: -e literature studies have
been collected based on the keywords: “Hyper-
spectral image classification,” “Machine learning
techniques,” “Deep learning techniques,” from the
most relevant search engine, that is, Google (Google
Scholar), which provides the scholarly articles for the
concerned topic. -ese literature studies include
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Web of Science (WoS), Scopus, SCI, and SCIE-
indexed and SCIE-related articles, both journals and
conferences. Several methods are utilized through-
out the literature that assist the classification of
hyperspectral data, out of which ML techniques
seem to be more convenient and promising.

(b) Screening: -e collected research papers depict raw
data, sorted categorically according to the chrono-
logical order of the ML techniques used over the
periods. -e screening was accomplished based on
the following constraints:

(i) Time Period: -e studies published in the range
of 2010–2021 are included in this work. Studies
published before 2010 are not included.

(ii) Methodology: -e studies on HSI’s analytical
operations (denoising, spectral unmixing, etc.)
other than classifying the underlying land
covers are rejected.

(iii) Type: -e studies that deal with the hyper-
spectral images of a particular land scene are
considered, discarding the medical hyper-
spectral imagery, water reservoir, etc.

(iv) Design of study: -e studies comprising ex-
perimental outcomes and the elaboration of the
models are accepted; other literary-based arti-
cles or review papers are only for primary
knowledge gain.

(v) -e language used: -e studies written in the
English language are only considered.

Figure 1 represents the total number of the literary
studies screened individually on each of the cate-
gories of chosen ML techniques in the form of pie-
charts with a percent-wise pattern. Figure 2 is a
standard graphical depiction of the number of most
recent articles that we screened for each chosen ML-
based method in the period ranging from 2015 to
2021.

(c) Selection: Out of all the papers screened based on the
abovementioned criteria, a few most eligible are
handpicked. -e selection has been made keeping
specific parameters: the modeling strategy and al-
gorithm and its suitability with the modern tech-
nological scenario. -e final result is the
corresponding overall accuracy (COA) for each
dataset used, preferably journals with a good citation
index.

(d) Analysis and inference: -ese selected papers are
thoroughly reviewed to determine their contribu-
tion, restrictions, and future propositions. Based on
this analysis, the deductions are drawn to show the
pathway of further research.

3.3. Research Investigations (RI). -e analysis arises some of
the queries:

RI 1: What is the significance of traditional ML and DL
for analyzing HSI?
RI 2: How is ML/DL more impactful on HSI than other
non-ML strategies?
RI 3: What are the advantages and challenges faced by
the researchers for the chosen ML/DL-based algorithm
for HSI classification?
RI 4: What are the emerging literary works of ML/DL
on HSI classification in the year 2021?
RI 5: How are ML- and DL-based hybrid techniques
helping scientists in HSI classification?
RI 6: What are the latest emerging techniques associ-
ated with addressing classifying HSIs?

3.4. Datasets. -e HSI datasets are pre-refined and made
publicly available for download and perform operations.
-ere are six datasets that are described here in a concise
manner:

SRC

SVM

TL

DL

AE

RNN
DBN

GAN

CNN

MRF

ELM

AL

Figure 1: -e statistical pie-charts of screened articles on ML/DL techniques used for HSI classification (source: SCI, SCIE, Scopus, WoS).
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(i) AVIRIS Indian Pines: -is dataset was taken by
airborne visible infrared imaging spectrometer
(AVIRIS) sensor, on June 12, 1992. -e scene
captured here was Indian Pines test site in North-
Western Indiana, USA, and contains an agricultural
area exemplified by its crops of regular geometry
and some irregular forest zones. It consists of
145∗145 pixels with a spectral resolution of 10 nm
and a spatial resolution of 20mpp and 224 spectral
reflectance bands in the wavelength range

0.4–2.5 μm, out of which 24 noisy bans are removed
due to low signal-to-noise ratio. -e scene contains
16 different classes of land covers.

(ii) Salinas Valley: -is scene was obtained by AVIRIS
sensor over various agricultural fields of Salinas
valley, California, USA, in 1998. -e scene is
characterized by a high spatial resolution of 3.7mpp
and a spectral resolution of 10 nm. -e area is
covered by 512∗ 217 spectral samples with a
wavelength range of 0.4–2.5 μm.Out of 224 reflector

0 100 200 300 400 500 600 700 800

2015

2016

2017

2018

2019

2020

2021

SVM
SRC
MRF
ELM

AL
DL
TL

(a)

0 50 100 150 200 250 300 350 400

2015

2016

2017

2018

2019

2020

2021

AE
CNN
RNN

DBN
GAN

(b)

Figure 2: -e statistical bar graph of screened articles on ML/DL techniques used for HSI classification from 2015 to 2021 (source: SCI,
SCIE, Scopus, WoS): (a). ML. (b). DL.
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bands, 20 noisy bands are discarded due to water
absorption coverage. -e scene comprises 16 dif-
ferent land classes.

(iii) Pavia Center:-is scene was captured by a reflective
optics system imaging spectrometer (ROSIS-03)
sensor during a flight campaign over Pavia,
northern Italy. It possesses 115 spectral bands, out
of which only 102 are useful. Its spectral coverage is
0.43–0.86 μm, with a spectral resolution of 4 nm and
a spatial resolution of 1.3mpp defined by
1096∗1096 pixels. -ere are 9 different land cover
classes in the area.

(iv) Pavia University: -is scene was also captured by
the same sensor at the same time as Pavia center,
over the University of Pavia in 2001. It has the same
structural features as the Pavia center, only con-
trasting in considering 103 bands out of 115 bands
with a size of 610∗ 340 are taken after discarding 12
noisy bands.-e scene contains 9 classes with urban
environmental constructions.

(v) Kennedy Space Center: -is scene was acquired by
NASA AVIRIS sensor over Kennedy Space Center,
Florida, USA, on March 23, 1996. It was taken from
an altitude of approximately 20 kilometres, having a
spatial resolution of 18 kilometres and a spectral
resolution of 10 nm. -e wavelength range of the
scene is 0.4–2.5 μm with the special size of 512∗ 614
pixels; 24 of 48 bands were removed for a low signal-
to-noise ratio. -e ground contains 13 predefined
classes by the center personnel.

(vi) Botswana: -e scene was obtained by the Hyperion
sensor placed on the NASA EO-1 satellite over

Okavango delta, Botswana, South Africa, onMay 31,
2001. It has a special resolution of 30 metres and a
spectral resolution of 10 nm while taken at an al-
titude of 7.7 kilometres. Out of 242 bands con-
taining 1476∗ 256 pixels, with a wavelength range
of 400–2500 nm, 97 bands are considered to be
water-corrupted and noisy; hence, 145 remaining
are useful. -e scene comprises 14 land cover
classes.

4. Machine Learning-Based Techniques for
HSI Classification

ML technologies are not only intelligent and cognitive, but
also their accuracy is skyrocketing due to their embedded
mechanical abilities such as extraction, selection, and re-
duction of joint spatial-spectral features as well as contextual
ones [24–26]. Moreover, the hidden dense layers with
various allocated functions of the extensive networks work
as intelligent learners by creating dictionaries or learning
spaces to store deterministic information and then separate
the landcover classes through its classification units [27–29].
-e latest ML techniques that assist in classifying the
hyperspectral data, that is, SVM, SRC, ELM, MRF, AL, DL,
and TL, are shown categorically in Figure 3 and are discussed
hereafter in detail.

4.1. Support Vector Machine (SVM). SVM is an innovative
pattern-recognition technique rooted in the principle of
statistical learning. -e rudimentary concept of SVM-based
training can unravel the ideal linear hyperplane so that the
predicted classification error is mitigated, be it for binary or

Support Vector
Machine(SVM)

Sparse Representation
and Classification

(SRC)

Markov Random
Field(MRF)

Deep Learning
(DL)

Extreme Learning
Machine(ELM)

Active Learning (AL)

Machine–oriented
Technologies

AutoEncoders(AE)

Convolutional Neural
Network(CNN)

Recurrent Neural Network(RNN

Deep Belief Network(DBN)

Generative Adversarial
Network(GAN)

Transfer Learning
(TL)

Figure 3: -e categories of the eminent machine learning techniques used for HSI classification.
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multiclass purposes [30], as depicted in Figure 4. For linearly
separable binary classification, let (xi, yi) be the standard set
of linearly separating samples with x ∈ (R)N and y ∈ {−1, +1}.
-e universal formula of linear decision function in n-di-
mensional space with the classification hyperplane is

g(x) � w
T
.x + b � 0, (1)

where w is the weight directional vector and b is the slope of
the hyperplane. A separating hyperplane with margin 2/||w||
in the canonical form must gratify the following constraints:

yi w
T
.xi􏼐 􏼑 + b􏽨 􏽩≥ 1. (2)

For multiclass scenarios, we presumably transform the
datapoints to S, a probable infinite-dimensional space, by a
mapping function ψ defined as ψ(x)� (x12, x22, √2x1x2),
x� (x1, x2). Linear operations performed in S resemble
nonlinear processes in the original input space. Let K(xi,
xj)�ψ(xi)Tψ(xj) be the kernel function, which remaps the
inner products of the training dataset.

Constructing SVM requires values of the constants, that
is, Lagrange’s multipliers, α� (α1, . . ., αN) so that

P(α) � 􏽘
N

i�1
αi −

1
2

􏽘

N

i,j�1
αiαjyiyj K xi .xj􏼐 􏼑. (3)

is maximized with the constraints with respect to α:

􏽘

N

i�1
αiyi � 0, αi ≥ 0 for all αi. (4)

Because most αi are supposedly equal to zero, samples
conforming to nonzero αi are support vectors. Conferring to
the support vectors, the modified optimally ideal classifi-
cation function is

f(x) � 􏽘
N

i�1
αiyiK xi.xj􏼐 􏼑 + b. (5)

-e application of SVM for classifying HSI started two
decades ago [31, 32]. Focusing on the potentially critical
issue of applying binary SVMs [33], fuzzy-based SVM [34] as

fuzzy input-fuzzy output support vector machine (F2-SVM),
SVM evolved to dimensionality reduction and mixing of
morphological details [35]. It also assisted particle swarm
optimization (PSO) [36] and wavelet analysis with semi-
parametric estimation [37], as the classifier “wavelet SVM”
(WSVM). Table 1 summarizes the research carried out so far
for the classification purpose of HSI using SVM.

4.2. Sparse Representation and Classification (SRC).
Sparse method depends on dictionary learning that en-
hances and rectifies the values of parameters based upon the
current training observations while accumulating the
knowledge of the previous observations prior. It then
generates the sparse coefficient vector using sparse coding.
-is method is supremely efficient as it embeds dictionary
learning to extract rich features embedded inside the HSI
dataset. SR can classify images pixelwise by representing the
patches around the pixel with a linear combination of several
elements taken from the dictionary. -e generalization of
SRC called multiple SRC (mSRC) has three chief parame-
ters—patch size, sparsity level, and dictionary size. Dictio-
nary learning is the first step for sparse, using K-SVD
algorithm. Let Y� [y1, y2, . . ., yN] be a matrix of L2-nor-
malized training samples yi ∈Rm [45–47].

-e size of patches around the pixel is

min
D,B

‖Y − DB‖
2
F such that bi

����
���� 0≤ S, for all i, (6)

where D is a member of RmXn is the learned over a complete
dictionary, with n>m atoms, B� [b1, b2, . . ., bm] represents
the matrix of corresponding sparse coding vectors bi ∈Rn,
and ∣∣·∣∣F is the Frobenius norm. Sparsity S limits the number
of nonzero coefficients in each bi. -e next step sparse
coding is provided with dictionary D and represents y as a
linear combination of y�D􏽢b where 􏽢b is sparse. For the final
classification step, suppose for each class j ∈ {1, . . .,M} of an
image, a dictionary Di is trained. -en, the classification of a
new patch ytest is achieved by estimating a representation
error. -e class assignments rule [47] is calculated through a
pseudoprobability measure P(Cj) for each class error Ej as

√2X1X2

X2
2

X1
2

Figure 4: Classification strategy by multiclass SVM.
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j∗ � argmax
j

P Cj􏼐 􏼑, where, P Cj􏼐 􏼑 �
1

M − 1
􏽐

M
k�1,k≠ j Ek

􏽐
M
k�1 Ek

. (7)

mSRC obtains residuals of disjoint sparse representation
of ytest for all classes j. Each dictionary Dj is updated by
eliminating nonzero atoms from 􏽢bj after each of k iterations
and ytest is assigned to the class, using Q total iterations:

Dj � argmax
j

􏽘

Q

k�1
Pk Cj􏼐 􏼑. (8)

Sparse representation is an essential and efficient ma-
chine-dependent method in many areas, including
denoising, restoration, target identification, recognition, and
monitoring. It may grow even more vital when associated
with logistic regression, adaptivity, and super-pixels to ex-
tricate the joint features globally and locally. SR has a very
high potential of being associated with methods such as
PCA, ICA, Markov random fields, conditional random
fields, extreme learning machines, and DL methods such as
CNN and graphical convolutional network. Table 2 gives a
summary of the research performed so far for the classifi-
cation purpose of HSI employing SRC.

4.3. Markov Random Field (MRF). MRF describes a set of
random variables satisfying Markov probability, depicted by
undirected graphs. It is similar to the Bayesian network but,
unlike it, undirected and cyclic. An MRF is represented as a
graphical model of a joint probability distribution defined in
Figure 5. -e undirected graph of MRF, G� (V, E), in which
V is the nodes representing random variables.

Based on the Markov properties [57], the neighborhood
set Nc of a node c is defined as

Nc � c ∈ V|(c, d) ∈ E{ }. (9)

-e conditional probability of Yc decides the joint dis-
tribution of Y as

P Yc|Yv − Yc( 􏼁 � P Yc|YNc( 􏼁. (10)

To prosper the construction, the graphG absorbs a Gibbs
distribution all over the maximum cliques (C) in G:

P(y) � 􏽙
mЄC

ψm ym( 􏼁 �
1
Z

e

− 1/T 􏽘
mЄC

Vm ym( )

, (11)

where Z is the partition function. -erefore, equation (11)
can be rewritten as

P(y) �
1
Z

e
− 1/TU(y)

, (12)

where T is the temperature, whose value is generally 1, and
U(y) � 􏽐mЄCVm(ym) represents the energy.

Markov models depict the stochastic method that is
represented by a graph made of circles has an acute ad-
vantage of not considering the past states for all upcoming
future states for a random alterable dataset such as HSIs.-e
variants of Markov random fields are adaptive, hierarchical,
cascaded, and probabilistic, a blend of Gaussian mixture
model, joint sparse representation, transfer learning, etc.,
whose outcomes are pretty victorious. Hidden Markov
random fields are highly suitable for the unsupervised
classification of HSIs where the model parameters are es-
timated to make each pixel belong to its appropriate cluster
[58], leading to the precise classification. Table 3 lists out the
research carried out so far for the classification purpose of
HSI employing MRF.

4.4. Extreme Learning Machine (ELM). An efficacious
learning algorithm based on single hidden layer feedforward
neural network (SLFNN), it is applied to classify patterns
and regression. Let (xi, pi) ∈Rn X Rm be N arbitrarily per-
ceptible samples where xi � [xi1, . . ., xin]T∈Rn and pi� [pi1,
. . ., pim]T∈Rm [72]. -e standard SLFNN having 􏽢N hidden
nodes and f(x) as activation function is approached mathe-
matically as

􏽘

􏽢N

i�1
αifi xi( 􏼁 � 􏽘

􏽢N

i�1
αif wi.xj + bi􏼐 􏼑 � Oj; j � 1, . . . , N. (13)

Table 1: Summary of review of HSI classification using SVM.

Year Method used Dataset and COA Research remarks and future scope

2011 Multiclass SVM [38] San Diego3—98.86% Outperforms traditional SVM and deals better with
Hugh’s effect

2012 Fuzzy decision tree-support vector machine
(FDT-SVM) [39]

Washington DC
mall—94.35%

Efficient testing accuracy truncated computational
and storage demand, understandable edifices, and

reduction of Hugh’s effect

2014 Semi-supervised SVM kernel-spectral fuzzy
C-means (KSFCM) [40] IP—98.52% Enhanced classification and clustering by fully

exploring both labeled and unlabeled samples
2014 SVM-radial basis function (SVM-RBF) [41] IP—88.7%, UP—94.7% Outperforms other existing kernel-based methods
2015 Regional kernel-based SVM (RKSVM) [42] UP—95.40%, IP—92.55% Outperforms pixel-point-based SVM-CK

2017 Multiscale segmentation of super-pixels
(MSP-SVMsub) [43]

UP: MSP-SVMsub—97.57%,
IP: MSP-SVMsub-95.28%

Solving classic OBIC-based methods with
difficulties determining the appropriate

segmentation size reduces the Hughes phenomenon

2018
Extended morphological profiles (EMP),
differential morphological profiles (DMP),

Gabor filtering with SVM [44]

UP: MFSVM-GF—98.46%,
IP: MFSVM-GF—98.01%

Outruns several advanced classifiers: SVM, super-
pixel-based SVM, SVM-CK, multifeature SVM, EPF

2019 SVM-PCA [24] IP—91.37%, UP—98.46% Outperforms Näıve Bayes, decision tree k-NN

8 Computational Intelligence and Neuroscience



Table 2: Summary of review of HSI classification using sparse representation.

Year Method used Dataset and COA Research remarks and future scope

2013 Kernel sparse representation classification (KSRC)
[45]

IP—96.8%, UP—98.34%,
KSC—98.95%

Lacks in devising automatic window size
collection of spatial image quality, and filtering

degree of class spatial relations

2014 Multiscale adaptive sparse representation (MASR)
[46]

UP—98.47%, IP—98.43%,
SV—97.33%

MASR outperformed the JSRM single-scale
approach and several other classifiers on

classification maps and accuracy
-e structural dictionary desired to be more
inclusive and trained by discriminative learning

algorithms

2015 Sparse multinomial logistic regression (SMLR)
[47] IP—97.71%, UP—98.69%

Being a pixelwise supervised method, its
performance is better than other contemporary

methods
-e model can be improved via more technical

validations, exploitation of MRF, and
structured sparsity-inducing norm that

enhances the interpretability, stability, and
identity of the model learned

2015 Super-pixel-based discriminative sparse model
(SBDSM) [377]

IP—97.12%, SV—99.37%,
UP—97.33%, Washington

DC mall—96.84%

-e advantages of this model lie in harnessing
spatial contexts effectively through the super-
pixel concept, which is better in performance

speed and classification accuracy
Determination of a supplementary and

systematic way to adjust the count of super-
pixels to various conditions and apply SR to

other remote sensing practices

2015 Shape-adaptive joint sparse representation
classification (SAJSRC) [48]

IP—98.45%, UP—98.16%,
SV—98.53%

Local area shape-adapted for every test pixel
rather than a fixed square window for adaptive
exploration of spatial PCs, making the method
outperforms other corresponding methods

Region searching based on shape-adaption can
be used instead of the reduced dimensional map
to reconnoiter complete spatial information of

the actual HSI

2017 Multiple-feature-based adaptive sparse
representation (MFASR) [49]

IP—97.99%, UP—98.39%,
Washington DC
mall—97.26%

SA regions’ full utilization of all embedded joint
features makes the method superior to some

cutting-edge approaches
Enhancement of the proposed method in the
future by selecting features automatically and
improving dictionary learning to reduce the

computational cost

2018 Weighted joint nearest neighbor and joint sparse
representation (WJNN-JSR) [50]

UP—97.42%, IP— 93.95%,
SV—95.61%, Pavia
center—99.27%

-e model was improved using the Gaussian
weighted method and incorporates the

conventional test pixel area to achieve a new
measure of classification knowledge: -e

Euclidean-weighted joint size
Creating more effective approaches to applying
the system and further increasing classification

accuracy are taken as future work

2019 Log-Euclidean kernel-based joint sparse
representation (LogEKJSR) [51]

IP—97.25%, UP—99.06%,
SV—99.36%

Specializes in extracting covariance traits from a
spatial square neighborhood to calculate the
analogy of matrices with covariances employing
the conventional Gaussian form of Kernel

Creation of adaptive local regions using super-
pixel segmentation methods and learning the
required kernel using multiple kernel learning

methods
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Here, wi � [wi1, . . ., win]
T gives the weight vector

establishing the connection between input nodes and ith is
the hidden node and αi � [αi1, . . ., αim]Trepresents the weight
vector connecting between output node Oj with the ith

hidden node, and wi.xj represents the inner product. -e
zero error forN samples can be written in the matrix form as

Aα� P, where A (w1, . . ., w􏽢N
, b1, . . ., b􏽢N

, x1, . . ., xN) is the
neural network hidden layer output matrix, and the ith is
hidden node output with respect to x1, . . ., xN; the ith column
of A represents xN inputs.-e training of SLFNN is based on
finding specific α, wi, and bi, (i� 1, . . ., 􏽢N) [73] such that

A w1, . . . , w􏽢N
, b1, . . . , b􏽢N

, x1, . . . , xN􏼐 􏼑α − P
�����

����� � min
w,α, b

A w1, . . . , w􏽢N
, b1, . . . , b􏽢N

, x1, . . . , xN􏼐 􏼑α − P
�����

�����. (14)

-is equation denotes the cost function with a depre-
ciation. By using gradient-based algorithms, the set of
weights (αi, wi) and biases bi are attuned with epochs as

wk � wk−1 − η
δU(W)

δW
;

U � 􏽘
N

k�1
􏽘

􏽢N

j�1
αjf wj. xk + bj􏼐 􏼑 − Pk

⎛⎜⎜⎝ ⎞⎟⎟⎠

2

.

(15)

-e learning rate η must be accurate for better con-
vergence and 􏽢N<<N for better generalization performance.

Extreme learning methods proposed overcoming the
disadvantage of a single hidden layer feedforward neural
network and improving learning ability and general-
ization performance. It is a supervised method but is
highly recommended to get an extension to its semi-
supervised and unsupervised versions for dealing with
the huge amount of data such as HSIs, which are pri-
marily unlabeled and suffering from lack of training
samples. Great potential lies with its other variants than
those mentioned here, [74] of ELM, like two-hidden
layer ELM, multilayer ELM, feature mapping-based
ELM, incremental ELM, and deep ELM to become su-
perior and achieve victorious precision in classifying

HSIs. Table 4 underneath provides the summary of the
research executed so far for the classification purpose of
HSI utilizing ELM.

4.5. Active Learning (AL). It is a special type of the super-
vised ML approach to build a high-performance classifier
while minimizing the size of the training dataset by actively
selecting valuable data points. -e general structure of AL
can be understood from Figure 6. -ere are three categories
of AL—stream-based selective sampling, that is, where each
unlabeled dataset is enquired for a certain label whether to
assign a query or not; pool-based sampling; that is, the whole
dataset is under consideration before selecting the best set of
queries; and membership query synthesis; that is, it involves
data augmentation to create user selected labeling. -e
decision to select the most informative data points depends
on the uncertainty measure used in the selection. In an active
learning scenario, the most informative data points are those
the classifier is least sure about.-e uncertainty measures for
datapoints x [88] are

Least Confidence (LC): responsible for selecting the
classifier’s data point is least certain about the chosen
class. With y∗ as the most likely label sequence and v as
the learning model, LC is represented as

Table 2: Continued.

Year Method used Dataset and COA Research remarks and future scope

2019 Multiscale super-pixels and guided filter (MSS-
GF) [52] IP—97.58%, UP—99.17%

Effective spatial and edge details in his, various
regional scales to build MSSs to acquire

accurate spatial information, and GF improved
the classification maps for near-edge

misclassifications
Additional applications of efficient methods to
extract local features and segment super-pixels

are added as future work

2019 Joint sparse representation—self-paced learning
(JSR-SPL) [53] IP—96.60%, SV—98.98% -e findings are more precise and reliable than

other JSR methods

2019 Maximum-likelihood estimation based JSR
(MLEJSR) [54]

IP—96.69%, SV—98.91%,
KSC—97.13% -e model is reliable in terms of outliers

2020
Global spatial and local spectral similarity-based
manifold learning-group sparse representation-

based classifier (GSLS-ML-GSRC) [55]

UP—93.42%, Washington
DC mall—91.64%,

SV—93.79%

-e said fusion makes the method outperform
other contemporary methods focused on

nonlocal or local similarities

2020 Sparse-adaptive hypergraph discriminant analysis
(SAHDA) [56]

Washington DC
mall—95.28%

Effectively depict the multiple complicated
aspects of the HSI and will be considered for

future spatial knowledge
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SLC(x) � 1 − P(y∗ |x, v). (16)

Smallest Margin Uncertainty (SMU): Represents the
difference between classification probability of the most
likely class (y1∗) and that of the second-best class (y2∗),
written mathematically as:

SSMU(x) � Pv y1 ∗ |x( 􏼁 − Pv y2 ∗ |x( 􏼁. (17)

Largest Margin Uncertainty (LMU): Represents the
difference between classification probability of most
likely class (y1∗) and that of the least likely class (ymin),
written mathematically as:

SLMU(x) � Pv y1 ∗ |x( 􏼁 − Pv ymin ∗ |x( 􏼁. (18)

Sequence Entropy (SE): Detects the measure of disorder
in a system; higher the entropy implies a more dis-
ordered condition. -e denotation of SE is

SSE(x) � − 􏽘

􏽢y

P(􏽢y|x; v)log P(􏽢y|x; v),
(19)

with 􏽢y ranging over all possible label sequences for
input x.

Although not considered customary and coherent, AL is
pretty much capable of reducing human effort, time, and
processing cost for a large batch of unlabeled data. -is
method relies on prioritizing data that needs to be labeled in
a huge pool of unlabeled data to have the highest impact on
training. A desired supervised model keeps on being trained
through active queries and improvising itself to predict the
class for each remaining data point. AL is advantageous for
its dynamic and incremental approach to training the model
so that it learns the most suitable label for each data cluster
[89]. Table 5 lists out the research performed so far for the
classification purpose of HSI using AL.

4.6. Deep Learning (DL). Deep learning is the most re-
nowned ML technology in application and accuracy terms.
Although it is considered the next tread of ML, it also lends
concepts from artificial intelligence. DL is the mother of
algorithms that resemble human brain simulations, that is,
creativity, enhanced analysis, and proper decision-making,
based on pure or hybrid large networks for any given real-life

problem. It has enhanced the throughput of computer-
based, especially unsupervised snags for the practical
technology-based applications such as automated transla-
tion of machines, image reconstructions and classifications,
computer vision, and automated analysis. [104] -e basic
structure of any DL model possesses a three-type-layered
architecture: it contains one input layer through which input
data are fed to the next layer(s) known as the intermediate
hidden layer responsible for all the computations based on
the problem given, which passes its generated data to the
final layer, that is, the output layer, which provides the
desired ultimate output.-e steps involved in DLmodels are
as follows: having proper knowledge and understanding of
the problem, collecting the input database, selecting the
most appropriate algorithm, training the model with the
sample source database, and finally testing the target da-
tabase [105].

DL models are more efficient and advantageous over
other ML models due to the following reasons [19]:

(1) -e capability to extract hidden and complicated
structures from raw data is inextricably linked to
their ability to represent the internal representation
and generalize any form of knowledge.

(2) -ey have a wide range of data types that they can
accommodate, for example, 2D imagery data and
complex 3D data such as medical imagery and re-
mote sensing. In addition, they can use HSI data’s
spectral and spatial domains in both standalone and
linked ways [106–108].

(3) -ey provide architects a lot of versatility in terms of
layer types, blocks, units, and depth.

(4) Furthermore, its learning approach can be tailored to
various learning strategies, from unsupervised to
supervised, with intermediate strategy.

(5) Additionally, developments in processing tech-
niques, including batch partitioning and high-per-
formance computation, especially on distributed and
parallel architecture, have enabled DL models to find
better opportunities and solutions when coping with
enormous volumes of data [109].

-e models that are broadly used for HSI classification
are described as follows.

(a) Autoencoder (AE): AEs are the fundamental un-
supervised deep model based on the back-
propagation rule. AEs consist of two fragments:
encoder, connecting the input vector to the hidden
layer by a weight matrix; decoder, formed by the
hidden layer output via a reconstruction vector tied
by a specific weight matrix. SAEs are AEs with
multiple hidden layers where the production of every
hidden layer is fed to the successive hidden layer as
input. It comprises three steps: (1) first AE trained to
fetch the learned feature vector; (2) the former layer’s
feature vector is taken as input to the next layer, and
this process is redone till the completion of training;

Figure 5: Given the green nodes, the black node is independent of
other nodes.
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Table 3: Summary of review of HSI classification using MRF.

Year Method used Dataset and COA Research remarks and future scope

2011 Adaptive-MRF (a-MRF) [59] IP—92.55%
Handles homogeneous problem of “salt
and pepper” areas and the possibility of
overcorrection impact on class boundaries

2014 Hidden MRF and SVM (HMRF-SVM) [60] IP—90.50%, SV—97.24%
Outperforms SVM and improves overall
accuracy outcomes by nearly 8% and 3.2%,

respectively

2014 Probabilistic SR with MRF-based multiple
linear logistic (PSR-MLL) [61]

IP—97.8%, UP—99.1%, Pavia
center—99.4%

Exceeds other modern contemporary
methods in terms of accuracy

2014 MRF with Gaussian mixture model (GMM-
MRF) [62]

UP(LFDA-GMM-MRF)-90.88%
UP(LPNMF-GMM-MRF)—94.96%

Advantageous for a vast range of operating
conditions and spatial-spectral

information to preserve multimodal
statistics

GMM classificatory distributions are to be
considered in the future

2011

MRF with sparse multinomial logistic
regression classifier—spatially adaptive total

variation regularization (MRF-SMLR-
SpATV) [63]

UP—90.01%, IP—97.85%, Pavia
center—99.23%

Efficient time complexity of the model
Improvisation of the model by
implementing GPU and learning
dictionaries are the future agendas

2016
Multitask joint sparse representation

(MJSR) and a stepwiseMarkov random filed
framework (MSMRF) [64]

IP—92.11%, UP—92.52%

-e gradual optimization explores the
spatial correlation, which significantly
improves the effectivity and accuracy of

the classification

2016 MRF with hierarchical statistical region
merging (HSRM) [65]

SVMMRF-HSRM: IP—93.10%,
SV—99.15%, UP— 86.52%;

MLRsubMRF-HSRM-IP—82.60%,
SV—88.16%, UP—95.52%

Better solution to the technique of
majority voting that suffers from the

problem of scale choice
Considering the spatial features in the
spatial prior model of objects of the

different groups in the future

2018
Integration of optimum dictionary learning
with extended hidden Markov random field

(ODL-EMHRF) [66]

ODL-EMHRF-ML-IP—98.56%,
UP—99.63%; ODL-EMHRF-EM-

IP—98.47%, UP—99.58%

-e method has been proven to be better
than SVM-associated EMRF

2018
Label-dependent spectral mixture model
(LSMM) fused with MRF (LSMM-MRF)

[67]

-e Konka image—94.19%, the shipping
scene—66.45%

Efficient unsupervised classification
strategy that considers spectral

information in mixed pixels and the
impact of spatial correlation

Enhanced theoretical derivations of EM
steps

2019
Adaptive interclass-pair penalty and

spectral similarity information (aICP2-SSI)
along with MRF and SVM [68]

UP—98.10%, SV—96.40%, IP— 96.14%

Outperforms other MRF-based methods
More efficient edge-preserving strategies,

more spectral similitude, and class
separable calculation methods as future

research

2019 Cascaded version of MRF (CMRF) [69] IP—98.56%, Botswana—99.32%,
KSC—99.24%

Backpropagation tunes the model
parameters and least computation

expenses

2020 Fusion of transfer learning and MRF (TL-
MRF) [70] IP—93.89%, UP—91.79%

TL is taken to be very effective for HSI
classification

Future research for reducing the number
of calculations involved in the existing

2020 MRF with capsule net (caps-MRF) [71] IP—98.52%, SV—99.74%, Pavia
center—99.84%

Ensures that relevant information is
preserved, and the spatial constraint of the
MRF helps achieve more precise model

convergence
-e combination of CapsNet with several

postclassification techniques
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(3) backpropagation is used after all the hidden
layers have been trained to reduce the cost function
and to update the weights is done with a named
training set to obtain fine-tuning [110]. -e archi-
tecture of SAE is depicted in Figure 7.
Let xn ∈Rm; n� 1, 2, . . ., N represent the unlabeled
input dataset, En be the hidden encoder vector
computed by xn, and yn be the decoder vector of the
output layer [111].

Encoder :En � g Wixn + bi( 􏼁; (20)

g-> encoding function,Wi-> encoder weight matrix,
bi-> encoder bias vector.

Decoder :yn � f WjEn + bj􏼐 􏼑; (21)

f-> decoding function, Wj-> decoder weight matrix,
bj-> decoder bias vector.

Table 4: Summary of review of HSI classification using ELM.

Year Method used Dataset and COA Research remarks and future scope

2014
Ensemble extreme learning machines

(E2LM)-bagging-based ELMs (BagELMs)
and AdaBoost-based (BoostELMs) [72]

UP—94.3%, KSC—97.71%,
SV—97.19%

BoostELM performs better than kernel and
other EL methods

Performance of other differential or
nondifferentiable activation functions

2015 Kernel-based ELM—composite kernel
(KELM-CK) [75] IP—95.9%, UP—93.5%, SV—96.4% Outperforms other SVM-CK-based models

2015

ELM’s two-level fusions: feature-level fusion
(FF-ELM) and mixing ELM classifier two
levels of fusions: feature-level fusion (FF-

ELM) [76]

FF-ELM: UP—98.11%, IP—92.93%,
SV—99.12%; DF-ELM—UP—99.25%,

IP—93.58%, SV—99.63%
Outperforms basic ELM models

2016 Hierarchical local-receptive-field-based
ELM (HL-ELM) [77] IP—98.36%, UP—98.59% Surpasses other ELM methods in terms of

accuracy and training speed

2017 Genetic-firefly algorithm with ELM (3FA-
ELM) [78]

HyDice DC mall—97.36%,
HyMap—95.58%

Low complexity (ELM), better adaptability,
and searching capability (FA)

Execution time needs to be reduced in future

2017 Local receptive fields-based kernel ELM
(LRF-KELM) [79] IP—98.29% Outperforms other ELM models

2017
Distributed KELM based on MapReduce

framework with Gabor filtering (DK-Gabor-
ELMM) [80]

IP—92.8%, UP—98.8% Outperforms other ELM models

2017 Loopy belief propagation with ELM (ELM-
LBP) [81] IP—97.29% Efficient time complexity

2018 Mean filtering with RBF-based KELM (MF-
KELM) [82] IP—98.52% -e model offers the most negligible

computational hazard

2018 Augmented sparse multinomial logistic ELM
(ASMLELM) [83]

IP—98.85%, UP—99.71%,
SV—98.92%

Improved classification accuracy by
extended multi-attribute profiles and more

SR

2018 ELM with enhanced composite feature
(ELM-ECF) [84] IP—98.8%, UP—99.7%, SV—99.5%

Low complexity and multiscale spatial
feature for better accuracy

Incorporate feature-fusion technology

2019 Local block multilayer sparse ELM
(LBMSELM) [85]

IP—89.31%, UP—89.47%,
SV—90.03%

Performs anomaly and target detection.
Reduced computational overhead and

increased classification accuracy by inverse
free; saliency detection and gravitational

search

2019 ELM-based heterogeneous domain
adaptation (EHDA) [25]

HU-DC —97.51%, UP-DC —96.63%,
UP-HU —97.53%

Outperforms other HDA methods.
Invariant feature selection

2019 Spectral-spatial domain-specific
convolutional deep ELM (S2CDELM) [86] IP—97.42%, UP—99.72%

Easy construction with high training-testing
speed

Merge of DL with ELM

2020
Cumulative variation weights and

comprehensive evaluated ELM (CVW-
CEELM) [87]

IP—98.5%, UP—99.4%

Accuracy achieved due to the weight
determination of multiple weak classifiers.

Multiscale neighborhood choice and
optimized feature selection
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-e reconstruction error in SAE is denoted as

Φ(Θ) � argmin
θ,θ′

1
N

􏽘

N

k�1
L x

k
, y

k
􏼐 􏼑,where the Loss function is L x

k
, y

k
􏼐 􏼑 � ‖x − y‖

2
. (22)

AEs are unsupervised neural networks that em-
bed several convolutional hidden layers based on
nonlinear activation functions and transforma-
tions [112]. -ere are high risks of data
loss during training, but it handles the model well
for specific data types through specialized
training. -ere are AEs for every purpose such as
convolutional, sparse, variational, deep, con-
tractive, and denoising applied for data com-
pression, noise removal, feature extraction, image
augmenting, and image coloring. AE inevitably
provides a vast platform for further research on
its various applicability and its capability to
participate in hybridization. Table 6 describes a
few research works in the aspect of AEs.

(b) Convolutional Neural Network (CNN): It is a fa-
mous deep neural network that works like a human
visual cortex with many interconnected layers ap-
plied widely in image, speech, and signal processing.
It assigns learnable and modifiable weights and
biases to the input image to identify various objects
or patterns with differentiable features. As shown in

Figure 8, each layer of CNN possesses filtering ca-
pabilities with ascending complexities: the first layer
learns filtering corners and edges; intermediate
layers learn object parts filtering; and the last layer
learns filtering out the entire object in different lo-
cations and shapes. -e comparison between the
layers in terms of several parameters is shown in
Table 7. It consists of four layers [117, 118]:

(1) Convolution: -is operation is the cause of the
naming of CNN, that is, a dot product of the
original pixel values with weights identified in
the filter or kernel of the image. -e findings are
compiled into one number representing all the
pixels found in the filter. Assuming I be the
hyper-input-cube of dimension p× q× r where
p× q denotes the spatial size of I with r number
of bands, and ik is the kth feature map of I. Let d
number of filters be present in each convolu-
tional layer, and weight Wm and bias bm rep-
resent themth filter. -emth convolutional layer
output with transformation function g is
denoted as

Retrain the model Generated Model
fitted for datasetActive Learning Model/Training

Function (φ)

Active Learning Protocol

Query
Active Query

Selection

Label

Annotated Oracle
(Human/Computer Vision)

Unlabelled Dataset
Labelled Dataset

Figure 6: Principle of active learning.
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Table 5: Summary of review of HSI classification using active learning.

Year Method used Dataset and COA Research remarks and future scope

2008
AL with expectation-maximization-binary
hierarchical classifier (BHC-EM-AL) and
maximum-likelihood (ML-EM-AL) [90]

Range: KSC-90-96%,
Botswana—94-98%

Better learning levels than the random choice
of data points and an entropy-based AL
Measurement of the efficacy of the active

learning-based knowledge transfer approach
while systematically increasing the spatial/
temporal segregation of the data sources

2010 Semi-supervised-segmentation with AL and
multinomial logistic regression (MLR-AL) [91] IP—79.90%, SV—97.47%

Innovative mechanisms for selecting
unlabeled training samples automatically, AL

to enhance segmentation results
Testing the segmentation in various scenarios
influenced by limited a priori accessibility of

training images

2013 Maximizer of the posterior marginal by loopy belief
propagation with AL (MPM-LBP-AL) [92] IP—94.76%, UP—85.78%

Improved accuracy than previous AL
applications

Use parallel-computer-architectures such as
commodity—clusters or GPUs to build

computationally proficient implementation

2015

Hybrid AL-MRF, that is, uncertainly sampling
breaking ties (MRF-AL-BT), passive selection

approach random sampling (MRF-AL-RS), and the
combination (MRF-AL-BT+RS) [93]

IP—94.76%, UP—85.78%
(MRF-AL-RS provides the

highest accuracies)

Outperforms conventional AL and SVM AL
methods due to MRF regularization and

pixelwise output
Merge the model with other effective AL
methods and test them with a limited

number of training samples

2015 Integration of AL and Gaussian process classifier
(GP-AL) [94]

IP—89.49%, Pavia
center—98.22%

Empirical autonomation of AL achieves
reasonable accuracy

Adding diversity criterion to the heuristics
and contextual information with the model

and reducing computation time

2016
AL with hierarchical segmentation (HSeg) tree:

adding features and adding samples
(Adseg_AddFeat +AddSamp) [95]

IP—82.77%, UP—92.23%

Outruns several baseline methods-selecting
appropriate training data from already
existing labeled datasets and potentially
decreasing manual laboratory labeling

Reduce the computational time that limits its
applicability on large-scale datasets

2016 Multiview 3D redundant discrete wavelet
transform-based AL (3D-RDWT-MV-AL) [96]

HU—99%, KSC—99.8%,
UP—95%, IP—90%

-e precious method as a combination of an
initial process with AL, improved

classification

2017
Discovering representativeness and

discriminativeness by semi-supervised active
learning (DRDbSSAL) [97]

Botswana—97.03%,
KSC—93.47%, UP—93.03%,

IP—88.03%
Novel approach with efficient accuracy

2017 Multicriteria AL [98] KSC—99.71%, UP—99.66%,
IP—99.44%

Surpasses other existing AL methods
regarding stability, accuracy, robustness, and

computational hazard
A multi-objective optimization strategy and
the usage of advanced attribute-based profile

features

2018 Feature-driven AL associated with morphological
profiles and Gabor filter [99]

IP—99.5%, UP—99.84%,
KSC—99.53% (Gabor-BT)

A discriminative feature space is designed to
gather helpful information into restricted

samples

2018
Multiview intensity-based AL (MVAL)-multiview

intensity-based query-representative strategy
(MVIQ-R) [100]

UP—98%, Botswana—99.5%,
KSC—99.9%, IP—95%

Focus on pixel intensity obtains unique
feature and hence better performance

Selection of combination of optimal attribute
features

2019 Super-pixel with density peak augmentation (DPA)-
based semi-supervised AL (SDP-SSAL) [101] IP—90.08%, UP—85.61%

Novel approach proposed based on super-
pixels density metric

Development of a pixelwise solution to
produce super-pixel-based neighborhoods
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Table 5: Continued.

Year Method used Dataset and COA Research remarks and future scope

2020
Adaptive multiview ensemble spectral classifier and

hierarchical segmentation (Ad-
MVEnC_Spec +Hseg) [102]

KSC—97.63%, IP—87.1%,
HU—93.3%

Enhancement in the view sufficiency, and
promotion of the disagreement level by the

dynamic view, provides lower
computational complexity due to parallel

computing

2020 Spectral-spatial feature fusion using spatial
coordinates-based AL (SSFFSC-AL) [103] IP—100%, UP—98.43%

High running speed can successfully address
the “salt and pepper” phenomenon but drops
a few if similar class samples are distributed

in different regions differently
-e sampling weight parameter conversion

to an adaptive parameter is adjusted
adaptively as the training samples are

modified
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Hp (1)

H1 (1)

H1 (1)H1 (2)

H1 (2)
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H2 (1) H2 (2)
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Wj (1)

Wj (2)

Wi (2)

Hq (2)
E2 Hu (1)

Hv (2)
XN

Y1

Y2

YN

Encoder Decoder

Figure 7: -e network structure of stacked autoencoders; input X-to-E is the encoding phase; E-to-output Y is the decoding phase.

Table 6: Summary of the review of HSI classification using deep learning—AE.

Year Method used Dataset and COA Research remarks and future scope

2013 Autoencoders (AE) [110] Error rate: KSC—4%, Pavia
city—14.36%

-is article opened a considerable doorway of research,
including other deep models for better accuracy

2014 Stacked autoencoder and logistic
regression (SAE-LR) [113]

KSC—98.76%, Pavia
city—98.52%

Highly accurate in comparison to RBF-SVM and
performs testing in optimized time limit than SVM or

KNN but fails in training time efficiency

2016
Spatial updated deep AE with

collaborative representation-based
classifier (SDAE-CR) [114]

IP—99.22%, Pavia
center—99.9%,

Botswana—99.88%

Highly structured in extracting high specialty deep
features and not the hand-crafted ones and accurate
Improving the deep network architecture and selection

of parameters

2019 Compact and discriminative stacked
autoencoder (CDSAE) [115]

UP—97.59%, IP—95.81%,
SV—96.07%

Efficient in dealing with feature space in low dimension,
but the computation cost is high as per architecture size

2021 Stacked autoencoder with distance-based
spatial-spectral vector [116]

SV—97.93%, UP—99.34%,
surrey—94.31%

Augmentation of EMAP features with the geometrically
allocated spatial-spectral feature vectors achieves

excellent results. Better tuning of hyperparameter and
more powerful computational tool required

Improving the training model to become unified and
classified in a more generalized and accurate way
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Convolution
+

Activation
(ReLU)

Image Hypercube Patch as
input

ReLU/Softmax

Predicted Class Labels as Output

Pooling

Fully Connected

Figure 8: -e CNN architecture deploying the layers.

Table 7: Comparison of convolutional layers.

Arguments Convolution layer Pooling layer Fully connected layer

Input (i) 3D-cube, preceding set of
feature maps

(i) 3D-cube, preceding set of
feature maps (i) Flattened-3d-cube, preceding set of feature maps

Parameters

(i) Kernel counts (i) Stride (i) Number of nodes

(ii) Kernel size (ii) Size of window
(ii) Activation function: selected based on the role of the
layer. For aggregating info-ReLU. For producing final

classification—softmax
(iii) Activation function

(ReLU)
(iv) Stride
(v) Padding

(vi) Type and value of
regularization

Action

(i) Application of filters made
of small kernels to extricate

features

(i) Reduction of
dimensionality (i) Aggregate information from final feature maps

(ii) Learning (ii) Extraction of the
maximum of a region average (ii) Generate final classification

(iii) One bias per filter (iii) Sliding window
framework

(iv) Application of activation
function on each feature map

value

Output (i) 3D-cube, a 2D-map per filter
(i) 3D-cube, a 2D-map per

filter, reduced spatial
dimensions

(i) 3D-cube, a 2D-map per filter
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Ym � 􏽘
r

k�1
g ik.Wm + bm( 􏼁; m � 1, 2, . . . , d. (23)

(2) Activation: -e convolution layer produces a
matrix significantly smaller than the actual im-
age. -e matrix is passed through an activation
layer (generally rectified linear unit, aka ReLU),

adding nonlinearity that enables the network to
train itself through backpropagation.

(3) Pooling: It is the method of even more down-
sampling and reduction of the matrix size. A
filter is applied over the results obtained by the
previous layer and chooses a number from each
set of values (generally the maximum, the max-

Table 8: Summary of review of HSI classification using deep learning—CNN.

Year Method used Dataset and COA Research remarks and future scope

2015
Convolutional neural network and
multilayer perceptron (CNN-MLP)

[120]

Pavia city—99.91%, UP—99.62%,
SV—99.53%, IP—98.88%

Far better than SVM, RBF mixed classifiers, the
effective convergence rate can be useful for large

datasets
Detection of human behavior from hyperspectral

video sequences

2016 3D-CNN [121] IP—98.53%, UP—99.66%,
KSC—97.07%

A landmark in terms of quality and overall
performance

Mapping performance to be accelerated by
postclassification processing

2016 Spectral-spatial feature-based
classification (SSFC) [122] Pavia center—99.87%, UP—96.98%

Highly accurate than other methods
Inclusion of optimal observation scale for

improved outcome

2016 CNN-based simple linear iterative
clustering (SLIC-CNN) [123] KSC—100%, UP—99.64, IP—97.24%

Deals with a limited dataset use spectral and local-
spatial probabilities as an enhanced estimate in the

Bayesian inference

2017 Pixel-pair feature enhanced deep CNN
(CNN-PPF) [124] IP—94.34%, SV—94.8%, UP—96.48%

Overcomes the significant parameter and bulk-
data problems of DL, PPFs make the system

unique and reliable, and voting strategy makes the
more enhanced evaluations in classification

2017 Multiscale 3D deep convolutional
neural network (M3D-DCNN) [125] IP—97.61%, UP—98.49%, SV—97.24%

Outperforms popular methods like RBF-SVM and
combinations of CNNs

Removing data limitations and improving the
network architecture

2018
2D-CNN, 3D-CNN, recurrent 2D-
CNN (R-2D-CNN), and recurrent 3-

D-CNN (R-3D-CNN) [126]

IP-99.5%, UP—99.97%,
Botswana—99.38%, PaviaC—96.79%,

SV—99.8%, KSC—99.85%

R-3D-CNN outperforms all other CNNs
mentioned and proves to be very potent in both
fast convergence and feature extraction but suffers

from the limited sample problem
Applying prior knowledge and transfer learning

2019 3D lightweight convolutional neural
network (CNN) (3D-LWNet) [127]

UP—99.4%, IP—98.87%,
KSC—98.22%

Provides irrelevance to the sources of data
Architecture is to be improvised by intelligent

algorithms

2020 Hybrid spectral CNN (HybridSN)
[128] IP—99.75%, UP—99.98%, SV—100%

Removes the shortfalls of passing over the
essential spectral bands and complex, the tedious
structure of 2D-CNN and 3D-CNN exclusively

and outruns all other contemporary CNN
methods superiorly, like SSRN and M-3D-CNN

2020
Heterogeneous TL based on CNNwith
attention mechanism (HT-CNN-

attention) [129]

SV—99%, UP—97.78%, KSC—99.56%,
IP—96.99%

Efficient approach regardless of the sample
selection strategies chosen

2020 Quantum genetic-optimized SR based
CNN (QGASR-CNN) [27] UP—91.6%, IP—94.1%

With enhanced accuracy, overfitting and “salt-
and-pepper” noise are resolved

Improvement of operational performance by the
relation between feature mapping and selection of

parameters

2020 Rotation-equivariant CNN2D
(reCNN2D) [130] IP—97.78%, UP—98.89, SV—98.18% Provides robustness and optimal generalization

and accuracy without any data augmentation

2020 Spectral-spatial dense connectivity-
attention 3D-CNN (SSDANet) [131] UP—99.97%, IP— 99.29% Higher accuracy but high computational hazard

Optimization by using other efficient algorithms
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pooling), which allows the network to train
much more quickly, concentrating on the most
valuable information in each image feature. For
an m×m square window neighbor S with N
elements and zij activation value concerning (i, j)
location, the average pooling is formulated as

T �
1
N

􏽘
(i,j)ϵS

zij. (24)

(4) Fully Connected (FC): A typical perceptron
structure with multilayers. -e input is a single-
dimensional vector representing the output of
the layers above. Its output is a probability list for
the various possible labels attached to the image.
Classification decision is the mark that receives
the highest likelihood. It is mathematically
represented with transformation function g, for
N samples of inputs with X″ and Y″ being the
outputs havingW being the weight matrix and b,
the bias constant, is as follows:

Y″ � 􏽘
N

j�1
g WX″ + b( 􏼁. (25)

CNN is the most method-in-demand and widely
explored model among all DL models. -e
functional unit of convolutional layers is kernels
that expertise in extricating the most relevant and
enriched spatial and spectral features from the
given dataset through automated filtering by
convolution operation [119]. It provides an in-
tense description of the whereabouts of CNNs.
-e most popular ones are attention-based CNN,
ResNet, CapsNet, LeNet, AlexNet, VGG, etc.
Some of them are still unexplored yet in classi-
fying HSI.-e detailed research work on CNN for
dealing with HSI classification is listed in Table 8.

(c) Recurrent Neural Network (RNN): DL is a very ef-
ficient approach that follows a sequential framework
with a definite timestamp t. “Recurrent” refers to
performing the same task for each sequence element,
with the output depending on the preceding com-
putations. In other words, they have a “memory”
that enfolds information about the calculation so far
type of neural network, and the output of a particular
recurrent neuron is fed backward as input to the
same node, which leads the network to efficiently
predict the output, represented in Figure 9, where
RNN unrolls, that is, show the complete sequence of
the entire network structure neuron by neuron. It
consists of the following steps:

(1) X� [. . ., xt−1, xt, xt+1, . . .] be the input vector,
where xt represents input at timestamp t.

(2) ht is the “memory of the network,” the hidden
state at timestamp t. Preliminarily, h−1 is ini-
tialized to zero vector to calculate the first hidden
step. ht being the current step is calculated based

on previously hidden step ht−1, formulated by
[132]

ht � f Pxt + Wht−1( 􏼁, (26)

where f denotes a function of nonlinearity, that
is, tanh or ReLU, and W be the weight vector.

(3) Y� [. . ., yt−1, yt, yt+1, . . .] be the output vector,
where yt represents input at timestamp t, gen-
erally a softmax function: yt � softmax(Q ht).
RNN is an efficient deep model with large po-
tential. -e recurrence looping structure
acquainted with RNN enables it to store relevant
information about spatial-spectral relationships
between the pixels and neighbors. -ere are
several RNN architectures based on inputs/
outputs as stated in [133], and based on LSTM,
there are five categories [134]. -ese variates can
be well utilized in collaboration with other DL
methods such as MRF and PCA to find their
accuracy.
-e literature studies based on RNN are cata-
loged in Table 9.

(d) Deep Belief Network (DBN): DBNs are formed by
greedy stacking and training restricted Boltzmann
machines (RBMs), an unsupervised learning algo-
rithm based on “contrastive divergence.” For neural
networks, RBMs suggest taking a probabilistic ap-
proach and are thus called stochastic neural net-
works. Each RBM is made of three parts: a visible
unit (input layer), an invisible unit (hidden layer),
and a bias unit. -e general structure of a DBN is
depicted in Figure 10.
For a DBN, the joint distribution of input vector, X
with n hidden layers hn, is defined as [137]

P X, h1, . . . , hn( 􏼁 � 􏽙

n−2

i�0
P hi|hi+1( 􏼁⎞⎠.P hn−1, hn( 􏼁,⎛⎝ (27)

where X� h0, P(hi−1, hi) is the conditional distri-
bution of the visible units on the hidden RBM units
at level i and P(hn−1, hn) is the hidden-visible joint
distribution in top-level RBM. DBN has two phases:
the pretraining phase depicts numerous layers of
RBM, and fine-tuning phase is simply a feedforward
NN.
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Figure 9: -e RNN structure with recurrent neurons.
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DBN is the graphical representation that is gener-
ative; that is, it creates all distinct outcomes that can
be produced for the particular case and learn to
disengage a deep hierarchical depiction of the sample
training data. DBNs are structurally more capable
than RNNs as they lack loops, are pretrained in an
unsupervised way, and are computationally eminent
for particularly classification problems. Minor
modifications or collaborations can improvise DBNs
functionally and accuracy. Table 10 depicts a list of
works done on DBN.

(e) Generative Adversarial Network (GAN): One of the
most recent DL models that are rapidly growing its
footsteps in the area of technical research. -e GAN
model is trained using two kinds of neural networks:
the “generative network” or “generator” model that
learns to generate new viable samples and the
“discriminatory network” or “discriminator,” which
learns to discriminate generated instances from
existing instances. Discriminative algorithms seek to
classify the input data, which is given as a collection
of certain features; the algorithm maps feature on
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RBM
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LayerHidden

Layer

Figure 10: -e detailed DBN structure.

Table 9: Summary of review of HSI classification using deep learning—RNN.

Year Method used Dataset and COA Research remarks and future scope

2017
Gated recurrent unit-based RNN with

parametric rectified tanh as activation function
(RNN-GRU-pretanh) [132]

UP—88.85%,
HU—89.85%,
IP—88.63%

An enhanced model that utilizes the intrinsic feature
provided by HS pixels with better accuracy than SVM

-e study is limited to only spectral features
Incorporation of deep end-to-end convolutional RNN

with both spatial-spectral features

2019 Spectral-spatial cascaded recurrent neural
network (SSCasRNN) [135]

IP—91.79%,
UP—90.30%

Outruns pure RNN and CNN models due to the perfect
placement of convolutional and recurrent layers to

explore joint information

2020 Geometry-aware deep RNN (Geo-DRNN) [136] UP—98.05%,
IP—97.77%

Due to encoding the complex geometrical structures,
the data lack space

Minimization of memory-occupation

2021
2D and 3D spatial attention-driven recurrent

feedback convolutional neural network
(SARFNN) [28]

IP—99.15%,
HU—86.05%

Integrating attention and feedback mechanism with
recurrent nets in two layers, 2D and 3D, enables efficient

accuracy

Table 10: Summary of review of HSI classification using deep learning—DBN.

Year Method used Dataset and COA Research remarks

2015 Deep belief network and logistic
regression (DBN-LR) [137]

IP—95.95%, Pavia
City—99.05%

-e drawback in training time complexity, it is super-fast testing,
and result generating capability outperforms RBF-SVM with EMP

2019 Spectral-adaptive segmented deep
belief network (SAS-DBN) [138]

UP—93.15%,
HU—98.35%

Capable of addressing the complexities and other subsidiaries of
limited samples

2020 Conjugate gradient update-based
DBN (CGDBN) [139] UP—97.31%

Better approach towards stability and convergence of the training
model

High time complexity
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labels [140]. In contrast, generative algorithms at-
tempt to construct the input data, which is given
with a set of features, and it will not classify it, but it
will attempt to create a feature that matches a certain
label. -e generator tries to get better at deluding the
discriminator during the training, and the dis-
criminator tries to grab the counterfeits generated by
the generator.-us, the training procedure is termed
adversarial training. -e generator and discrimina-
tor should be trained against a static opponent,
keeping the discriminator constant while training
the generator and keeping the generator constant
when training the discriminator. -at helps to un-
derstand the gradients better.

In a GAN model, say D and G denote the discriminator
and the generator units that map a noise data space θ to real
and original data space x, respectively. G(θ) denotes the fake
output generated byG, andD(y), andD(G(θ)) areD’s output
for real and fake training samples, respectively. Pθ(θ) and
Pd(y) represent the input model distribution and original
data distribution, respectively, when θ∼Pθ [141] as shown in
Figure 11.

The loss function forD: L
(D)

� max[log(D(y))

+ log (1 − D(G(θ)))].

(28)

The Loss function forG: L
(G)

� min[log(D(y))

+ log (1 − D(G(θ)))].

(29)

Combining equations (28) and (29), the total loss of the
entire dataset represented by the min-max value function is
given by

min
G

max
D

V(D, G) � min
G

max
D

Ey ∼ Pd(y)[log(D(y))]􏼐

+ Eθ ∼ Pθ(θ)[log(1 − D(G(θ)))]􏼁.
(30)

GAN is a generative modeling neural network archi-
tecture based on the concept of adversarial training that
utilizes a model to build new instances that are conceivably
derived from an existing sample distribution. Hence, GANs
are new favorites for classifying HSIs as they compensate for
the lack of data problem and classify the data in a pro
manner. -ere are several types of GANs—conditional
GAN, vanilla GAN, deep convolutional GAN (simple type);
and Pix2Pix GAN, CycleGAN, StackGAN, and InfoGAN
(complex type) [142]. -ese may be very useful for images
like HSIs as they can deal with related issues. -e research
works based on the GAN are listed in Table 11.

4.7. Transfer Learning (TL). It is the most current hot topic
in interactive learning, and there are more to it to be ex-
plored. It is an approach where information gained is
transferred in one or more source tasks and is used to
enhance the learning of a similar target task. TL can be
represented diagrammatically by Figure 12 and mathe-
matically shown as follows:

Domain, D, is represented as {X, P(X)}, X� {x1, . . ., xn},
xi ∈X; X denotes the feature space, and P(X) symbolizes the
marginal probability of sample data point X [149].

Task T is depicted as {Y, P(Y|X)}� {Y, Φ}, Y� {y1, . . .,
yn}, yi ∈Y; Y is the label space, Φ is the prognostic objective
function, having learned form (feature vector, label) couples,
(xi, yi); xi ∈X, yi ∈Y, and calculated as the conditional
probability.

Also, for every feature vector in D, Φ predicts its cor-
responding label as Φ(xi)� yi.

If DS and DT be the source and target domains, TS and
TT be the source and target tasks, respectively, with DS≠DT
and TS≠TT. TL objectifies to learn P(YT|XT), that is, the
target conditional probability distribution in DT with
knowledge obtained from DS and TS.

Traditional learning is segregated and solely based on
particular tasks, datasets, and different independent models
working on them. No information that can be converted
from one model to another is preserved, but on the contrary,
TL possesses the human-like capability of transferring
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Figure 11: -e GAN architecture.
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knowledge; that is, knowledge can be leveraged from priorly
trained models to train new models, the process of which is
faster, more accurate, and with the limited amount of
training data. Table 12 represents a brief detail about the
research works on transfer learning.

5. Discussion

Based on the reviewed articles, we can draw the desired
inferences that provide answers to the investigative ques-
tions mentioned in Section 2 and show the clear motive and
benefits of this review.

RI 1:What is the significance of traditionalML andDL for
analyzing HSI?

Ans: Hyperspectral data have certain restrictions, as
cited in Section 1. Statistical classifiers initially addressed

them, but the operations and analysis became much easier
andmore accurate after the invention ofML/DL strategies in
a machine-dependent way [155, 156]. -e general advan-
tages that researchers were provided by the ML/DL algo-
rithms while dealing with HSIs are as follows: (i) easy dealing
with high-dimensional data, that is, troubles of Hughes
phenomenon removed [115, 125]; (ii) equally manipulative
to labeled and unlabeled samples [99, 150]; (iii) precise and
the meticulous choice of features [51, 127]; (iv) high-end-
precise models to deal with real hypercubes, hence top-notch
classification accuracy [119, 154]; v) removes overfitting,
noises, and other hurdles to a much greater extent [120, 147];
(vi) embedded spatial-spectral feature extraction and se-
lection units [119, 133]; (vii) mimics human brain to solve
multiclass problems [136, 138].

RI 2: How are ML/DL more impactful on HSI than other
non-ML strategies?

Ans: -e initial discovery of hyperspectral data has
suffered due to its limitations. In the preliminary research
stage, the scientists followed the traditional methodology for
classifying HSIs, that is, preprocessing (if required), ex-
traction, and selection of discriminative characteristics and
then ran a classifier on those features to identify the land
cover groups. Hence, they emphasized the feature extractor
techniques such as PCA [9], ICA [10], and wavelets [13],
assisted by some basic random classifiers such as extended
morphological profiles [2, 157], NN [158, 159], logistic re-
gression [160], edge-preserving filters [10, 161], density
functions/matrices [162], and Bayes law of classification
[163, 164]. -ese classic mathematics-oriented techniques
were not enough to deal with such a huge amount of data like
HSI, as they were simple in structure and design and easy to

Large amount of data

Source
Domain Data

Source Model Target Model

Source Labels Target Labels

TrainingTraining

Learned Knowledge

Target
Domain Data

Small amount of data

Figure 12: -e principle of transfer learning.

Table 11: Summary of review of HSI classification using deep learning—GAN.

Year Method used Dataset and COA Research remarks and future scope

2018 Hyperspectral 1D generative adversarial
networks (HSGAN) [140] IP—83.53% Outperforms CNN, KNN, etc.

2018 3D augmented GAN [143] SV—93.67%, IP—91.1%,
KSC—98.12%

Data augmentation solved the problem of
overfitting and improved class accuracy

2019 Conditional GAN with conditional
variational AE (CGAN-CVAE) [144] UP—83.85%, DC Mall—89.36%

Semi-supervised and ensemble prediction
technique ensures the model’s training under

limited sample conditions

2020 Semi-supervised variational GAN
(SSVGAN) [145]

UP—84.35%, Pavia
Center—97.15%, DC

Mall—92.21%, Jiamusi—64.76%

Outperforms other GAN variants, that is,
CVAEGAN and ACGAN, but it suffers from
feature matching, overfitting, and convergence

problem
Correction through metric learning method

2020 Spectral-spatial GAN-conditional random
field (SS-GANCRF) [146] IP—96.3%, UP—99.31%

Enhanced classification capability
Creating an end-to-end training system, graph
constraint placed on the convolutional layers

2021
Adaptive weighting feature-fusion

generative adversarial network (AWF2-
GAN) [147]

IP—97.53%, UP—98.68%

Exploration of the entire joint feature space and
fusion of them, joint loss function, and the central

loss gained intraclass sensitivity from local
neighboring areas and offered an efficient spatial

regularization outcome

2021
Variational generative adversarial network

with crossed spatial and spectral
interactions (CSSVGAN) [148]

IP—93.61%, UP—99.11%,
SV—97%

Increased classification potential by utilizing
transformer and GAN
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implement. It also could not predict well enough the
multiclass problems, which is very much required for a
dataset like HSI, whose land covers belong to multiple
classes of regions. Also, these methods were not accurate in
feature selection and extraction or dealing with the storage of
such bulk data. -ese reasons made researchers struggle to
analyze properly, process, and classify HSIs. On the con-
trary, the advancements of ML/DL technologies have
opened a broad gateway of research that researchers are still
exploring and combining with different groupings to ad-
dress the HSI classification problem in real life, dealing with
the limitations mentioned above [26, 131]. -e tabular
depiction of the advantages and disadvantages of theML and
non-ML strategies applied for HSI classification is shown in
Table 13.

RI 3: What are the advantages and challenges faced by the
researchers for the chosen ML/DL-based algorithm for HSI
classification?

Ans:We added the advantages and challenges of theML-
and DL-based techniques in Table 13.

RI 4: What are the emerging literary works of ML/DL on
HSI classification in the year 2021?

Ans: In the ongoing years, 2021 seems to be more
promising in terms of technical advancements for the problem
concerned. New techniques are emerging, along with hybrid
ones, to solve the issue to a whole new level, the methodologies’
accuracy to be described. Recent work on MRF with a band-
weighted discrete spectral mixture model (MRF-BDSMM) in a
Bayesian framework has been proposed in [165], an unsu-
pervised adaptive approach to accommodate heterogeneous
noise and find the abundant labeled subpixels to extricate joint
features. A collaboration of Kernel-based ELMwith PCA, local
binary pattern (LBP), and gray-wolf optimization algorithm
(PLG) is proposed as novel methodologies. -ey help reduce
huge dimensions, seek global and local-spatial features, and

optimize the KELM parameters to obtain the class labels [166].
A variant of SRC is proposed in [167], dual sparse represen-
tation graph-based collaborative propagation (DSRG-CP) that
separates spatial and spectral dimensions with the respective
graph to improve the labeling scheme limited samples by
collaborating the outcomes. AL has been one of the hot
topics so far, as it integrates with a Fredholm kernel reg-
ularized model (AMKFL) that enables better labeling than
manual ones, even for noisy images [168]. It ties with DL
with the augmentation of training samples to label the
uncertain hypercubes (ADL-UL) accurately [169], facili-
tates iterative training sample augmentation by expanding
the hypercubes and adds discriminative joint features
(ITSA-AL-SS) [170], extracts local unique spatial multi-
scale characteristics from the super-pixels (MSAL) [171]. A
novel idea of attention-based CNNs is proposed in
[172, 173], the former (SSAtt-CNN) collides two attention
subnetworks—spatial and spectral with CNN as the base,
and the latter (FADCNN) is a dense spectral-spatial CNN
with feedback attention technique that perfectly poses the
band weights for better mining and utilization of dominant
features. GAN is one the most exploited methods to date,
and [174] proposes the full utilization of shallow features
from the unlabeled bands through a multitasking network
(MTGAN); in [175], the discriminator is based upon
capsule network and convolutional long short-term
memory to extricate less visible features and integrates
them to build high-profile contextual characteristics
(CCAPS-GAN); 1D and 2D CapsGAN together form a
dual-channel spectral-spatial fusion capsule GAN
(DcCaps-GAN) shown in [176]; and generative adversarial
minority oversampling for 3D-hypercubes (3D-Hyper-
GAMO) is depicted in [177] that focuses on the minor class
features using existing ones to label and classify them
properly.

Table 12: Summary of review of HSI classification using transfer learning.

Year Method used Dataset and COA Research remarks and future scope

2018 Deep mapping-based heterogeneous
transfer learning model (DLTM) [150] Washington DC Mall—96.25% Capable of binary classification

Improvisation to multiclass classification

2018 AL with stacked sparse autoencoder
(AL-SSAE) [151]

UP—99.48%, center of
Pavia—99.8%, SV— 99.45%

Domains, both source, and target possess finely tuned
hyperparameters

Architectural parameters need to be modified further
to enhance the classification accuracy

2020
Heterogeneous TL based on CNN with

attention mechanism (HT-CNN-
attention) [152]

SV—99%, UP—97.78%,
KSC—99.56%, IP—96.99%

Efficient approach regardless of the sample selection
strategies chosen

2020 ELM-based ensemble transfer learning
(TL-ELM) [26]

UP—98.12%, Pavia
center—96.25%

Efficient accuracy and transferability with high training
speed

Inclusion of SuperPCA and knowledge transfer

2020
Lightweight shuffled group

convolutional neural network
(abbreviated as SG-CNN) [153]

Botswana—99.67%, HU—99.4%,
Washington DC—97.06%

Fine-tuned model as compared to CNN architectures,
low computational cost for training

Inclusion of more grouped convolutional architectures

2021
Super-pixel pooling convolutional

neural network with transfer learning
(SP-CNN) [154]

SV—95.99%, UP—93.18%,
IP—94.45%

More excellent parameter optimization with more
accuracy using a limited number of samples and in a

very short period for both training and testing
Optimal super-pixel segmentation and merging with

different CNN architectures
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RI 5: How are ML- and DL-based hybrid techniques
helping scientists in HSI classification?

Ans: Since the dawn of the emergence of HSIs, it has
sufferedmany hurdles in its path of analysis and information
extraction. -e maximum number of highly correlated
bands and the high spatial-spectral features signature by the
electromagnetic spectrum embedded in it are always con-
sidered a traction matter. -us, finding an appropriate
technology for the classification of such interconnected and
hugely confined featured high-dimensional images is a very
tedious and strenuous matter. -e classification methods
chosen so far have been mostly limited to supervised. -e
requirement of a sufficient number of quality-labeled data
and unsupervised, in which the lack of coherence between
the spectral clusters and the target regions, causes the failure
in obtaining the desired accuracy. A semi-supervised
method is needed to overcome such problems as a com-
bination of supervised and unsupervised methods, named
the hybrid method. A hybrid method is always advantageous
in robustness and flexibility towards the high-dimensional
data.

-e hybrid methods have the following benefits:

(i) Specifically designed to overcome the limitations
and take advantage of the methodologies involved
in the concerned hybrid to achieve a deep, rich, and
insightful conclusion (general).

(ii) Addressing and resolving multiple issues regarding
the handling and analyzing the HSI data, at a time,
depending upon the methods that are chosen for
mixing/hybridizing [179–183].

(iii) Coherence in time, space, and cost complexities
[184–186].

(iv) Better interpretability, quality, effectivity leading to
the construction of a more refined framework
[180, 182, 183, 187–194].

(v) Deterministic spectral, spatial, and contextual fea-
ture extraction, reduction, and selection, and
combining them to achieve desired accuracy and
performance [182, 183, 187, 188, 195–197].

ML, being a standard versatile technology, can merge
with traditional techniques like PCA for its benefit. As stated
in [195, 198], PCA is exploited at its best for feature ex-
traction, selection, and reduction to achieve higher accuracy
and performance quality. PCA is one of the best pre-
processing methods considered to date for improvised
spectral dimension reduction [180], proper selection of
spectral bands and their multiscale features in a segmented
format [181, 199], noise-reduced spectral analysis [27], and
feature extraction [130, 196]. PCA, in collaboration with SVM
[195, 200], DL for feature reduction and better classification
[182, 183], CNNwith multiscale feature extraction [188, 189],
and sparse tensor technology [190], has highly been appre-
ciated as soulful research. All these recent time collaborations
and a special honor to the merging of ICA-DCT with CNN
cited in [191] are the evidence that although PCA is cate-
gorized under traditional methods, it is supremely relevant
for its significant usefulness in handling HSIs.

Some other hybridizations are also explored by re-
searchers, such as SRC with mathematical index of diver-
gence-correlation [192], Gabor-cube filter [193], and ELM
[83, 85]; ELM with CNN [86] and TL [26]; AL based on
super-pixel profile [201, 202], AL with CNN [203], CapsNet
[204], CNN [204, 205], and TL [151, 184]; CNN with at-
tention-aided methodology [172, 173, 185] and GAN [186];
GAN with dynamic neighborhood majority voting mecha-
nism [194, 197], CapsNet [175, 176, 206, 207]; and TL with
MRF [70]. -ese articles depict the highly tenacious per-
formance with literal mitigation of the computational
complexities enforced on the raw HSI data to build a strong
and enhanced model for achieving higher accuracy than ever.

Table 13: Comparison between ML and non-ML techniques for HSI classification.

Methods Advantages Disadvantages

Classical state-of-art
techniques

(i) Simple structure and design (i) High space complexity due to the storage of bulk
data

(ii) Less time consumption (ii) Based on empirical identities, hence a tedious
workpiece

(iii) Easy to implement (iii) Feature selection and extraction are not accurate

(iv) Dimension handling skillfully by PCA and ICA (iv) Suffers from limited labeled sample problem,
Hughes phenomenon, and noise

(v) Better binary and moderate multiclass classification
by kernel and SVM

Advanced machine
learning techniques

(i) Easy dealing with high-dimensional data, that is,
troubles of Hughes phenomenon removed

(i)-e construction of the model is difficult due to its
complex network-alike structure

(ii) Equally manipulative to labeled and unlabeled
samples

(ii) High time complexity due to training and testing
of the huge amount of raw HSI data

(iii) Precise and meticulous choice of features (iii) Extremely expensive design
(iv) High-end-precise models to deal with real
hypercubes, hence, top-notch classification accuracy (iv) Strenuous to implement

(v) Removes overfitting, noises, and other hurdles to a
much greater extent
(vi) Mimics the human brain to solve multiclass
problems
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Table 14: -e advantages and challenges of the ML- and DL-based techniques for HSI classification.

ML/DL techniques Advantages Challenges

Support vector
machine

(i) Robust in terms of outliers, Hughes effect, and
dimensions as its reduction is not primarily necessary
[32, 41, 43]

(i) It works very well for binary classification but fails
for generating accurate classes for multiclass problems
[31]

(ii) Supports both supervised, semi-supervised, and
unsupervised problems with less overfitting risks
[24, 33, 37, 44]

(ii) Training time is high for high-class datasets like HSI
[31, 32]

(iii) Form of a sigmoid kernel that deals better than the
rest of the previous for unlabeled and unstructured HSI
datasets [35, 40–42]

(iii) Difficulty in fine-tuning the parameters [41, 42]

(iv) -e capability of solving the classification problem
for both binary and multiclass problems by
outperforming several methods [39]

(iv) Complex interpretability [33, 35]

(v) Can improve the performance if assisted with other
supporting methods [36, 40–42]

(v) Lack of easy generalization to the datasets having
multiple classes [33, 35]
(vi) Complexity in building the model due to a lack of
sufficient labeled samples [31, 32]

Sparse representation
and classification

(i) A dictionary with relevant data is used for learning
with a minimal number of optimal parameters [45, 46]

(i) Making the dictionary considers high expense
overheads [50]

(ii) Builds precise and powerful classification models
with higher interpretability through sparse coding
[49, 50, 54]

(ii) -e dictionary or the coding might cause loss of
information [48, 178]

(iii) Proper memory usage in an optimized manner
[53, 55, 178]

(iii) Difficulties in representing such high-profile with
higher resolution image data like HSI through the
sparse matrix [47, 48]

(iv) Reduces the estimated variance between the classes
to produce better outcomes [49, 56, 178]

Markov random field

(i) Works well for a wide range of unstructured
problems and no direct dependency between classes and
the parameters [67, 69]

(i) Normalization of data might be hectic for high
dimension data [63, 70]

(ii) Better denoising effect [59]
(ii) Suffers from the lack of training undirected data
that might not be possible to represent graphically
[61, 62]

(iii) Robust for both spatial and spectral distributions
[62, 64] (iii) Poor interpretability [63, 68]

(iv) Time complexity is low due to the graphical
representation of data [63]

Extreme learning
machines

(i) Less training time and faster learning rate as
compared to previous methods [86] (i) Higher computational hazard [76–80]

(ii) Avoidance for local minima and finishes job in single
iteration [83, 87]

(ii) -e wrong choice of an optimal amount of the
hidden layer neurons may cause redundancy in the
model and hence affect the classification accuracy
[85, 86]

(iii) Advantageous for overfitting caused due to several
bands in HSIs [83]

(iii) -ere is plenty of room for advancements in the
algorithm to accommodate itself to be compatible for
dealing with HSI data [78, 82, 86]

(iv) Builds an enhanced model with better prediction
performance at the optimized expense [86]
(v) Improved generalization ability, robustness, and
controllability [78, 84, 85]
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RI 6: What are the latest emerging techniques associated
with addressing classifying HSIs?

Ans: -e following are the most recent research studies
that have enlightened a new path of dealing with the purpose:

(i) DSVM: -e latest and novel concept incorporates
DL facilities with traditional kernel SVM. -is
combines four deep layers of kernels with SVM
being the hidden layer units, namely, exponential
and gaussian radial basis function (ERBF and

GRBF), neural and polynomial [208].-is approach
has outperformed several efficient DL methods with
nearly 100% accuracy for IP and UP datasets.

(ii) Conditional Random Fields (CRFs): -ese are the
structured generalization of multinomial logistic
regression in the form of graphical models based on
a priori continuity considering the neighboring
pixels of analogous spectral signatures that possess
the same labels. -ey extensively explore the hidden

Table 14: Continued.

ML/DL techniques Advantages Challenges

Active learning

(i) A very efficient way of learning for both supervised
and semi-supervised problems [91, 97, 101, 103] (i) Higher computational hazard [76–80]

(ii) Ease in segregating the interclass and intraclass
features through active query sets [91, 95, 102, 103]

(ii) -e wrong choice of an optimal amount of the
hidden layer neurons may cause redundancy in the
model and hence affect the classification accuracy
[85, 86]

(iii) Training speed is comparatively high for not so
large-scale data [103]

(iii) -ere is plenty of room for advancements in the
algorithm to accommodate itself to be compatible for
dealing with HSI data [78, 82, 86]

(iv) Knowledge-based solid models can be generated
[103]
(v) Achieves greater classification accuracies for
unlabeled HSIs [95, 102]

Deep learning

(i) Diverse, unstructured, and unlabeled raw HSI
datasets are finely processed where preprocessing of the
data is not needed [110, 122, 125, 144]

(i) Suffers from a lack of a large amount of HSI data,
which is practically unavailable [123, 136]

(ii) Possesses the capability to address supervised, semi-
supervised, and specifically unsupervised learning
problems [127, 128, 137]

(ii) -e extreme expense to generate an appropriate
model by training a complex data structure like HSIs
[114, 139, 148]

(iii) Expertise in dimension reduction, denoising,
feature extraction as embedded properties [27, 114, 124] (iii) Low interpretability [131, 147]

(iv) Address in an illustrious manner to the issues such
as Hughes phenomenon, overfitting, and convergence.
[120, 124, 145]

(iv) -eoretically not sound, hence incomprehensible
where an error occurs and its rectification
[122, 124, 145]

(v) Robust and adaptive to new features introduced in
the dataset [26, 123, 145]

(v) High time and space complexity and computational
hazard [131, 136, 148]

(vi) -e hidden layer neurons are proven to be eminent
in training the desired model with a highly qualified
prior knowledge (DBN, RNN, CNN) [127, 129, 135, 138]
(vii) Computational efficiency with high-performance
speed (CNN, SAE) [114, 115, 127, 128]
(viii) Data augmentation facility (GAN) [143, 145]

Transfer learning

(i) Works as a combination of different models, be it
traditional or latest machine-lefted techniques, that
together brings out a highly improved hybrid model
[151, 152]

(i) Data overfitting [150]

(ii) Capable of transferring knowledge from the source
domain, that is , a pretrained model to the target
domain, that is, a new model to make it more enriched
[151, 152]

(ii) Complex structure of the model [150, 151]

(iii) Greater feature extraction and selection capability
[152] (iii) Less interpretability

(iv) Stable model with highly optimized parameters and
hyperparameters [154] (iv) Difficulty in implementation

(v) High training speed and accuracy with low
computational cost [26, 153]
(vi) Reduced computational cost and training time
complexity [153, 154]
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spectral-contextual information. In [146], CRF in-
corporates with semi-supervised GAN whose
trained discriminators produce softmax predictions
that are guided by dense CRFs graph constraints to
improve HSI classification maps. A collaboration
between 3D-CNN and CRF has been proposed in
[209] to make a deep CRF capable of extracting the
semantic correlations between patches of hyper-
cubes by CNN’s unary and pairwise potential
functions. A semi-supervised approach is depicted
in [210], embedding subspace learning and 3D
convolutional autoencoder to remove redundancy
in joint features and obtain class sets using an it-
erative algorithm. In [211], CRF with Gaussian edge
potentials associated with deep metric learning
(DML) classifies HSI data pixelwise using the
geographical distances between pixels and the Eu-
clidean distances between the features. A novel
framework using HSI feature learning network
(HSINet) with CRF is proposed [212] that is a
trainable end-to-end DL model with back-
propagation that extracts joint features, edges, and
colors based on subpixel, pixel, and super-pixels. In
[213], a decision fusion model including CRF and
MRF is built based on sparse unmixing and soft
classifiers output.

(iii) Random Forest (RF): It is an efficient algorithm that
ensembles regression and classification tree. It en-
ables the HSI classification model to be noise-tol-
erant, inherent in the multiclass division, robustness
in parallelism, and speed. In [214], RF is compared
to the DL algorithm, which outshined the classifi-
cation accuracy. A new framework of cascaded RF is
shown in [215] that uses the boosting strategy to
generate and train base classifiers and Hierarchical
Random Subspace Method to select features and
suitable base classifiers based on the diversity of the
features. A novel collaboration of semi-supervised
learning and AL and RF is featured in [216], where
the queries based on spatial information are fed to
AL, and then, the labeled samples are classified by
RF through semi-supervision. [217, 218] depicts a
deep cube CNN model that extracts pixelwise joint
features and is classified by RF.

(iv) Graph Convolutional Network (GCN): A descendent
of CNN, a structure designed to generalize and
convert the convolution data to graph data. It
consists of three steps feature aggregation, feature
transformation, and classification. Being an expert
in graphical modeling considers the spatial inter-
relations between the classes at its best. In [219], the
different unique features collected from CNN and
GCN are fused additive, elementwise, and concat-
enated way. A new framework of globally consistent
GCN is introduced in [220], which first generates a
spatial-spectral local optimized graph whose global
high-order neighbors obtain the enriched contex-
tual information employing the graph topological

consistent connectivity; at last, those global features
determine the classes. [221] shows the concept of a
dual GCN network, which works with a limited
number of training samples, where first extricates all
the significant features and second learns label
distribution. A novel idea of deep attention GCN is
introduced in [222] based on similarity measure-
ment criteria between the mixed measurement of a
kernel-spectral angle mapper and spectral infor-
mation divergence to accumulate analogous spectra.
[223] emerges as a collaboration between CNN and
GCN to extract pixel and super-pixelwise joint
features by learning small-scale regular regions and
large-scale irregular regions.

6. Conclusion

-is article depicts the various technologies and procedures
used for HSI classification since the dawn of its invention to
date.-ere are many barriers to dealing with such high-band
data as HSI mentioned above. Despite that, many re-
searchers have taken their interest in this field to im-
provise the existing techniques or even invent new ones
throughout the last decade. As per the considerable im-
provement in technologies and the introduction of ML
into the classification issues of HSI, it has become more
accurate than traditional and contemporary state-of-art
methodologies. As a result, DL has emerged as the most
eminent work tool for HSI classification for the last half of
this decade. -e more the researchers focused on this, the
more they explored the remote sensing and space imagery
features.

-is review article bears the individual information for
every method and their submethods about their perfor-
mance, research gaps, and achievements. In addition, it
appends a novel research methodology that makes this work
more distinctive than others. After going through each
methodology’s minute details, the most significant infer-
ences have been drawn, which add further novelty to our
work. Also, it shows a path of choosing an appropriate
technique and its alternatives for future researchers, hence
alleviating its creativity and uniqueness, above all other
contemporary review works on this subject. Also, it provides
the details of the most recent research scenario on HSI
classification and some of the currently developed tech-
niques that might be acutely useful in several future research.
Our study holds the uniqueness and the novelty regarding
several aspects, such as the following: (1) it includes the
research works carried out in the last decade, that is,
2010–2020, and the most recent papers of the previous year,
i.e., 2021, and we have mentioned it in Section 3; (2) the
number of papers referred here is above 200, outnumbering
other review papers; (3) the review is carried out by selecting
the most appropriate papers solely dedicated to our subject
of interest, that is, machine learning techniques serving the
purpose of hyperspectral image classification. -en, the
findings from those works of literature are systematically
arranged in the tabular format (Tables 1–12); (4) the

Computational Intelligence and Neuroscience 27



objective behind this review work is expressed by RQ 1–6.
Also, they provide a clear view of the recent technological
advances and applications that the researchers are devel-
oping in recent times; (5) Table 14 provides an explicit idea
of the pros and cons of each ML technique described in this
manuscript when applied for classifying hyperspectral im-
ages, which will help the researchers in their future research;
and (6) the researcher who wishes to write a literature review
can follow our proposed methodology that depicts the flow
of work in a methodical way. [224].

7. Limitations of Present Work and Its
Future Scope

-e study has some limitations: (i) we have used fewer
keywords in the current research (ii) we only focused on
seven popular ML techniques; (iii) we briefly explain the
emerging methodologies; and (iv) the experimental details
are not fully discussed.

As a future proposition, we would like to explore more
keywords, more techniques, and more studies that offer a
better understanding of other learning methods, both tra-
ditional and contemporary. In addition, there are several
instances of hybrid strategies along with somemore eminent
and latest ML/DL techniques that we shall look forward to
exploring in both qualitative and quantitative manner.
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HMRF: Hidden Markov random field
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