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Recent imaging science and technology discoveries have considered hyperspectral imagery and remote sensing. The current
intelligent technologies, such as support vector machines, sparse representations, active learning, extreme learning machines,
transfer learning, and deep learning, are typically based on the learning of the machines. These techniques enrich the processing of
such three-dimensional, multiple bands, and high-resolution images with their precision and fidelity. This article presents an
extensive survey depicting machine-dependent technologies’” contributions and deep learning on landcover classification based on
hyperspectral images. The objective of this study is three-fold. First, after reading a large pool of Web of Science (WoS), Scopus,
SCI, and SCIE-indexed and SCIE-related articles, we provide a novel approach for review work that is entirely systematic and aids
in the inspiration of finding research gaps and developing embedded questions. Second, we emphasize contemporary advances in
machine learning (ML) methods for identifying hyperspectral images, with a brief, organized overview and a thorough assessment
of the literature involved. Finally, we draw the conclusions to assist researchers in expanding their understanding of the re-
lationship between machine learning and hyperspectral images for future research.

1. Introduction

Hyperspectral imagery is one of the most significant dis-
coveries in remote sensing imaging sciences and techno-
logical advancements. Hyperspectral imagery (HSI) is the
technology that depicts the perfect combination of Geo-
graphic Information System (GIS) and remote sensing.
Besides, HSI has several advantages such as ecological
protection, security, agriculture and horticulture applica-
tions, crop specification and monitoring, medical diagnosis,

identification, and quantification [1]. RGB images are made
up of three dimensions: width, height, and 3 color bands or
channels consisting of color information, that is, red, green,
and blue. They are stored as a 3D byte array that explicitly
holds a color value for each pixel in the image; a combination
of RGB intensities put down onto a color plane. However, in
contrast, HSI comprises thousands of hypercubes and hence
possesses a large resolution and an enormous amount of
embedded information of all kinds—spectral, spatial, and
temporal. This information enables various applications to
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detect and characterize land covers, which are most sig-
nificantly explored [2]. RGB images are captured by digital
RGB cameras capable of characterizing objects only based on
their shape and color. Moreover, the embedded information
is minimal since only three visible bands are available in the
human visibility range. The HSI, on the other hand, is
captured by specialized airborne hyperspectral sensors
placed on artificial satellites, that is, spectrometers. They
have a broad range of scenes by acquiring large numbers of
consecutive bands, not confined to the visible light spectrum
and through a wider spectral band-pass. However, compared
to the digital sensor that absorbs light in just three wide
channels, a hyperspectral sensor’s channel width is much
narrower, making the spectral resolution and data volume
much higher, resulting in hurdles to store, mine, and
manage [3]. Furthermore, processing these data with a
massive number of bands imposes many obstacles such as
noise-causing image calibration, geometric distortion, noisy
labels, and limited or unbalanced labeled training samples
[4-6], that is, Hughes phenomenon and dimensionality
reduction-related artifacts: overfitting, redundancy, spectral
variability, loss of significant features between the channels,
etc. [7].

Classifying HSIs is considered to be an intrinsically
nonlinear problem [8], and the initial approach by linear-
transformation-based statistical techniques such as principle
component analytical methods, that is, principal component
analysis (PCA) [9] and independent component analysis
(ICA) [10]; the discriminant analytical methods, that is,
linear [11] and fisher [12]; wavelet transforms [13]; and
composite [14], probabilistic [15], and generalized [16]
kernel methods, had shown promising outcomes. Still, their
focus was limited to spatial information. They emphasized
that the feature extractor techniques assisted by some basic
random classifiers that lead to complexity in terms of cost,
space, and time are not sufficiently accurate. After the
success of these traditional methodical techniques assigned
for HSI classification, researchers became keenly interested
in applying the most recent emerging but not tedious
computer-based methods that made the entire process
smoother and vicinal to perfection. Study advancements
suggest that the last decade can be considered the most
escalating era regarding computer-based technologies due to
the emergence of machine learning (ML). ML is an algo-
rithmic and powerful tool that resembles the human brain’s
cognition. It simply represents a complex system by holding
abstraction. Hence, it can reduce complexities and peep into
the insights of the vast amount of HS data to fetch out the
hidden discriminative features, both spectral and spatial
[17]. Thus, it overcomes all the stumbling blocks to achieve
the desired accuracy in identifying the classes that the objects
of the target HSI data belong to. Hence, they act as all-in-one
techniques that can serve the purpose without further as-
sistance. Keeping this in mind, we conducted an extensive
survey based on the various discriminative machine and
deep learning (ML, DL) models for HSI. In most of the
literature studies, the HSI datasets that are commonly used
for landcover classification are AVIRIS Indian Pines (IP),
Kennedy Space Center (KSC), Salinas Valley (SV), and
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ROSIS-03 University of Pavia (UP), along with less fre-
quently used Pavia Center, Botswana, University of Houston
(HU), etc. They are pre-refined and made publicly available
on [18] for download and perform operations.

The motivation of our work is divided into three parts.
First, a novel methodology is proposed for the review
work that is entirely systematic and helps find the in-
spiration in forming the research gaps and embedded
questions after going through a large pool of research
articles. Second, this work focuses on the current ad-
vancements of ML technologies for classifying HSI, with
their brief, methodical description and a detailed review of
the literature involved with them. Finally, the inferences
are drawn and help the researchers boost knowledge for
their future research. The key contributions made to the
research field on hyperspectral imagery by our novel effort
are as follows:

(1) The thorough revision of the analytical and classi-
fication work carried out to date on HS imagery by
employing ML/DL techniques.

(2) Emphasis on the categorized methods explored and
practiced so far in an overly frequent manner. Also, it
includes a brief interpretation of the most recent
technologies and the highlighted hybrid techniques.

(3) An open knowledge base that acts as a reservoir of
relevant information that is listed out that interprets
all research on each mentioned technique in terms of
their methodology, convenience and limitations, and
future strategies. This illustration might administrate
in making a proper choice of objective for further
research on the field of HSIs.

(4) Explicit idea of the growth of interest in the con-
cerned field that would attract researchers to invest
themselves with a coherent, substantial specification
(benefaction and drawbacks) of all the methods,
individually, that contributes academically to the
researchers about their favorable result and the
difficulties for a chosen technique.

(5) A transitory rendition of the most recent research on
HSIs signifies the currently adapted technologies as
hot spots. Also, focus on the research areas about the
interest that could apply to others, that is, the hy-
bridized methods popular among researchers to
address the problem and achieve the desired ex-
perimental results.

The rest of the article is arranged as follows: Section 2
briefly explains the constraints faced by the researchers in
dealing with HSI; Section 3 represents the methodology for
the research along with the motive behind this review;
Section 4 describes seven ML techniques, namely, support
vector machine (SVM), sparse representation (SR), Markov
random field (MRF), extreme learning machine (ELM),
active learning (AL), deep learning (DL), and transfer
learning (TL); Section 5 shows up the complete summary of
the literature review work in the form of answers to the
research questions; Section 6 depicts the conclusions; and
Section 7 explains the limitations and future work.
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2. Constraints of HSI Classification

Since their emergence, several difficulties have caused issues
in analyzing and performing operations on hyperspectral
images. Initially, it suffered from spectroscopy technology
due to the bad quality of hyperspectral sensors and poor
quality with insufficient data. However, along with the
advancement in applied science, things have come to ease,
but there are still some well-known nondispersible hitches
that need to be overcome. Some of them are stated as follows:

(a) Lack of high-resolution Earth observation (EO)
noiseless images: During the initial stage of the
discovery of spectrometers, they were not very ef-
ficient. Due to this, noises caused by water vapor,
atmospheric pollutants, and other atmospheric
perturbations modify the signals coming from the
Earth’s surface for Earth observations. Several efforts
have been made over the last decades to produce
high-quality hyperspectral data for Earth observa-
tion and develop a wide range of high-performance
spectrometers that combines the power of digital
imaging, spectroscopy, and extracting numerous
embedded spatial-spectral features [19].

(b) Hindrances in the extraction of features: During data
gathering, redundancy across contiguous spectral
bands results in the availability of duplicated in-
formation, both spatially and spectrally, obstructing
the optimal and discriminative retrieval of spatial-
spectral characteristics [7].

(c) The large spatial variability and interclass similarity:
The hyperspectral dataset collected contains unus-
able noisy bands due to mistakes in the acquisition
that result in information loss in terms of the unique
identity, that is, the spectral signatures and excessive
intraclass variability. Furthermore, with poor reso-
lution, each pixel comprises broad spatial regions on
the Earth’s surface, generating spectral signature
mixing, contributing to the enhanced interclass
similarity in border regions, thus creating incon-
sistencies and uncertainties for employed classifi-
cation algorithms [19].

(d) Limitation of available training samples and insuf-
ficient labeled data: Aerial spectrometers cover sig-
nificantly smaller areas, so they can only collect a
limited number of hyperspectral data. That leads to
the restriction of the number of training samples for
classification models [20]. In addition, HSIs typically
contain classes that correspond to a single scene, and
available classification models’ learning procedures
require labeled data. However, labeling each pixel
requires human skill, which is arduous and time-
consuming [21].

(e) Lack of balance among interclass samples: The class
imbalance problems, where each class sample has a
wide range of occurrences, diminish the usefulness
of many existing algorithms in terms of enhancing
minority class accuracy without compromising

majority class accuracy, which is a difficult task in
and of itself [22].

(f) The higher dimensionality: Due to incorporating
more information in multiple channels, such high-
band pictures increase estimation errors. The curse
of dimensionality is a significant drawback for su-
pervised classification algorithms, as it significantly
impacts their performance and accuracy [23].

The possible solutions to the above limitations that also
represent the possible operations that are performed to
analyze and comprehend the HSIs can be (1) technological
advancement to make versatile and robust hardware for the
spectrometers to capture the scenes more accurately, (2)
spectral unmixing and resolution enhancement for better
feature extraction and distinguishing capability of the em-
bedded objects, (3) image compression-restoration and
dimensionality reduction for addressing the high-dimen-
sions and lack of data, and (4) use of robust classifiers that
are capable of dealing with the above issues as well as
promote fast computation ability [7].

These hurdles were very prominent for the methods that
classify HSI based on the feature extrication from HSI. After
ML/DL came into the scene, the operations on HSI became
effortless as explicit feature extraction is not needed, and it
has also many advantages such as great dealing with noise
and time complexity. However, ML/DL acquires a few
drawbacks in specific criteria [19], including parameter-
tuning and numerous local minima problems in training
procedures and compression [20] overfitting, optimization,
and convergence problems despite many positive aspects.

3. Research Methodology

This section is divided into three categories that will assist in
understanding the review procedure and its ambition.

3.1. Planning of the Review. Three systematic advances are
utilized that comprise the planning behind our work. First,
based on efficacy and frequency of applicability on classi-
tying HSIs, seven most recently used ML techniques have
been chosen in this article for review, which establishes the
operational relationship and compatibility with the issue of
categorizing the land covers of a particular scene captured as
HSI. Second, this relationship provides all the shortfalls and
benefits of those methods and their potential possibilities.
Finally, we identified the limitations of our present review
work and how to rectify them in the future.

3.2. Conducting the Review. The entire review work has been
conducted in the following steps:

(a) Collection of literature: The literature studies have
been collected based on the keywords: “Hyper-
spectral image classification,” “Machine learning
techniques,” “Deep learning techniques,” from the
most relevant search engine, that is, Google (Google
Scholar), which provides the scholarly articles for the
concerned topic. These literature studies include
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Web of Science (WoS), Scopus, SCI, and SCIE-
indexed and SCIE-related articles, both journals and
conferences. Several methods are utilized through-
out the literature that assist the classification of
hyperspectral data, out of which ML techniques
seem to be more convenient and promising.

(b) Screening: The collected research papers depict raw
data, sorted categorically according to the chrono-
logical order of the ML techniques used over the
periods. The screening was accomplished based on
the following constraints:

(i) Time Period: The studies published in the range
of 2010-2021 are included in this work. Studies
published before 2010 are not included.

(ii) Methodology: The studies on HSI’s analytical
operations (denoising, spectral unmixing, etc.)
other than classifying the underlying land
covers are rejected.

(iii) Type: The studies that deal with the hyper-
spectral images of a particular land scene are
considered, discarding the medical hyper-
spectral imagery, water reservoir, etc.

(iv) Design of study: The studies comprising ex-
perimental outcomes and the elaboration of the
models are accepted; other literary-based arti-
cles or review papers are only for primary
knowledge gain.

(v) The language used: The studies written in the
English language are only considered.

Figure 1 represents the total number of the literary
studies screened individually on each of the cate-
gories of chosen ML techniques in the form of pie-
charts with a percent-wise pattern. Figure 2 is a
standard graphical depiction of the number of most
recent articles that we screened for each chosen ML-
based method in the period ranging from 2015 to
2021.

FiGuRre 1: The statistical pie-charts of screened articles on ML/DL techniques used for HSI classification (source: SCI, SCIE, Scopus, WoS).

(c) Selection: Out of all the papers screened based on the
abovementioned criteria, a few most eligible are
handpicked. The selection has been made keeping
specific parameters: the modeling strategy and al-
gorithm and its suitability with the modern tech-
nological scenario. The final result is the
corresponding overall accuracy (COA) for each
dataset used, preferably journals with a good citation
index.

(d) Analysis and inference: These selected papers are
thoroughly reviewed to determine their contribu-
tion, restrictions, and future propositions. Based on
this analysis, the deductions are drawn to show the
pathway of further research.

3.3. Research Investigations (RI). 'The analysis arises some of
the queries:

RI 1: What is the significance of traditional ML and DL
for analyzing HSI?

RI 2: How is ML/DL more impactful on HSI than other
non-ML strategies?

RI 3: What are the advantages and challenges faced by
the researchers for the chosen ML/DL-based algorithm
for HSI classification?

RI 4: What are the emerging literary works of ML/DL
on HSI classification in the year 20212

RI 5: How are ML- and DL-based hybrid techniques
helping scientists in HSI classification?

RI 6: What are the latest emerging techniques associ-
ated with addressing classifying HSIs?

3.4. Datasets. The HSI datasets are pre-refined and made
publicly available for download and perform operations.
There are six datasets that are described here in a concise
manner:
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FIGURE 2: The statistical bar graph of screened articles on ML/DL techniques used for HSI classification from 2015 to 2021 (source: SCI,
SCIE, Scopus, WoS): (a). ML. (b). DL.

(i) AVIRIS Indian Pines: This dataset was taken by 0.4-2.5 ym, out of which 24 noisy bans are removed

airborne visible infrared imaging spectrometer
(AVIRIS) sensor, on June 12, 1992. The scene
captured here was Indian Pines test site in North-
Western Indiana, USA, and contains an agricultural
area exemplified by its crops of regular geometry
and some irregular forest zones. It consists of
145 = 145 pixels with a spectral resolution of 10 nm
and a spatial resolution of 20 mpp and 224 spectral
reflectance bands in the wavelength range

due to low signal-to-noise ratio. The scene contains
16 different classes of land covers.

(ii) Salinas Valley: This scene was obtained by AVIRIS

sensor over various agricultural fields of Salinas
valley, California, USA, in 1998. The scene is
characterized by a high spatial resolution of 3.7 mpp
and a spectral resolution of 10nm. The area is
covered by 512 %217 spectral samples with a
wavelength range of 0.4-2.5 ym. Out of 224 reflector
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FIGUre 3: The categories of the eminent machine learning techniques used for HSI classification.

bands, 20 noisy bands are discarded due to water
absorption coverage. The scene comprises 16 dif-
ferent land classes.

(iii) Pavia Center: This scene was captured by a reflective

optics system imaging spectrometer (ROSIS-03)
sensor during a flight campaign over Pavia,
northern Italy. It possesses 115 spectral bands, out
of which only 102 are useful. Its spectral coverage is
0.43-0.86 yum, with a spectral resolution of 4 nm and
a spatial resolution of 1.3mpp defined by
1096 * 1096 pixels. There are 9 different land cover
classes in the area.

(iv) Pavia University: This scene was also captured by

the same sensor at the same time as Pavia center,
over the University of Pavia in 2001. It has the same
structural features as the Pavia center, only con-
trasting in considering 103 bands out of 115 bands
with a size of 610 * 340 are taken after discarding 12
noisy bands. The scene contains 9 classes with urban
environmental constructions.

(v) Kennedy Space Center: This scene was acquired by

NASA AVIRIS sensor over Kennedy Space Center,
Florida, USA, on March 23, 1996. It was taken from
an altitude of approximately 20 kilometres, having a
spatial resolution of 18 kilometres and a spectral
resolution of 10nm. The wavelength range of the
scene is 0.4-2.5 ym with the special size of 512 * 614
pixels; 24 of 48 bands were removed for a low signal-
to-noise ratio. The ground contains 13 predefined
classes by the center personnel.

(vi) Botswana: The scene was obtained by the Hyperion

sensor placed on the NASA EO-1 satellite over

Okavango delta, Botswana, South Africa, on May 31,
2001. It has a special resolution of 30 metres and a
spectral resolution of 10 nm while taken at an al-
titude of 7.7 kilometres. Out of 242 bands con-
taining 1476 = 256 pixels, with a wavelength range
of 400-2500nm, 97 bands are considered to be
water-corrupted and noisy; hence, 145 remaining
are useful. The scene comprises 14 land cover
classes.

4. Machine Learning-Based Techniques for
HSI Classification

ML technologies are not only intelligent and cognitive, but
also their accuracy is skyrocketing due to their embedded
mechanical abilities such as extraction, selection, and re-
duction of joint spatial-spectral features as well as contextual
ones [24-26]. Moreover, the hidden dense layers with
various allocated functions of the extensive networks work
as intelligent learners by creating dictionaries or learning
spaces to store deterministic information and then separate
the landcover classes through its classification units [27-29].
The latest ML techniques that assist in classifying the
hyperspectral data, that is, SVM, SRC, ELM, MRF, AL, DL,
and TL, are shown categorically in Figure 3 and are discussed
hereafter in detail.

4.1. Support Vector Machine (SVM). SVM is an innovative
pattern-recognition technique rooted in the principle of
statistical learning. The rudimentary concept of SVM-based
training can unravel the ideal linear hyperplane so that the
predicted classification error is mitigated, be it for binary or
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FIGURE 4: Classification strategy by multiclass SVM.

multiclass purposes [30], as depicted in Figure 4. For linearly
separable binary classification, let (x;, y;) be the standard set
of linearly separating samples with x € (R)N and ye{-1, +1}.
The universal formula of linear decision function in n-di-
mensional space with the classification hyperplane is

g(x):wT.x+b:0, (1)

where w is the weight directional vector and b is the slope of
the hyperplane. A separating hyperplane with margin 2/||w||
in the canonical form must gratify the following constraints:

Vi [(wT.xi) + b] > 1. (2)

For multiclass scenarios, we presumably transform the
datapoints to S, a probable infinite-dimensional space, by a
mapping function y defined as w(x):(xlz, X2, V2x1%5),
x=(x;, xp). Linear operations performed in S resemble
nonlinear processes in the original input space. Let K(x;,
xj) = Ill(xi)TI//(Xj) be the kernel function, which remaps the
inner products of the training dataset.

Constructing SVM requires values of the constants, that

is, Lagrange’s multipliers, a = (qy, ..., ay) so that
N 1N
P(a) = 2“1- 5 Zl %yl j K(xi~xj)' (3)
i= i,j=

is maximized with the constraints with respect to a:
N
Z a;y; =0, a;>0foralla; (4)
i=1

Because most «; are supposedly equal to zero, samples
conforming to nonzero «; are support vectors. Conferring to
the support vectors, the modified optimally ideal classifi-
cation function is

N
f(x) = Z ociy,-K(xi.xj) +b. (5)
i=1

The application of SVM for classifying HSI started two
decades ago [31, 32]. Focusing on the potentially critical
issue of applying binary SVMs [33], fuzzy-based SVM [34] as

fuzzy input-fuzzy output support vector machine (F2-SVM),
SVM evolved to dimensionality reduction and mixing of
morphological details [35]. It also assisted particle swarm
optimization (PSO) [36] and wavelet analysis with semi-
parametric estimation [37], as the classifier “wavelet SVM”
(WSVM). Table 1 summarizes the research carried out so far
for the classification purpose of HSI using SVM.

4.2. Sparse Representation and Classification (SRC).
Sparse method depends on dictionary learning that en-
hances and rectifies the values of parameters based upon the
current training observations while accumulating the
knowledge of the previous observations prior. It then
generates the sparse coefficient vector using sparse coding.
This method is supremely efficient as it embeds dictionary
learning to extract rich features embedded inside the HSI
dataset. SR can classify images pixelwise by representing the
patches around the pixel with a linear combination of several
elements taken from the dictionary. The generalization of
SRC called multiple SRC (mSRC) has three chief parame-
ters—patch size, sparsity level, and dictionary size. Dictio-
nary learning is the first step for sparse, using K-SVD
algorithm. Let Y= [y, y,, ..., yn] be a matrix of L2-nor-
malized training samples y; € R [45-47].
The size of patches around the pixel is

. 2 .
Ig)lé‘l Y — DB|| such that ||bl|| 0<S, foralli, (6)

where D is a member of R™*" is the learned over a complete
dictionary, with n >m atoms, B=[by, b,, ..., b,,] represents
the matrix of corresponding sparse coding vectors b; € R,
and [|-||is the Frobenius norm. Sparsity S limits the number
of nonzero coeflicients in each b, The next step sparse
coding is provided with dictionary D and represents y as a
linear combination of y = Db where b is sparse. For the final
classification step, suppose for each class j€ {1, ..., M} of an
image, a dictionary D; is trained. Then, the classification of a
new patch yi is achieved by estimating a representation
error. The class assignments rule [47] is calculated through a
pseudoprobability measure P(C)) for each class error E; as
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TaBLE 1: Summary of review of HSI classification using SVM.
Year Method used Dataset and COA Research remarks and future scope
2011 Multiclass SVM [38] San Diego3—98.86% Outperforms traditional ’SVM and deals better with
Hugh’s effect
. . . Efficient testing accuracy truncated computational
2012 Fuzzy decision tree-support vector machine Washington DC and storage demand, understandable edifices, and
(FDT-SVM) [39] mall—94.35% : )
reduction of Hugh’s effect
2014 Semi-supervised SVM kernel-spectral fuzzy IP—98.52% Enhanced classification and clustering by fully

C-means (KSFCM) [40]
2014 SVM-radial basis function (SVM-RBF) [41]
2015 Regional kernel-based SVM (RKSVM) [42]

Multiscale segmentation of super-pixels

2017 (MSP-SVMsub) [43]

Extended morphological profiles (EMP),
2018 differential morphological profiles (DMP),
Gabor filtering with SVM [44]
2019 SVM-PCA [24]

IP—88.7%, UP—94.7%
UP—95.40%, IP—92.55%

UP: MSP-SVMsub—97.57%,
IP: MSP-SVMsub-95.28%
UP: MESVM-GF—98.46%,
IP: MFSVM-GF—98.01%
1P—91.37%, UP—98.46%

exploring both labeled and unlabeled samples
Outperforms other existing kernel-based methods
Outperforms pixel-point-based SVM-CK
Solving classic OBIC-based methods with
difficulties determining the appropriate
segmentation size reduces the Hughes phenomenon

Outruns several advanced classifiers: SVM, super-
pixel-based SVM, SVM-CK, multifeature SVM, EPF

Outperforms Naive Bayes, decision tree k-NN

M
_ 1 Zkzl,kséj Ey (7)
M-1 Zgl Ey

mSRC obtains residuals of disjoint sparse representation
of Yiest for all classes j. Each dictionary D; is updated by
eliminating nonzero atoms from b; after each of k iterations
and y is assigned to the class, using Q total iterations:

jx = argmaxP(Cj), where,P(Cj)
j

Q
D; = argmax Z Pk(Cj). (8)
k=1

Sparse representation is an essential and efficient ma-
chine-dependent method in many areas, including
denoising, restoration, target identification, recognition, and
monitoring. It may grow even more vital when associated
with logistic regression, adaptivity, and super-pixels to ex-
tricate the joint features globally and locally. SR has a very
high potential of being associated with methods such as
PCA, ICA, Markov random fields, conditional random
fields, extreme learning machines, and DL methods such as
CNN and graphical convolutional network. Table 2 gives a
summary of the research performed so far for the classifi-
cation purpose of HSI employing SRC.

4.3. Markov Random Field (MRF). MRF describes a set of
random variables satisfying Markov probability, depicted by
undirected graphs. It is similar to the Bayesian network but,
unlike it, undirected and cyclic. An MREF is represented as a
graphical model of a joint probability distribution defined in
Figure 5. The undirected graph of MRF, G = (V, E), in which
V is the nodes representing random variables.

Based on the Markov properties [57], the neighborhood
set N, of a node c is defined as

N.={ceV|(c,d) € E} 9)

The conditional probability of Y, decides the joint dis-
tribution of Y as

P(Y.|Y,-Y,) =P(YIYy\.) (10)

To prosper the construction, the graph G absorbs a Gibbs
distribution all over the maximum cliques (C) in G:

—I/TZVm(ym)
P(») =[] ¥m(m) =%e mec (1)

meEC

where Z is the partition function. Therefore, equation (11)
can be rewritten as

1 _
P(y) _ Ee 1/TU(y), (12)

where T'is the temperature, whose value is generally 1, and
U(y) =Y mecVm (¥, represents the energy.

Markov models depict the stochastic method that is
represented by a graph made of circles has an acute ad-
vantage of not considering the past states for all upcoming
tuture states for a random alterable dataset such as HSIs. The
variants of Markov random fields are adaptive, hierarchical,
cascaded, and probabilistic, a blend of Gaussian mixture
model, joint sparse representation, transfer learning, etc.,
whose outcomes are p