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First detection of Rickettsia aeschlimannii
in Hyalomma marginatum in Tibet, China

Jun Jiao'#, Yonghui Yu'#, Peisheng He', Weiqiang Wan', Xuan OuYang’, Bohai Wen',

Yi Sun’” and Xiaolu Xiong"*

Abstract

Objective: Hyalomma marginatum is an important arthropod vector in the
transmission of various zoonoses. The aim of this study was to identify the tick-
borne pathogens (TBPs) maintained in Hy. marginatum in Tibet and to estimate

the risk of human tick-borne diseases.

Methods: Adult Hy. marginatum ticks (n = 14) feeding on yaks were collected.
The individual DNA samples of these ticks were sequenced with metagenomic
next-generation sequencing to survey the presence of TBPs. TBPs in individual
ticks were identified with nested polymerase chain reaction (PCR) combined

with DNA sequencing.

Results: The presence of Rickettsia, Anaplasma, and Ehrlichia in individual ticks
was indicated by the taxonomic profiles at the genus level, but only Rickettsia
aeschlimannii (100%, 13/13) was further detected in the ticks by nested PCR.

Conclusion: This study provides information on the microbial communities
of Hy. marginatum in Tibet, China, and provides the first report of

R. aeschlimannii found in Hy. marginatum in Tibet. The results of this study
indicated that yaks in Tibet are exposed to R. aeschlimannii.

Keywords: Hyalomma marginatum, Rickettsia aeschlimannii, metagenomic

next-generation sequencing, Tibet

INTRODUCTION

Hard ticks (Acari: Ixodidae) are obligate
blood-sucking parasitic arthropods that
are vectors for a wide range of zoonoses,
such as tick-borne encephalitis; Lyme bor-
reliosis; and Anaplasma, Coxiella, Ehtlichia
and Rickettsia and Babesia infections [1-3].
Tick-transmitted infections often occur
in people working in forested areas or
farmers engaged in animal husbandry [4].
Therefore, hard ticks are considered a rel-
atively greater threat to animal and human
health. Hyalomma marginatum, a species of
hard ticks, is a known arthropod vector
of several viruses, such as Thogoto, Dhori,
Crimean-Congo hemorrhagic fever, and
West Nile viruses [5], as well as bacteria,

such as Rickettsia aeschlimannii, which 1is
associated with spotted fever infection in
humans [6].

To date, 119 tick species in ten gen-
era have been reported in China, includ-
ing 100 species of hard ticks [7,8]. The
increasing cases of tick-borne diseases in
humans, including Q fever [9], spotted
fever [10], ehrlichiosis [11], anaplasmosis
[12], brucellosis [8], tick-borne enceph-
alitis [13], and babesiosis [14], have been
reported in ticks in this region. Tibet,
located in the southwestern of Qinghai-
Tibet Plateau in China, supports the sur-
vival of several microorganisms that are
adapted to the harsh environment of the
plateau. Because of the harsh natural envi-
ronment, animal husbandry and livestock

©2022 The Authors. Creative Commons Attribution 4.0 International License

Edited by:
Jianwei Shao, School of Life Science and
Engineering, Foshan University

Reviewed by:

Reviewer 1, Giorgi, Chakhunashvili,
National Center for Disease Control and
Public Health Thilisi, Communicable
Disease, Georgia

The other two reviewers chose to be
anonymous.

#These authors contributed equally to
this work.

*Corresponding authors:

E-mail: xiongxiaolu624@sohu.com (XX);
sunyi7310@sina.com (YS)

IState Key Laboratory of Pathogen
and Biosecurity; Beijing Institute of
Microbiology and Epidemiology,
Beijing, PR China

Received: June 20 2022

Revised: July 19 2022

Accepted: July 27 2022

Published Online: August 09 2022


mailto:xiongxiaolu624@sohu.com
mailto:sunyi7310@sina.com

Jiao et al.

are cornerstone industries in Tibet. Haemaphysalis tibetensis
[15], Boophilus microplus [16], and Dermacentor spp. [17,18]
have been found in Tibet, and several tick-borne patho-
gens (TBPs), such as Anaplasma marginale, Anaplasma ovis,
GRD spirochetes, and Ehrlichia spp. have been reported
in ticks in this region [12]. However, limited knowledge
exists regarding the distribution of Hy. marginatum and
TBPs in Hy. marginatum in Tibet.

In this study, TBPs in Hy. marginatum feeding on yaks in
Tibet were analyzed through metagenomic next-generation
sequencing (mNGS) followed by genus/group-specific
nested polymerase chain reaction (PCR).The results of this
study provide broader information on the microorganisms
maintained by Hy. marginatum in the region.

Species
identification

Individual tick

METHODS
Study design

A two-stage protocol was used in the present study: tick
species were first identified through morphological charac-
terization and molecular biology methods; mNGS was then
used for TBP identification in individual ticks and was fol-
lowed by genus/group-specific nested PCR (Fig 1).

Tick collection

All ticks collected were feeding on yaks from Chagyab
County in Tibet in October of 2019 (Fig 2).The ears, groin,
tail, abdomen, and neck regions of yaks of different ages and
sexes were examined for the presence of ticks, and all visible
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FIGURE 1 | Study workflow. Morphological characterization and molecular biology methods were performed for identification of tick
species, and metagenomic next-generation sequencing followed by genus/group-specific nested PCR was subsequently used for tick-borne

pathogen identification in individual ticks.

FIGURE 2 | Map of the sampling sites in Tibet, China. The red dot indicates the sampling region in the present study.
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ticks were collected with forceps. Tick species were iden-
tified on the basis of morphological characterization and
molecular biology methods, according to the sequence of
the mitochondrial cytochrome ¢ oxidase I (COI) gene, as
described in previously [19].

DNA extraction

First, ticks were surface sterilized with 75% ethanol twice,
followed by phosphate-buffered saline twice to remove
environmental contaminants. Then individual ticks were
homogenized in phosphate-buftered saline with MagNA
Lyser Green Beads (Roche, Mannheim, Germany), and
DNA was extracted with a QIAamp® Fast DNA Tissue
Kit (Qiagen, Dusseldorf, Germany) according to the man-
ufacturer’s instructions. Deionized water was added as an
extraction control. Finally, each extracted DNA sample was
eluted in 100 pL deionized water and stored at -20°C until
further analysis.

Metagenomic sequencing and taxonomy
prediction

Individual DNA samples were sequenced on the Illumina
HiSeq platform with paired-end 150-bp reads by Novogene
(Beijing, China). Reads with low quality bases (quality
threshold value < 38) above a certain length (more than
40 bp) and/or with more than 10 bp of “N” bases were
removed. Reads with more than 15 bp overlap with the
adapter were also removed. Reads of host origin were finally
filtered. Consequently, clean data were obtained.

The clean reads were assembled and analyzed with
SOAPdenovo [20]. The scaffolds were broken at N into the
scaftigs, and the scaftigs (<500 bp) were filtered [21]. The
scaftigs (=500 bp) were predicted according to the open
reading frames by MetaGeneMark [22,23], and CD-HIT
was used to remove redundancy and obtain the initial
unique gene catalog [24,25]. For determination of gene
abundance, the reads were realigned with the gene cata-
log with Bowtie 2. Only genes with two or more mapped
reads were deemed to be present in a sample [26]. The rela-
tive abundance of each gene in each sample was calculated
according to the number of mapped reads and the length of
the gene [27-29].

Unigenes were aligned to the NR database (https://
www.ncbi.nlm.nih.gov/) of NCBI with DIAMOND ([30].
The aligned results of each gene with e value < the smallest
e value X 10 were retained [26] and then processed with the
Lowest Common Ancestor-based algorithm implemented
in MEGAN to ensure the species annotation information
of sequences [31]. The final results contained the number
of genes and the abundance information for each sample,
and the relative abundance of each taxonomic group was
calculated by addition of the relative abundance of genes
annotated to the same feature [21,23,32].

Polymerase chain reaction (PCR)
Genus/group-specific nested PCR was performed to con-
firm the presence of TBPs in individual ticks. The PCR

primers for spotted fever group rickettsia (SFGR) [33,34],
Anaplasma spp. and Ehrlichia spp. [35] are presented in
Table 1. Briefly, 2 uL. DNA of sample was subjected to the
initial PCR run, and 2 pL of PCR product from the first
round was subjected to a second round of PCR. All PCR
amplifications were performed with PrimeSTAR® HS
(Premix) (TaKaRa, Beijing, China) and a PCR System 9700
(Applied Biosystems, GeneAmp®, USA). The nested PCR
products were separated electrophoretically in 1.5% agarose
gel, and positive amplicons were sequenced.

Phylogenetic analysis

The obtained DNA sequences were compared with the
reference sequences in GenBank with the NCBI-BLAST
server (http://blast.ncbi.nlm.nih.gov/blast.cgi), and mul-
tiple sequences were aligned with ClustalW with default
parameters in MEGA 7.0. The phylogenetic tree of outer
membrane protein A (ompA), citrate synthase (gltA), ompB,
gene D, and 17kDa for SFGR was constructed with the
maximum likelihood method on the basis of the T92+G
model, T92 model, T92 model, T92 model, and k2 model,
with 1000 bootstrap replicates in MEGA 7.0 [36,37].

RESULTS

Taxonomic classification

All 14 adult ticks were identified as Hy. marginatum, accord-
ing to morphological identification and species-specific
PCR targeting the COI gene. Thirteen individual DNA
samples were successfully analyzed with metagenomic
sequencing. Sequencing yielded between 52597 and 58706
million reads per sample library, all of which had high qual-
ity (Clean_Q20 > 95%) (Table 2). The construction of the
metagenomic library of sample 1.9 failed.

Metagenomic sequencing was performed to analyze the
microbial community. A total of 276419 core genes were
predicted to be common to all 13 tick samples, thus indicat-
ing their similar microbial community (Fig 3).The presence
of Rickettsia, Anaplasma, and Ehtlichia at the genus level in
individual tick samples was identified according to the taxo-
nomic profiles. Rickettsia spp. was most abundant in all sam-
ples, followed by Ehtlichia spp. In addition, Anaplasma spp.
was detected in samples CYP1.3, CYP1.4, and CYP1.10,
but with lower abundance than that of Ehrlichia spp. In addi-
tion, Staphylococcus spp. were the most abundant microor-
ganisms in all samples, followed by Escherichia spp. (Fig 4A).

Prevalence of Rickettsia in individual ticks
The presence of Rickettsia, Anaplasma, and Ehrlichia was
identified in individual ticks with mNGS, and the identifi-
cation of TBPs in individual ticks was confirmed by genus/
group-specific PCR combined with sequencing.
Consequently, detection of Anaplasma spp. and Ehrlichia
spp. yielded no positive results with nested PCR targeting
the 16S rRNA gene. Only Rickettsia spp. detection was pos-
itive with nested PCR targeting the ompA, gltA, ompB, gene
D, and 17kDa genes, and positive amplification of these
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TABLE 1 | Target genes and primer sequences used for PCR
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Pathogen Target gene Primer name Sequence (5-3")
SFGR gltA cs2d ATGACCAATGAAAATAATAAT
CSEndr CTTATACTCTCTATGTACA
RpCS.877p GGGGACCTGCTCACGGCGG
RpCS.1258n ATTGCAAAAAGTACAGTGAACA
ompA Rr190.70p ATGGCGAATATTTCTCCAAAA
Rr190.602n AGTGCAGCATTCGCTCCCCCT
190.70-38s1 AAAACCGCTTTATTCACC
190.602-384r1 GGCAACAAGTTACCTCCT
17 kDa R17122 CAGAGTGCTATGGAACAAACAAGG
R17500 CTTGCCATTGCCCATCAGGTTG
T215 TTCTCAATTCGGTAAGGGC
TZ216 ATATTGACCAGTGCTATTTC
ompB BG1-21 GGCAATTAATATCGCTGACGG
BG2-20 GCATCTGCACTAGCACTTTC
Gene D D1F ATGAGTAAAGACGGTAACCT
D928R AAGCTATTGCGTCATCTCCG
Anaplasma spp. 16S rRNA Eh-out1 TTGAGAGTTTGATCCTGGCTCAGAACG
Ehrlichia spp. Eh-out2 CACCTCTACACTAGGAATTCCGCTATC
Eh-gs1 GTAATAACTGTATAATCCCTG
Eh-gs2 GTACCGTCATTATCTTCCCTA

TABLE 2 | Pooling strategies for metagenomic next-generation sequencing

Sample ID InsertSize (bp) SeqgStrategy RawData (MB) CleanData (MB) Clean_Q20 Clean_GC (%)
CYP1.1 350 (150:150) 57,988.81 56,715.91 96.95 47.63
CYP1.2 350 (150:150) 55,630.90 54,744.23 96.59 47.42
CYP1.3 350 (150:150) 55,016.44 53,340.28 96.61 48.19
CYP1.4 350 (150:150) 56,170.53 54,486.79 96.91 47.62
CYP1.5 350 (150:150) 56,013.06 54,700.57 97.19 47.41
CYP1.6 350 (150:150) 54,318.37 52,685.77 96.93 48
CYP1.7 350 (150:150) 52,597.53 51,261.33 96.22 47.61
CYP1.8 350 (150:150) 53,026.99 51,275.89 96.31 47.28
CYP1.10 350 (150:150) 55,921.43 54,575.12 96.36 46.72
CYP1.11 350 (150:150) 54,589.54 52,202.90 96.94 47.31
CYP1.12 350 (150:150) 57,403.60 55,920.88 96.31 47.4
CYP1.13 350 (150:150) 57,792.73 56,846.56 96.34 47.75
CYP1.14 350 (150:150) 58,706.93 56,559.08 97.37 46.97

Phylogenetic analysis
According to phylogenetic analysis based on the partial

two genes was found in all 13 tick samples (13/13, 100%)
(Fig 4B). The obtained sequences for each gene for SFGR
from all 13 tick samples were 99.61% and 100% identical to
R. aeschlimannii, respectively.

sequences of ompA, gltA, ompB, gene D, and 17kDa genes,
R. aeschlimannii, identified in Hy. marginatum in the present
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FIGURE 3 | Total numbers of shared and unique core genes of
individual ticks. CYP1.1 to CYP1.14, individual DNA samples of
Hy. marginatum for metagenomic next-generation sequencing.

study, clustered with other R. aeschlimannii subspecies and
was most closely associated with R. aeschlimannii stavropol
(DQ235777), which had been isolated from Hy. marginatum
in Russia (Figs 5 and 6).

DISCUSSION

Recently, increasing attention has been paid to the distri-
bution of ticks and TBPs worldwide, and this knowledge
can aid in the prevention and control of tick-borne diseases.
Although a variety of TBPs have been identified in ticks in
China, knowledge regarding the distribution of Hy. margina-
tum and TBPs in Tibet remains limited. In the present study,
mNGS combined with nested PCR was applied to survey
TBPs in Hy. marginatum feeding on yaks in Tibet, China.
mNGS has been successfully used to identify known and/
or unknown microorganisms in arthropods [38,39], thus
enabling analysis of microorganism diversity. By mNGS,

the most abundant bacteria identified in ticks include
Rickettsia spp., Coxiella spp., Francisella spp., and “ Candidatus
Midichloria mitochondrii” [40]. Ravi et al. have applied
mNGS to analyze the microbiomes in hard ticks col-
lected in Palestine and detected high levels of important
TBPs, including Coxiella spp., Rickettsia spp., and A. ovis, and
generated a genome sequence of a canine parvovirus [41].
Beyond these bacteria, environmental and skin-associated
bacteria, such as Pseudomonas, Acinetobacter, Enterobacter, and
Stenotrophomonas, are common in hard ticks [42,43]. Bacteria
such as Staphylococcus and Escherichia might have been pre-
dominant in the present study.

The results of mNGS in the present study revealed the
presence of Rickettsia, Anaplasma, and Ehrlichia in Hy. margin-
atum. However, only Rickettsia spp. was positively detected
in genus/group-specific nested PCR. After sequence com-
parison, R. aeschlimannii was found in all 13 Hy. marginatum.
The results of genus/group-specific nested PCRs were par-
tially consistent with those of mNGS, possibly because less
abundant species might not have been sensitively amplified
with PCR when highly abundant sequences were over-
represented [40]. In addition, Coxiella spp., Babesia spp., and
Borrelia spp. were often detected in ticks. Thus each tick was
detected by genus/group-specific nested PCR in the pres-
ent study, and no positive amplicons were observed (data
not shown).

Hyalomma spp. (e.g., Hy. marginatum) are mainly endemic
to southern and eastern Europe [44], and these ticks also
have been reported in birds in countries where these ticks
are not autochthonous [45]. One possible explanation is
that the larvae and nymphs of Hyalomma spp. may be trans-
ported passively by migratory birds from southern Europe
to their breeding areas in the northern hemisphere [44,45].
Hy. marginatum, a species of Hyalomma spp., is distributed
primarily in northern Africa, southern and eastern Europe,
the Middle East and several parts of Asia [5,46]. To date,
Hy. marginatum has been found in Inner Mongolia, Gansu,
and Xinjiang in China [10,47,48], thus indicating that this
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FIGURE 4 | Analysis of the microbial community in Hyalomma marginatum. The relative abundance of the potential top ten bacteria at the
genus level was analyzed with metagenomic next-generation sequencing (A), and then the tick-borne pathogens maintained in individual
ticks were confirmed by genus/group-specific nested PCR (B). CYP1.1 to CYP1.14, individual DNA samples of Hy. marginatum.
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FIGURE 5 | Phylogenetic analysis based on the sequences of the ompA and gftA genes of Rickettsia aeschlimannii. The obtained sequences
in the present study are indicated with red dots. Multiple sequences were aligned with the ClustalW tool in MEGA 7.0. Phylogenetic analysis
of ompA (258 bp) (A) and gltA (285 bp) (B) of R. aeschlimannii was performed with the maximum likelihood method based on the T92+G

model and T92 model with 1000 bootstrap replicates in MEGA 7.0.
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FIGURE 6 | Phylogenetic analysis based on the sequences of the ompB, gene D, and 17 kDa genes of Rickettsia aeschlimannii. The
obtained sequences in the present study are indicated with red dots. Multiple sequences were aligned with the ClustalW tool in MEGA 7.0.
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tick is not autochthonous in China.To our knowledge, this
is the first report of Hy. marginatum in Tibet, thus indicating
its increasing geographical distribution in China.

R. aeschlimannii belongs to SFGR and was first detected
in Hy. marginatum in Morocco in 1997 [49]. A clinical case
of infection caused by this pathogen was first reported in
2002 [6]. Symptoms of R. aeschlimannii infection in humans
are highly similar to those of Mediterranean spotted fever
caused by R. conorii and may be associated with liver dys-
function [50]. In China, R. aeschlimannii has been detected
in Rhipicephalus turanicus [51], Hy. asiaticum, [10,47], Hy. mar-
ginatum [10], and Haemaphysalis punctata [52].Yang et al. have
reported a case of R. aeschlimannii infection in a woman
from Xingjiang, and this pathogen was also detected in
Hy. asiaticum around the patient’s residence [53]. In the pres-
ent study, R. aeschlimannii was detected in all Hy. marginatum,
thereby indicating its dominant prevalence in these ticks;
this finding may be relevant to the health of humans who
may have spotted fever after being bitten by these ticks.

This study has several limitations. Although the research-
ers went to Zogang County, Chamdo County, and Chagyab
County, and verified nearly 100 yaks for tick collection, the
high altitude (>4000 meters) and low environmental tem-
perature (<20°C) of the sampling sites might have made this
region unsuitable for tick adaptation extending the devel-
opment phase (120 days) at temperatures of 18°C [54]. In
addition, a small number of tick samples was collected from
one location in the present study. Another limitation is that
no livestock sera were collected because of the local cultural
customs.

CONCLUSION

This study provides information on the microbial commu-
nities of Hy. marginatum in Tibet, China, and provides the
first report of R. aeschlimannii in Hy. marginatum in Tibet.
The results of this study also indicated that yaks in Tibet
are exposed to R. aeschlimannii. Molecular and serology
methods are important for investigation of R. aeschlimannii
in livestock and farmers with close contact with Hy. margin-
atum in Tibet.
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