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ABSTRACT

The rapid development of bioinformatics tools has recently broken through the bottleneck in natural products 
research. These advances have enabled natural products researchers to rapidly separate and efficiently target and 
discover previously undescribed molecules. Among these advances, tandem mass spectrometry molecular networking 
is a promising method for rapidly de-replicating complex natural mixtures, thus leading to an accelerated revolution 
in the “art of natural products isolation” field. In this review we describe the current molecular networking-based 
metabolite analysis methods that are widely applied or implementable in natural products discovery research, 
metabolomics, and related fields. The main objective of this review was to summarize strategies that can be rapidly 
implemented as alternative de-replication approaches for efficient natural products discovery and to list examples 
of successful applications that combine networking with other techniques.
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1. INTRODUCTION

Natural products (NPs) have been important sources of 
new drug development over the past four decades [1]. 
NPs are distinguished from synthetic drug-like molecules 
due to the enormous structural and physicochemical 
diversity [2]. Compared to synthetic drug-like molecules, 
NPs have higher structural complexity, especially with 
respect to stereochemistry and molecular shape, in which 
NPs have a higher number of chiral centers and a variety 
of skeletons [3]. Despite the potential for NPs to develop 
into useful drugs, the drug discovery workflow that pro-
gresses from natural crude extracts to well-characterized 
bioactive NPs as hits, then as lead compounds, is com-
plicated, expensive, and frequently incompatible with 
the speed of high-throughput screening campaigns 
[4]. Therefore, many pharmaceutical companies began 
to slow down and eventually stop the majority of 
NP-oriented research programs in the early 2000s [5]. 
Recently, the development of accurate and accessible 
omics technologies, such as non-targeted metabolomics, 
genome sequencing, and high-throughput screening, 
have altered the NPs discovery landscape [6].

Metabolomics is a non-selective, universally appli-
cable, and all-encompassing analytical approach for 
the identification and quantification of metabolites in 

biological systems [5]. The purpose of metabolomics is 
to obtain complete metabolite fingerprints, detect dif-
ferences between metabolites, and develop hypothe-
ses to explain these differences [7]. Metabolomics is 
commonly considered to be the large-scale analysis 
of metabolites in a given organism under different 
physiologic states, but metabolomics also extends to 
chemotaxonomic studies and comprehensive metab-
olite profiling for lead compound discovery from 
natural sources. Over the last decade, metabolomics 
tools have become significantly advanced, owing to 
improved acquisition techniques in both mass spec-
trometry (MS) and nuclear magnetic resonance (NMR) 
sensitivity and resolution, as well as computational 
and bio-chemometric methods [8, 9]. This unbiased 
data-driven method has benefited many areas of 
life sciences and has also strongly impacted different 
aspects of NP research, most notably by providing 
additional dimensions to de-replication. Therefore, it 
has gradually been realized that traditional analysis 
methods only touched the surface of the entire pool 
of molecules present in complex mixtures, thus leaving 
a significant amount of “dark matter” that potentially 
contains much-needed novel bioactive molecules [10]. 
The metabolites mentioned in this review mainly refer 
to secondary metabolites.
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Molecular networking (MN [also generically known 
as mass spectral networking]) is a data organization 
and visualization approach using a tandem mass spec-
trometry (MS/MS) approach, which was first introduced 
in 2012 [11]. MN connects related molecules by align-
ing experimental spectra with each other and compar-
ing spectral similarity, which performs beyond spectral 
matching against reference spectra [12]. Powered by 
the computational infrastructure of the University of 
California San Diego Center for Computational Mass 
Spectrometry and the Mass Spectrometry Interactive 
Virtual Environment (MassIVE) data repository, MN 
has been used to establish the world’s largest data 
analysis tool for MS/MS data {Global Natural Products 
Social Molecular Networking (GNPS)} [13, 14]. Such 
GNPS-like platforms have been increasingly adopted 
in metabolomics for “dark matter” decipherment, 
including everything from plant extracts and micro-
bial cultures to a variety of human and environment 
samples, by propagating spectral library-based anno-
tation and demonstrating chemical relationships 
between detected molecules across many sample 
types. Most recently, network-based approaches have 
been expanded to introduce drug discovery leads, 
clinical diagnostics, and precision medicine [15]. From 
a drug discovery perspective, MN as a NP discovery 
strategy tends to be applied to characterize secondary 
metabolites (small-molecular-weight molecules, typi-
cally <1500 Da) from various organisms, especially for 
unknown metabolites without available standard MS/
MS spectra [16].

In this review we describe metabolite profiling meth-
ods based on MN that are currently used in NP discov-
ery research and metabolomics, related fields, or can be 
implemented. This review summarizes workflow that 
can be used quickly, provides alternative de-replication 
strategies for efficient NP discovery, and lists application 
examples that combine network to other technologies. 
As a general guideline to understand the organization 
of this review, the first section demonstrates the gen-
eral flow of the current network-based metabolomics 
research and summarizes the main software and plat-
forms used in each stage. The second section summa-
rizes the network-based de-replication strategies for 
NP discovery. First, the review mainly covers three cat-
egories of advanced strategies that go beyond the con-
ventional manual de-replication approach. Improved 
strategy I uses MS spectra contained in available data-
bases (DBs) for automatic annotation. Improved strat-
egy II uses the known spectral features aimed at finding 
all related molecules in the query MS spectra. Improved 
strategy III produces structure hypothesis of unknown 
compounds by exhaustively searching the NP DBs. These 
NP DBs mainly contain structures, most of which lack MS 
spectra. Finally, the approach illustrates the combined 
application of MN research, mass spectrometry imaging, 
biosynthetic gene cluster mining, and stable isotope 
labeling.

2. MN-BASED NON-TARGET DATA ANALYSIS 
WORKFLOW

The most time-consuming and complicated step in 
non-targeted experiments is data analysis. Many tools 
and methodologies are available for this procedure 
and have been extensively summarized [17-20]. Non-
targeted metabolomics network-based workflow is 
composed of three key steps, all of which are discussed 
below: data pre-processing; network visualization; and 
metabolites annotation.

2.1 Data pre-processing
Mass spectrometry “raw data” typically refers to the file 
format in which the MS data are stored, including infor-
mation about the analysis procedure and spectral scan 
information, such as mass and intensity, while the for-
mats are usually vendor-specific. According to Sindelar 
and Patti [21], among the thousands of non-targeted 
metabolomics original signals, non-biological signals, 
including contaminants and artifacts, account for the 
largest part, followed by redundant adduct ions, iso-
tope ions, oligomer ions, and fragments, and only 
a small part of real and effective signals of known or 
unknown chemicals (Figure 1). Therefore, data pre-
processing is the first major challenge in non-targeted 
metabolomics and the effectiveness of this step is critical 
for downstream data analysis. Data pre-processing con-
verts complex, mixed-information “raw data” into easy-
to-process tables with so-called “features;” however, 
despite the improvement in different parameter opti-
mization tools [22], data pre-processing has many prob-
lems, such as false-negative and false-positive reports of 
ion species, as well as incorrectly reported abundance 
values, which lead to poor pre-processing performance, 
and enormous unidentifiable signals remain in the sub-
sequent data analysis process [23].

Figure 1  |  Composition of an untargeted metabolomic 
dataset. The specific number of features in any one category 
may vary with the experimental method, processing 
software, and sample type.
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Although the methods of metabolomics data pre-
processing have been continuously improved, the 
general steps of the different tools have remained 
the same with very few exceptions [24]. Typically, the 
necessary steps include peak detection, pick picking/
integration, deconvolution, deisotope, and peak match-
ing/alignment (Figure 2). The first step, referred to as 
“peak detection,” is the process of recognizing distinct 
peaks in a mass spectrum that represents the presence 
of various compounds in the sample. Peak detection is 
accomplished by a set of algorithms that consider the 
noise level and signal intensity in the mass spectrum. 
Local maxima in the signal are identified by the algo-
rithms, and peaks are defined as groups of contiguous 
data points that exceed a specified intensity threshold. 
The second step, “chromatogram build,” is a procedure 
for extracting and combining data from several scans 
or spectra into a single chromatogram. The resulting 
chromatograms can then be used for the third step, 
“deconvolution,” which improves the accuracy of mass 
spectrometry data by resolving overlapping peaks in a 
mass spectrum into individual peaks. During the MS pro-
cess, different compounds produce peaks at the same 
m/z, which makes it difficult to accurately identify com-
pounds. Deconvolution algorithms use various mathe-
matical techniques to separate these overlapping peaks 
and assign individual m/z values to each compound. The 
fourth step, “deisotope,” helps to resolve these peaks 
and accurately identify the molecular species by group-
ing the peaks that belong to the same isotopic pattern. 
The fifth step, “peak alignment,” involves matching 
peaks in different samples or chromatographic runs to 
facilitate a comparison of mass spectrometry data across 
different conditions. Peak alignment is used to correct 
for systematic variations in the acquisition of mass spec-
trometry data, such as differences in retention time, 
instrument drift, or mass accuracy.

Tools with a graphical user interface (GUI) are a 
convenient option for DPP and empirical parameter 
optimization. In such cases, open-source software, 
such as MZmine [25], MS-DIAL [26], MetaboScape [27], 
MetaboAnalyst [28], CAMERA [29], and MetAlign [30], 
provide support for data pre-processing, normalization, 
visualization, and statistical analysis; however, those 
tools are limited by the scale of datasets. For large-
scale datasets (>500 files), tools that were designed 
to operate on a cluster/cloud computer are preferred, 

such as XC-MS online [31], OpenMS [32], W4M [33], and 
Metabolomics Workbench [34].

2.2 Network generation and visualization
MN is a graph-based workflow that organizes massive MS 
datasets by mining spectral similarity between different 
MS/MS fragmentation patterns, but structurally-related 
precursor ions. The basic principle underlying MN is to 
compare the MS/MS spectra of different ions in a sample 
and to organize those spectra based on similarities. The 
outcome is a network or graph, in which nodes repre-
sent precursor ions and edges represent spectral similar-
ity between the MS/MS spectra of those ions (Figure 3) 
[12]. After necessary data pre-processing steps, because 
low-intensity fragment ions and the precursor ion are 
removed from the MS/MS spectra, MS/MS data are simpli-
fied and proceed to the next important steps: (i) spectral  
comparison; and (ii) network construction and cluster-
ing. First, spectral comparison is usually performed using 
vector-based spectral similarity algorithms, such as the 
cosine similarity (normalized dot product similarity), 
Tanimoto similarity, Jaccard similarity, and Euclidean dis-
tance [35]. Among these algorithms, cosine similarity is 
the most widely used algorithm for MN analysis due to 
its interpretability (cosine similarity can be easily inter-
preted as a similarity measure between 0 and 1), robust-
ness (the presence of irrelevant or redundant molecular 
descriptors do not affect the similarity score), computa-
tional efficiency (suitable for large-scale MN analysis), 
and versatility (can be applied to a variety of molecular 
descriptors, such as molecular weight, number of hydro-
gen bond donors and acceptors, and molecular shape) 
[36]. Using cosine similarity, MS/MS spectra sets are then 
simplified and converted to vectors in a multidimen-
sional normalized space where each dimension corre-
sponds to an m/z value and its absolute intensity, and 
the similarity between two pairs of spectra is calculated 
as the cosine value of the angle between the vectors, 
ranging from 0 (no similarity) to 1 (perfect similarity). 
The results of these vector-based comparisons can then 
be visualized as graphs of spectral similarity, known as 
spectral networks [37] or MNs [12], where each node 
represents a collection of MS/MS spectra and the edges 
between node reflect the degree of similarity between 
consensus spectra. The edges can be weighted, with the 
weight representing the similarity score between the 
two ions. The clustering step results in the grouping 

Figure 2  |  General steps of non-target data pre-processing.
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of ions that have similar MS/MS spectra into the same 
cluster, and these clusters can be visualized as connected 
groups of nodes in the network, which is typically per-
formed using clustering algorithms, such as hierarchical, 
K-means, Markov, spectral, and density-based clustering 
[38]. The choice of clustering algorithm often depends 
on the specific requirements of the MN analysis. For 
example, hierarchical clustering may be preferred when 
it is important to visualize the relationships between the 
compounds in a MN, while K-means may be preferred 
when the goal is to identify a specific number of clusters.

Initially, MATLAB scripts were utilized in investiga-
tions on MN to compute similarity scores, while visu-
alization was accomplished using Cytoscape software 
[39]. With advances in computational technology 
and the availability of open platforms, such as GNPS, 
users can upload and store MS/MS data online, create 
MNs, and share and build upon their knowledge as an 
individual or as part of a community, as well as add 
information about the samples and other metadata 
to help understand the network [14]. Molecular fam-
ilies are groups of molecules that are represented as 

Figure 3  |  Basic workflow of molecular networking; a graph-based tool to explore spectral similarity in LC-MS/MS data.
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subclusters in a MN and are related structurally [40]. 
Data visualization of molecular families is now possi-
ble on GNPS directly online, but Cytoscape or another 
network visualization tool is better used off-line to vis-
ualize an entire MN and its individual molecular fam-
ilies [39]. MN properties can be adjusted to improve 
data interpretation In Cytoscape. Indeed, many tools 
are available for MS/MS data analysis and networking 
visualization of metabolites; the capabilities are sum-
marized in Table 1.

2.3 Network analysis and metabolite annotation
Metabolite annotation for networks is critical for the 
interpretation and understanding of the complex 
relationships between metabolites. Accurate metab-
olite annotation enables the identification of meta-
bolic pathways and networks, which can lead to the 
discovery of novel metabolites. Nonetheless, metabo-
lite annotation is a challenging and time-consuming 
task; however, recent advances in analytical method-
ologies, computational tools, and databases have sub-
stantially improved the accuracy and efficiency of this 
process (Table 2). Numerous chem- and bio-informatics 
techniques for metabolomics have made tremendous 
advances and have become indispensable as powerful 
supports for metabolite annotation, the capabilities of 
which can be divided into five levels (types 1-5). In type 
1, computational tools allow m/z alignment of precur-
sor ions and searches through the m/z of the precursor 
ion. In type 2, computational tools allow searches via 
the MS/MS or MSn spectra against experimental spec-
tra contained in more than one database. In type 3, 
computational tools allowing searches via the MS/MS 
or MSn spectra against in silico spectra predicted based 
on the putative structures obtained for the m/z of the 
precursor ion. In type 4, computational tools perform 
metabolite annotation/identification using orthogo-
nal information to provide scores pertaining to puta-
tive annotations, including chromatographic, spectral 
libraries, metabolic pathways, isotope label, and litera-
ture data; information can be used from MS and/or MS/
MS. In type 5, computational tools perform metabolite 
annotation/identification by creating molecular net-
works between the putative annotations obtained for 
the features, which use approaches to put annotations 
into a biological context and provide evidence point-
ing to confirm or refute the approaches. Information 
can be used from MS, MSn, and/or orthogonal informa-
tion in addition to the biological context created in the 
molecular network.

The first databases specifically devoted to metabolite 
annotation were created in the early 2000s, which only 
provided m/z data and the structure of the compounds, 
such as METLIN [42], LIPID MAPS [43], HMDB [44], and 
KomicMarket (type 1) [45]. Nevertheless, the number 
of experimental data did not cover the expected entire 
metabolome. Consequently, various tools were devel-
oped that utilized different heuristic methods to create 

possible structures from known metabolites, such as 
MINE [46] and BioTransformer [47].

The next stage allows search of the spectra, including 
information related to the fragmentation spectra, such 
as XCMS [48], HMDB [44], and MassBank [49] (type 2); 
however, the limitation of original standards makes it 
impossible to acquire experimental data for most com-
pounds recorded in the presented databases. Therefore, 
many different tools and approaches were developed 
for MS/MS spectra prediction under different experi-
mental conditions, such as MetFrag [50], MAGMA [51], 
MyCompoundID [52], CFM-ID [53], and CSI:FingerID [54] 
(type 3).

Given that similar structures usually result in sim-
ilar fragmentation patterns, identifying compounds 
to unique structures still lack confidence. Therefore, 
orthogonal information has been gradually included in 
metabolite annotation, such as MZedDB [55], CAMERA 
[29], MetFrag [50], LipidBlast [56], iMet [57], and CMM 
[58] (type 4). For example, the hydrophobicity of a chem-
ical impacts retention time on the chromatographic col-
umn. Another example of the application of orthogonal 
information for annotating metabolites is evaluating 
the possible ions (adducts, multiple charges, and dimers) 
that may occur.

Recently, relevant information has been included in 
some tools, such as the biological relationships between 
different metabolites in an organism and substructure 
search in type 5 (MassTRIX [59], GNPS [15], xMSannota-
tor [60], BioCAn [41], NAP [61], ADAPTIVE [62], MetDNA 
[63], MetDNA2 KGMN [64], MolNetEnhancer [65], 
MetNet [66], NP Analyst [67], and MS2LDA [68]). In the 
past few years, this approach has been widely adopted 
by new metabolite annotation tools that eliminate puta-
tive annotations not related to the other features, and 
including evidence to support the annotations based on 
a sizable number of links among all the features present 
in a sample.

Metabolite annotation and identification databases 
are continually expanding and including more data 
on chemicals. Among the recently built and updated 
computational tools, the combination of approaches 
to study metabolite networks and assess the relation-
ships between the putative annotated structures is the 
current trend. Users can increase the confidence level 
by utilizing more comprehensive information dur-
ing the metabolite annotation process. Moreover, the 
large number of tools available to perform metabolite 
annotation and identification has caused a divergence 
in the metabolomics community, which has led user 
proficiency in using a diverse set of tools with distinct 
languages, such as R packages, python libraries, web-
based applications, and standalone applications. The 
emergence of several frameworks or workflows, such as 
W4M [33], Taverna [69], and KNIME [70], that integrate 
all stages of metabolomics experiments is a crucial step 
to maximize the use of all the tools currently built with 
the minimum amount of learning.



Acta  
Materia  
MedicaReview Article

Acta Materia Medica 2023, Volume 2, Issue 2, p. 126-141      131 
© 2023 The Authors. Creative Commons Attribution 4.0 International License

Table 1  |  Selected commonly used tools for MS/MS data analysis and networking visualization of metabolites.

Tools Capabilities Websites

GNPS Provide access to large databases of mass spectrometry data and enables 
users to upload and process their own data and support various workflows 
for molecular networking, including de novo sequencing, database 
searching, and spectral library building.

https://gnps.ucsd.edu/

MetGem A graph-based approach to generate molecular networks that provides 
access to a large database of metabolite spectra and sample metadata 
and supports various data processing, normalization, and quality control 
procedures, as well as advanced visualization and interpretation.

https://metgem.github.io/

MS2LDA A machine learning algorithm that stands for mass spectrometry-based 
spectral clustering. It is used to analyze and interpret mass spectrometry 
(MS) data. The algorithm clusters together similar MS spectra and assigns 
them to a particular molecular species, allowing for the identification of 
unknown compounds in complex samples.

https://ms2lda.org/

MetaboAnalyst One-in-all metabolomics data analysis tool collection, which supports 
various data processing, quality control, and normalization procedures, as 
well as advanced visualization and interpretation methods for molecular 
networks.

https://www.metaboanalyst.ca/

MetaboLights A database for metabolomics studies that provides access to a large 
collection of metabolite spectra and sample metadata and offers a 
molecular networking tool that enables users to perform network analysis 
and visualization.

https://www.ebi.ac.uk/metabolights/

MetaboHunter Focuses on the identification of metabolites based on accurate mass, 
fragmentation patterns, and spectral similarities. It supports batch 
processing of large datasets and provides advanced visualization and 
interpretation capabilities.

https://github.com/mfitzp/metabohunter

MetFrag Focuses on the identification of metabolites based on accurate mass, 
fragmentation patterns, and spectral similarities. It supports batch 
processing of large datasets and provides various visualization and 
interpretation methods.

https://ipb-halle.github.io/MetFrag/

MetCirc Comprises functionalities to interactively organize these data according 
to compound familial groupings and to accelerate the discovery of shared 
metabolites and hypothesis formulation for unknowns.

https://github.com/tnaake/MetCirc

compMS2Miner An automatable metabolite identification, visualization, and data-sharing R 
package for high-resolution LC–MS data sets.

https://github.com/WMBEdmands/
compMS2Miner

CAMEO Cluster Analysis for Metabolomics Experiments Online is a web-based tool 
for molecular networking that supports various clustering and network 
analysis methods. It enables users to process large datasets and provides 
advanced visualization and interpretation capabilities.

https://cameo.bio/apidoc_output/cameo.
network_analysis.html

BioCAn Combines the results from database searches and in silico fragmentation 
analyses and places these results into a relevant biological context for the 
sample as captured by a metabolic model.

Alden et al., 2017 [41]

NAP Network Annotation Propagation uses molecular networking to improve 
the accuracy of in silico predictions through propagation of structural 
annotations, even when there is no match to a MS/MS spectrum in 
spectral libraries.

https://github.com/DorresteinLaboratory/
NAP_ProteoSAFe/

MolNetEnhancer A computational tool for the enhancement of molecular networks 
generated from metabolomics data. It uses a combination of graph theory 
algorithms and machine learning techniques to improve the quality and 
interpretability of molecular networks.

https://github.com/madeleineernst/
pyMolNetEnhancer

MetDNA/
MetDNA2 
(KGMN)

A computational tool for the analysis of untargeted metabolomics data. 
It uses metabolic reaction network-based recursive annotation to identify 
metabolites and generate molecular networks.

http://metdna.zhulab.cn/

https://gnps.ucsd.edu/
https://metgem.github.io/
https://ms2lda.org/
https://www.metaboanalyst.ca/
https://www.ebi.ac.uk/metabolights/
https://github.com/mfitzp/metabohunter
https://ipb-halle.github.io/MetFrag/
https://github.com/tnaake/MetCirc
https://github.com/WMBEdmands/compMS2Miner
https://github.com/WMBEdmands/compMS2Miner
https://cameo.bio/apidoc_output/cameo.network_analysis.html
https://cameo.bio/apidoc_output/cameo.network_analysis.html
https://github.com/DorresteinLaboratory/NAP_ProteoSAFe/
https://github.com/DorresteinLaboratory/NAP_ProteoSAFe/
https://github.com/madeleineernst/pyMolNetEnhancer
https://github.com/madeleineernst/pyMolNetEnhancer
http://metdna.zhulab.cn/
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3. DE-REPLICATION STRATEGIES FOR NP 
DISCOVERY BASED ON MN

3.1 General strategy: targeted manual  
de-replication
In untargeted metabolomics experiments, the first and 
fastest de-replication strategy is based on the query 
of the in-house database, which is the so-called “tar-
geted manual de-replication” strategy. This strategy 
essentially compares the retention time and MS infor-
mation of obtained experimental data with previously 
isolated compounds analysis under the same conditions. 
This strategy is simple to understand and can identify 
compounds with rather high confidence (level 2; Figure 
4) but limited by a previous investigation and known 
compounds [71]. Currently, a large-scale data compari-
son can be accomplished using the WEIZMASS NP library 

[72]; however, in comparison to the general strategy, 
alternative improvement strategies require research-
ers to discover more NPs when a metabolite is initially 
identified.

These improved strategies can be divided into three 
stages. The first stage of the improved strategy is “auto-
matic annotation for known compounds,” which uses the 
database to automatically retrieve all fragments of the 
queried spectra, thus focusing on the available informa-
tion of existing mass spectral database. The second stage 
of the improved strategy is “using the known spectral 
features to analyze the queried spectra.” It is necessary 
to analyze and predict the spectral features of the tar-
get NPs first, then find all compounds with similar spec-
tral features in the queried data set to further annotate 
the structures, which focuses on obtaining all informa-
tion from known spectra and minimizing the structural 

Tools Capabilities Websites

NP Analyst An open online platform for the analysis of natural product (NP) data. 
It is designed to provide access to NP-specific resources, including NP 
databases, spectral libraries, and computational tools.

https://www.npanalyst.org/

METLIN A database of metabolites and mass spectrometry data that provides 
access to a large collection of high-quality spectral information for 
metabolites. It also offers a molecular networking tool that enables users 
to perform network analysis and visualization.

https://metlin.scripps.edu/landing_page.
php?pgcontent=mainPage

MetaboNet A web-based platform for molecular networking that supports various 
network analysis and visualization methods. It provides access to a large 
collection of metabolite spectra and sample metadata, as well as advanced 
interpretation tools.

https://github.com/tcameronwaller/
metabonet

MS-DIAL A software platform for mass spectrometry-based metabolomics data 
analysis that includes a molecular networking module, which supports 
various data processing, normalization, and quality control procedures, as 
well as advanced visualization and interpretation methods for molecular 
networks.

https://web.tuat.ac.jp/tsugawalab/
software/msdial/consoleapp.html

MetExplore A web-based platform for molecular networking that supports various 
network analysis and visualization methods. It provides access to a large 
collection of metabolite spectra and sample metadata, as well as advanced 
interpretation tools.

https://metexplore.toulouse.inrae.fr/
index.html/

Metscape Cytoscape plugin, metabolomics correlation networks and KEGG-based 
metabolic networks integrating gene expression and metabolomics.

http://metscape.ncibi.org/

Metwork A web server of in silico metabolization of metabolites that represents a 
full implementation of the metabolome consistency concept.

https://metwork.pharmacie.
parisdescartes.fr/

MetNet Metabolite network prediction from high-resolution mass spectrometry 
data in R Aiding metabolite annotation.

https://github.com/simeoni-biolab/
MetNet

xMSannotator An R package for network-based annotation of high-resolution 
metabolomics data.

https://rdrr.io/github/yufree/
xMSannotator/

MassTRIX A platform for the analysis of metabolomics data, which uses a 
combination of machine learning and graph theory algorithms to generate 
molecular networks and to identify metabolic pathways. The platform 
provides an interactive interface for the visualization and interpretation of 
the molecular networks, which allows users to explore their data in a more 
intuitive and meaningful way.

https://metabolomics.helmholtz-
muenchen.de/masstrix3/

Table 1  |  Continued

https://www.npanalyst.org/
https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage
https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage
https://github.com/tcameronwaller/metabonet
https://github.com/tcameronwaller/metabonet
https://web.tuat.ac.jp/tsugawalab/software/msdial/consoleapp.html
https://web.tuat.ac.jp/tsugawalab/software/msdial/consoleapp.html
https://metexplore.toulouse.inrae.fr/index.html/
https://metexplore.toulouse.inrae.fr/index.html/
http://metscape.ncibi.org/
https://metwork.pharmacie.parisdescartes.fr/
https://metwork.pharmacie.parisdescartes.fr/
https://github.com/simeoni-biolab/MetNet
https://github.com/simeoni-biolab/MetNet
https://rdrr.io/github/yufree/xMSannotator/
https://rdrr.io/github/yufree/xMSannotator/
https://metabolomics.helmholtz-muenchen.de/masstrix3/
https://metabolomics.helmholtz-muenchen.de/masstrix3/
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possibility of queried spectral annotations. The improved 
strategy of the third stage is “comprehensively annotate 
all compounds and generate hypothetical structures,” 
which refers to using all current NP databases to retrieve 
structures as much as possible (perhaps most of the struc-
tures lack spectral data) and generate hypothetical struc-
tures, which is only one of the three strategies to gener-
ate a unique structure, but the success of this strategy is 
dependent on the number of target compound popula-
tions in the existing database and ranking of candidate 
structures in massive possible structures.

3.2 Improved strategy I: automatic annotation for 
known compounds
The first improved strategy, “automated annotation for 
known compounds,” is first based on rapid screening 

of the precursor ion, m/z, to locate the MS/MS spec-
trum, then compare the queried MS/MS spectrum with 
the MS/MS spectra database. This strategy requires a 
database covering MS/MS spectra obtained in differ-
ent analysis conditions, such as the ReSpect database. 
Currently, many databases receive. MGF files (stored 
MS/MS fragmentation data), as exemplified by GNPS, 
which has a tool (TREMOLO) [73] developed for fast 
automatic retrieval and MS/MS data matching. Due to 
the large amount of databases to be queried, this strat-
egy is time-consuming (level 3; Figure 4). Although this 
technique can efficiently annotate MS/MS spectra with 
accurate matches, the searched spectra are usually not 
annotated due to the limited number of NPs in most 
existing databases. To overcome such limitations, the 
current tendency is to use extended in silico databases 

Table 2  |  Selected commonly used public database of MS/MS spectra can be used in the network annotation.

Name Type of MS/MS spectra Number of 
MS/MS spectra

Experimental 
data

Simulated 
data

Websites

GNPS NPs from various sources (e.g., plants, 
fungal, microbes, marine, animals), 
peptides and proteins, xenobiotics, and 
environmental pollutants

>23,000,000 Yes No https://gnps.ucsd.edu/ProteoSAFe/
libraries.jsp

MassBank NPs from various sources (e.g., plants, 
fungal, microbes, marine, animals), 
environmental pollutants, drugs and drug 
metabolites, food and dietary components

>700,000 Yes No http://www.massbank.jp/

MoNA NPs from various sources (e.g., plants, 
fungal, microbes, marine, animals), 
peptides and proteins, xenobiotics, and 
environmental pollutants

>270,000 Yes Yes https://mona.fiehnlab.ucdavis.edu/

NIST NPs from various sources (e.g., plants, 
fungal, microbes, marine, animals), 
peptides and proteins, xenobiotics, and 
environmental pollutants

>190,000 Yes No https://chemdata.nist.gov/

MetaboLights NPs from various sources (e.g., plants, 
fungal, microbes, marine, animals), 
human and animal metabolites specialized 
metabolites, environmental pollutants, food, 
and dietary components

>80,000 Yes No https://www.ebi.ac.uk/
metabolights/

MetLin NPs from various sources (e.g., plants, 
fungal, microbes, marine, animals), 
peptides and proteins, xenobiotics, and 
environmental pollutants

>30,000 Yes No https://metlin.scripps.edu/ms_ms_
spectrum_match_search.php

ResPest Volatile organic compounds, primary 
metabolites (e.g., amino acids, organic acids, 
sugars), fatty acids and their derivatives, and 
environmental pollutants

>20,000 Yes No https://spectra.pcs.riken.jp/

YMDB Primary metabolites (e.g., amino acids, 
organic acids, nucleotides, sugars), secondary 
metabolites (e.g., alkaloids, flavonoids, 
polyketides, and terpenoids), lipids (e.g., fatty 
acids, glycerophospholipids, and sphingolipids)

>16,000 Yes Yes http://www.ymdb.ca/

https://gnps.ucsd.edu/ProteoSAFe/libraries.jsp
https://gnps.ucsd.edu/ProteoSAFe/libraries.jsp
http://www.massbank.jp/
https://mona.fiehnlab.ucdavis.edu/
https://chemdata.nist.gov/
https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
https://metlin.scripps.edu/ms_ms_spectrum_match_search.php
https://metlin.scripps.edu/ms_ms_spectrum_match_search.php
https://spectra.pcs.riken.jp/
http://www.ymdb.ca/


Acta  
Materia  
Medica Review Article

134      Acta Materia Medica 2023, Volume 2, Issue 2, p. 126-141 
© 2023 The Authors. Creative Commons Attribution 4.0 International License

rather than being limited to experimental databases. 
For example, Wang et al. [53] used CFM-ID to perform 
computer simulations and predict MS/MS spectra, and 
further built an in silico DB (including >170,000 MS/
MS spectra predicted based on existing structures) on 
the basis of a large database containing only NP struc-
tures [74], which remains the most widely used in silico  
DB to date for improving NP annotation [75]. Such a 
predicted spectral DB can substantially complement  
existing experimental DBs, such as YMDB [76] (Table 2). 
The combination of in silico DBs with the experimental 
DBs greatly expands the amount of available spectral 
information, providing an improved alternative for fast 
de-replication of NPs.

3.3 Improved strategy II: de-replication via 
known spectral features
The improved strategy of the second stage “de-
replication via known spectral features” can be achieved 
by restricting the search of NP structures to specific spe-
cies or genera (literature or DB search) and generating 
a given list of MS/MS fragments and corresponding 
molecular formulas. Known spectral features are used, 
such as masses or fragment sets from target compounds, 
to query spectral data containing sets of these features. 
Annotation can then focus on a subset of the entire 
dataset or a feature mass range of the MS/MS spectrum, 

which saves a lot of time and effort (level 4; Figure 4). 
Tools, such as MS2Analyzer and MS2LDA, exploit this 
idea to find user-defined specific mass fragments, neu-
tral losses, or hypothesis neutral losses in mass spectral 
data [68]. Such strategies are effective but have not 
been widely used for NP discovery because the strategy 
relies on the pre-resolved characteristic fragmentation 
and fragmentation patterns of target compounds and 
specific NP databases with searchable biological sources.

3.4 Improved strategy III: structural hypothesis 
for unknown compounds
The improved strategy of the third stage is to “com-
prehensively annotate all compounds and generate 
hypothetical structures,” which generally includes the  
following five steps (level 5; Figure 4) [7].

The first step is an analysis of MS spectra to search 
for adducts, isotopes, and neutral losses. Generally, this 
interpretation is not too complicated and can be per-
formed manually for spectra produced in specific ion-
ization modes; for example, electrospray ionization 
(ESI) mainly produces molecular ion peaks in the form 
of single or multiple adducts [77]. This step is critical 
for determining the molecular weight of the detected 
compound. The efficiency of NP de-duplication can be 
considerably increased if molecular ion peak selection 
can be conducted automatically prior to MS spectrum 

Figure 4  |  The advantages and disadvantages of four strategies and corresponding quality of metabolite annotations.
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annotation. At present, the adduct/isotope/complex 
search algorithms of data processing platforms, such as 
CAMERA [29], Mz.unity [78], and MZmine [25], can com-
bine and extract adduct ions to generate the most likely 
molecular ions, then automate this step.

The second step is to determine the molecular for-
mula of the detected ions based on the MS information 
on its m/z, spectral accuracy, and MS fragmentation pat-
tern. Many types of software are available to determine 
molecular formula, such as the companion software for 
specific MS instruments or more general software (Sirius 
[79] and MZmine [25]), most of which take MS/MS data 
into consideration. Such tools perform better if the pos-
sible atoms present in the ionized molecules are accu-
rately set. The isotopic patterns of some atoms can also 
greatly improve the detection power, thus making the 
isotopic patterns detectable and added to the “possible 
atom list” used for molecular formula calculations [80].

The third step is to search the molecular formula 
within available databases (Table 2) to obtain a list of 
hypothetical structures. This is one of the most time-
consuming processes in the process due to the vast 
number of possible databases. To speed up this pro-
cess, more general databases, such as PubChem [81], 
should be considered; however, the number of hypo-
thetical structures associated with NPs is mixed among 
many synthetic compounds, which may complicate the 
determination of accurate annotations. Interestingly, 
step 2 (after correction for the considered adduct ion) 
can sometimes be skipped by searching the exact mass 
directly in the databases. However, this faster strategy 
may lead to more hypothetical structures. Only perform-
ing this process in DNP [82] limits the results to NPs only.

The fourth step is to reduce the number of hypo-
thetical structures based on chemical taxonomic infor-
mation [83]. Depending on the biological matrix from 
which the compound is obtained, the number of struc-
tures selected in subsequent steps can be reduced. For 
example, in the case of the analysis of fungal extracts, 
metabolites reported by plants that match MS may 
receive a low score of annotation candidates (or even 
not be considered); however, such comparisons are still 
largely manual, even though the information is availa-
ble in some DBs (Table 2). Efforts are currently underway 
in many DBs to include chemotaxonomic information to 
automate this process [84].

The fifth step is to determine the most likely structure 
among the generated structures after the above four 
steps. First, manual interpretation of acquired MS/MS 
spectra was used to help determine the unique structure 
when searching for available spectral data in the DBs or 
literature data when no fragment spectra are available. 
The development of in silico DBs has made it possible 
to identify appropriate annotations in all hypothesized 
structures. CFM-ID [53] generates computer fragmenta-
tion spectra that can be compared with acquired MS/
MS spectra, which uses various algorithms to systemat-
ically divided compounds into possible fragments for 

manual or automated comparison with experimental 
data. Other tools, including MAGMA [51], MetFrag [50], 
and MS-Finder [85], search structured DBs for possible 
candidate molecules, then search within the structured 
DBs for possible fragments that match experimental 
data and use different scoring algorithms to rank the 
candidate structures found. Most of these tools take 
into account the fragmentation of [M+H]+ or [M−H]− 
adduct ions, where [M+H]+ is usually more relevant 
because the DB in the positive ion mode is a larger scale 
and provides a larger training set for developing the 
algorithm, therefore fragments with other adduct ions 
may not be accurately presumed. In addition, tools, such 
as CSI:fingerID [54], ChemDistiller [86], and other tools 
to query the structural database without an in silico DB, 
are also effective alternatives in the process of hypo-
thetical structure deduction.

4. COMBINATION OF MNs WITH OTHER 
TECHNIQUES

4.1 Mass spectrometry imaging
To date, most NP analyses have been performed with the 
assistance of MS and NMR using extracts after sample 
homogenization. While these methods are extremely 
useful, information about the spatial context of NPs in 
heterogeneous tissues or cells is lost during analysis. In 
addition, highly-localized NPs may be diluted beyond 
the detection limit of the extract [87]. Mass spectrom-
etry imaging (MSI) is a well-established analytical tool 
that can directly map various chemical classes from dif-
ferent biological samples, thus providing information 
on analyte identity, relative abundance, and spatial 
distribution. MSI has gained popularity over the past 
decade due to its non-targeting and label-free nature. 
Analytes of interest do not need to be pre-selected prior 
to MSI analysis, and can be detected in most cases with-
out any chemical modification or labeling. In contrast, 
most histochemical staining techniques require the use 
of specific antibodies [88]. Most importantly, the spatial 
chemical information provided by MSI is more specific 
than that provided by other types of microscopic imag-
ing techniques, as well as more intuitive than that pro-
vided by colorimetric imaging.

MN can be combined with mass spectrometry imag-
ing to explore the specific chemical space of NPs, which 
means combining information, such as molecular mass 
and spatial distribution, to provide visualization of mol-
ecules on complex surfaces. Within these specific chem-
ical spaces, it is possible to gain insight into how the 
“molecular dialogue” (the exchange of chemical signals 
or compounds between different organism) affects the 
relationships, such as positive (commensalism, mutual-
ism, and symbiosis) or negative (predation, parasitism, 
and antibiosis), assisting in the identification of poten-
tial symbiotic or antagonistic relationships, and facilitate 
the discovery of new NPs with useful biological activi-
ties. Vallet et al. [89] explored the interaction between 
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a fungus (Paraconiothyrium variabile, Montagnulaceae) 
and a bacterium (Bacillus subtilis, Bacillaceae), both 
endophytes of Cephalotaxus harringtoni (Taxaceae), to 
determine the features that exist in interspecific com-
munication (Figure 5). Because these two species were 
observed to exhibit a strong and unique antagonism 
that was not observed between other plant microbio-
tas, the AcOEt extracts of B. subtilis and C. harringto-
nia, as well as the MS/MS data of the competition zone, 
have been submitted to the GNPS platform to gener-
ate a MN to compare the metabolites produced in the 
competition zone with those independently produced 
by each microorganism [90]. De-replication by the GNPS 
database annotated a cluster containing surfactin-like 
molecules, including surfactins C-13, C-14, and C-15, 
and the hydrolyzed derivatives. These compounds were 
all detected in bacterial and competitive zone extracts 
alone. Because these molecules are known to inhibit the 
growth of other fungi, the authors hypothesized that 
P. variable had developed an antagonistic mechanism 
that would lead to the hydrolysis of these features. To 
confirm this finding, the MSI of the microbial compe-
tition between these two species was performed using 
MALDI-TOF and TOF-SIMS. The hydrolyzed surfactins 
were detected during the interspecific competition of 
endophytic microorganisms.

4.2 Genome mining for biosynthetic gene clusters
There are currently two approaches with which to dis-
cover novel NPs: “upstream” at the genome level; or 
“downstream” at the metabolite level [91]. Genome 
sequencing technologies have evolved over the last 
few decades, making it cheaper and faster to obtain 
a complete genome. Genome mining, the process of 
extracting information from genome sequences, has 
emerged as a key approach in the discovery of micro-
bial NPs, particularly when the producing organism is 
a bacterium. Biosynthetic gene clusters (BGCs) serve as 
the core of bacterial biosynthetic pathway organiza-
tion. BGCs typically encode multidomain enzymes, like 

polyketide synthases (PKS) and non-ribosomal peptide 
synthases (NRPS), as well as transporters and deco-
rating enzymes, including halogenases, oxidases, and 
cyclases [92].

MN has been combined with genome mining to 
explore deeper into the biosynthetic gene clusters 
involved for metabolite production. The information can 
be used to improve the detection, isolation, and struc-
tural prediction of novel NPs produced by an organism. 
Kleigrewe et  al. [93] investigated the chemical diver-
sity of marine cyanobacteria using this link between 
genomes and metabolomics data. Moorea producens 
3L, M. producens JHB, and M. bouillonii PNG were 
chosen in this study and the genomes of these species 
were sequenced and analyzed for recognized biochem-
ical pathways, with the aim to identify similar or nearly 
identical biosynthetic genes in the three strains [94]. As 
a result, a regulatory serine-histidine kinase gene was 
found in the mixed biosynthetic pathway responsible 
for the production of the above-mentioned active chem-
icals in two M. producens strains. Considering that this 
regulatory kinase was highly homologous with 96.1% 
similarity between these two strains, the presence of 
the gene encoding this regulatory enzyme in the M. 
bouillonii PNG genome sequence could result in the 
identification of additional novel NP biosynthesis gene 
clusters. Authors then identified a highly homologous 
sequence in the M. bouillonii PNG genome and explored 
the gene neighborhood of this kinase, which revealed a 
new biosynthetic gene cluster with several unique fea-
tures. Using MN to analyze the metabolic pathways of 
each strain, the authors assessed the potential expres-
sion of metabolites of this gene cluster. In the gener-
ated MN, clusters containing the above molecules were 
quickly identified. Furthermore, two families of mole-
cules produced by M. bouillonii PNG attracted the atten-
tion of the authors because the isotopic pattern of the 
precursor ions indicated the presence of dichloro- and 
trichloro-species. Thus, three new NPs (columbamides A, 
B, and C) were discovered (Figure 6).

Figure 5  |  Example of the combination of MSI and MN to decipher and map the chemistry of the microbial competition 
between the endophytes, P. variabile and B. subtilis.
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4.3 Stable isotope labeling
Isotopes, unlike radionuclides, have stable nuclei, thus 
making isotopes a safe choice for labeling techniques. In 
nature, the overall abundance of heavy stable isotopes 
is low (5%). Using radiation detectors to study biosyn-
thetic pathways of radiolabeled substrates date back to 
the 1950s [95]. Recent advances in mass spectrometry 
have enabled stable isotope labeling without the risk of 
handling radioactive materials. One approach is to use 
13C labeling to clarify biosynthetic pathways by adding 
known precursors of the target compound to the culti-
vation media of the organism, then comparing the mass 
spectrum of a given compound with the predicted 13C 
labeling pattern [96]. This approach has been used in 
many biosynthetic pathway investigations, such as asti-
colorin [97], aflatoxin [98], and yanuthone D [99].

Additionally, many studies have shown that linear 
non-ribosomal peptides can be characterized by cul-
turing bacteria in the presence of labeled amino acids 
using MS/MS analysis [100]. Klitgaard et al. [101] used 
stable isotope labeling combined with MN to study 
the biosynthetic pathway of nidulanin A (Figure 7) and 

related metabolites produced by Aspergillus nidulans, 
and detected numerous labeled known and unknown 
compounds. As a result, samples were obtained from 
fungi cultivated with and without labeled amino acids 
and analyzed using LC-MS/MS in the positive mode 
to create MN. According to the labeling experiments, 
nodes in MN are highlighted that differ in m/z from the 
predicted mass change from the introduction of stable 
isotope-labeled amino acids.

5. CONCLUSION AND PERSPECTIVES

NPs have produced numerous success stories in drug 
discovery, yet the discovery and design of NPs still face 
numerous challenges, including trace amounts, com-
plex extracts, unknown biological activity, missing bio-
logical targets, difficult chemical synthesis, complex 
structure-activity/property relationship studies, difficult 
pharmacokinetic properties (ADME), and toxicity, result-
ing in a cessation of NP-related drug discovery research. 
However, laboratory and computer scientists continue 
to be amazed by NPs for their unique ability to bind 
biological drug targets precisely for their therapeutic 
potentials. Drug discovery based on bioactive NP scaf-
folds will continue to be a major research area for NPs 
in the future. Bioinformatics advancements in recent 
years have reversed the laborious and time-consuming 
process of NP drug discovery, leading to the emergence 
of numerous powerful tools and platforms.

MN analysis, as a versatile and convenient tool for 
exploring NPs, has been widely used as a basic strategy 
for metabolite data analysis in NP research; however, 
network analysis based on mass spectrometry has limits 
because many techniques rely largely on factors, such as 
mass spectrometry type, measurement methodologies, 
and metabolite structure information. The effective 
experimental mass spectrometry data contained in the 
database only account for a small portion of the reported 
NPs, far from meeting the huge demand for NP struc-
tural identification. Although some breakthroughs have 
been made in structure-based computational prediction 
of mass spectrometry, there are still significant chal-
lenges in predicting when and how NPs will fragment 
under different modes, such as collision-induced dissoci-
ation (CID)-type fragmentation based on ESI. Although 
computer annotation strategies have shown powerful 
potential in filtering large datasets, the reliability of 
the annotation still needs to be ranked manually. With 
the development of artificial intelligence-assisted deci-
sion-making tools, the situation may soon change. The 
latest advancements in annotation tools make it possi-
ble to search for computer-generated structures in NP 
databases, thus replacing the traditional de-replication  
process based on molecular formula and accurate mass. 
The use of machine learning algorithms can lead to 
more effective structure prediction. MN technology is 
constantly expanding and enriching its applications, 
clearly paving the way for exciting NP drug discovery.

Figure 6  |  Structures of columbamides A-C.

Figure 7  |  Structure of nidulanin A.
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2: Modular Framework for Processing, Visualizing, and 
Analyzing Mass Spectrometry-based Molecular Profile 
Data. BMC Bioinformatics 2010, 11:395.

[26]	 Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, et al.: 
MS-DIAL: Data-Independent MS/MS Deconvolution for 
Comprehensive Metabolome Analysis. Nature Methods 
2015, 12:523–526.

[27]	 MetaboScape [https://www.bruker.com/en/products-and-
solutions/mass-spectrometry/ms-software/metaboscape.
html] Accessed on date 2023.02.25.

[28]	 Xia J, Psychogios N, Young N, Wishart DS: MetaboAnalyst: 
A Web Server for Metabolomic Data Analysis 
and Interpretation. Nucleic Acids Research 2009, 
37:W652–W660.

[29]	 Kuhl C, Tautenhahn R, Böttcher C, Larson TR, Neumann S: 
CAMERA: An Integrated Strategy for Compound Spectra 
Extraction and Annotation of Liquid Chromatography/
Mass Spectrometry Data Sets. Analytical Chemistry 2012, 
84:283–289.

[30]	 Lommen A: MetAlign: Interface-Driven, Versatile 
Metabolomics Tool for Hyphenated Full-Scan Mass 
Spectrometry Data Preprocessing. Analytical Chemistry 
2009, 81:3079–3086.

[31]	 Tautenhahn R, Böttcher C, Neumann S: Highly Sensitive 
Feature Detection for High Resolution LC/MS. BMC 
Bioinformatics 2008, 9:504.

[32]	 Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, 
Aicheler F, et al.: OpenMS: A Flexible Open-Source 
Software Platform for Mass Spectrometry Data Analysis. 
Nature Methods 2016, 13:741–748.

https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp
https://www.bruker.com/en/products-and-solutions/mass-spectrometry/ms-software/metaboscape.html
https://www.bruker.com/en/products-and-solutions/mass-spectrometry/ms-software/metaboscape.html
https://www.bruker.com/en/products-and-solutions/mass-spectrometry/ms-software/metaboscape.html


Acta  
Materia  
MedicaReview Article

Acta Materia Medica 2023, Volume 2, Issue 2, p. 126-141      139 
© 2023 The Authors. Creative Commons Attribution 4.0 International License

[33]	 Giacomoni F, Le Corguillé G, Monsoor M, Landi M, 
Pericard P, Pétéra M, et al.: Workflow4Metabolomics: A 
Collaborative Research Infrastructure for Computational 
Metabolomics. Bioinformatics 2015, 31:1493–1495.

[34]	 Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, Burant C, et al.: 
Metabolomics Workbench: An International Repository 
for Metabolomics Data and Metadata, Metabolite 
Standards, Protocols, Tutorials and Training, and Analysis 
Tools. Nucleic Acids Research 2016, 44:D463–D470.

[35]	 Li Y, Kind T, Folz J, Vaniya A, Mehta SS, Fiehn O: Spectral 
Entropy Outperforms MS/MS Dot Product Similarity 
for Small-Molecule Compound Identification. Nature 
Methods 2021, 18:1524–1531.

[36]	 Frank AM, Monroe ME, Shah AR, Carver JJ, Bandeira N, 
Moore RJ, et al.: Spectral Archives: Extending Spectral 
Libraries to Analyze Both Identified and Unidentified 
Spectra. Nature Methods 2011, 8:587–591.

[37]	 Guthals A, Watrous JD, Dorrestein PC, Bandeira N: The 
Spectral Networks Paradigm in High Throughput Mass 
Spectrometry. Molecular BioSystems 2012, 8:2535–2544.

[38]	 Frank AM, Bandeira N, Shen Z, Tanner S, Briggs SP, Smith 
RD, et al.: Clustering Millions of Tandem Mass Spectra. 
Journal of Proteome Research 2008, 7:113–122.

[39]	 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, 
Ramage D, et al.: Cytoscape: A Software Environment for 
Integrated Models of Biomolecular Interaction Networks. 
Genome Research 2003, 13:2498–2504.

[40]	 Nguyen DD, Wu CH, Moree WJ, Lamsa A, Medema MH, 
Zhao X, et al.: MS/MS Networking Guided Analysis of 
Molecule and Gene Cluster Families. Proceedings of the 
National Academy of Sciences of the United States of 
America 2013, 110:E2611–E2620.

[41]	 Alden N, Krishnan S, Porokhin V, Raju R, McElearney K, Gilbert 
A, et al.: Biologically Consistent Annotation of Metabolomics 
Data. Analytical Chemistry 2017, 89:13097–13104.

[42]	 Guijas C, Montenegro-Burke JR, Domingo-Almenara 
X, Palermo A, Warth B, Hermann G, et al.: METLIN: 
A Technology Platform for Identifying Knowns and 
Unknowns. Analytical Chemistry 2018, 90:3156–3164.

[43]	 O’Donnell VB, Dennis EA, Wakelam MJO, Subramaniam 
S: LIPID MAPS: Serving the Next Generation of Lipid 
Researchers with Tools, Resources, Data, and Training. 
Science Signaling 2019, 12:eaaw2964.

[44]	 Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, 
et al.: HMDB 5.0: The Human Metabolome Database for 
2022. Nucleic Acids Research 2022, 50:D622–D631.

[45]	 Sakurai N, Ara T, Enomoto M, Motegi T, Morishita Y, 
Kurabayashi A, et al.: Tools and Databases of the KOMICS 
Web Portal for Preprocessing, Mining, and Dissemination 
of Metabolomics Data. BioMed Research International 
2014, 2014:194812.

[46]	 Strutz J, Shebek KM, Broadbelt LJ, Tyo KEJ: MINE 2.0: Enhanced 
Biochemical Coverage for Peak Identification in Untargeted 
Metabolomics. Bioinformatics 2022, 38:3484–3487.

[47]	 Wishart DS, Tian S, Allen D, Oler E, Peters H, Lui VW, 
et al.: BioTransformer 3.0-a Web Server for Accurately 
Predicting Metabolic Transformation Products. Nucleic 
Acids Research 2022, 50:W115–W123.

[48]	 Domingo-Almenara X, Siuzdak G: Metabolomics Data 
Processing using XCMS. Methods in Molecular Biology 
2020, 2104:11–24.

[49]	 Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, et al.: 
MassBank: A Public Repository for Sharing Mass Spectral 
Data for Life Sciences. Journal of Mass Spectrometry 2010, 
45:703–714.

[50]	 Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann 
S: MetFrag Relaunched: Incorporating Strategies Beyond 
In Silico Fragmentation. Journal of Cheminformatics 2016, 
8:3.

[51]	 de Leeuw CA, Mooij JM, Heskes T, Posthuma D: MAGMA: 
Generalized Gene-Set Analysis of GWAS Data. PLoS 
Computational Biology 2015, 11:e1004219.

[52]	 Li L, Li R, Zhou J, Zuniga A, Stanislaus AE, Wu Y, et al.: 
MyCompoundID: Using an Evidence-based Metabolome 
Library for Metabolite Identification. Analytical Chemistry 
2013, 85:3401–3408.

[53]	 Wang F, Liigand J, Tian S, Arndt D, Greiner R, Wishart DS: 
CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction 
and Compound Identification. Analytical Chemistry 2021, 
93:11692–11700.

[54]	 Hoffmann MA, Nothias LF, Ludwig M, Fleischauer M, 
Gentry EC, Witting M, et al.: High-Confidence Structural 
Annotation of Metabolites Absent from Spectral Libraries. 
Nature Biotechnology 2022, 40:411–421.

[55]	 Draper J, Enot DP, Parker D, Beckmann M, Snowdon S, 
Lin W, et al.: Metabolite Signal Identification in Accurate 
Mass Metabolomics Data with MZedDB, an Interactive m/z 
Annotation Tool Utilising Predicted Ionisation Behaviour 
“rules”. BMC Bioinformatics 2009, 10:227.

[56]	 Kind T, Liu KH, Lee DY, DeFelice B, Meissen JK, Fiehn 
O: LipidBlast In Silico Tandem Mass Spectrometry 
Database for Lipid Identification. Nature Methods 2013, 
10:755–758.

[57]	 Aguilar-Mogas A, Sales-Pardo M, Navarro M, Guimerà 
R, Yanes O: iMet: A Network-Based Computational Tool 
to Assist in the Annotation of Metabolites from Tandem 
Mass Spectra. Analytical Chemistry 2017, 89:3474–3482.

[58]	 Gil de la Fuente A, Godzien J, Fernández López M, Rupérez 
FJ, Barbas C, Otero A: Knowledge-based Metabolite 
Annotation Tool: CEU Mass Mediator. Journal of 
Pharmaceutical and Biomedical Analysis 2018, 154:138–149.

[59]	 Suhre K, Schmitt-Kopplin P: MassTRIX: Mass Translator 
into Pathways. Nucleic Acids Research 2008, 36: 
W481–W484.

[60]	 Uppal K, Walker DI, Jones DP: xMSannotator: An R Package for 
Network-based Annotation of High-Resolution Metabolomics 
Data. Analytical Chemistry 2017, 89:1063–1067.

[61]	 da Silva RR, Wang M, Nothias LF, van der Hooft JJJ, Caraballo-
Rodríguez AM, Fox E, et al.: Propagating Annotations of 
Molecular Networks using In Silico Fragmentation. PLoS 
Computational Biology 2018, 14:e1006089.

[62]	 Nguyen DH, Nguyen CH, Mamitsuka H: ADAPTIVE: 
leArning DAta-dePendenT, concIse Molecular VEctors for 
Fast, Accurate Metabolite Identification from Tandem 
Mass Spectra. Bioinformatics 2019, 35:i164–i172.

[63]	 Shen X, Wang R, Xiong X, Yin Y, Cai Y, Ma Z, et al.: 
Metabolic Reaction Network-based Recursive Metabolite 
Annotation for Untargeted Metabolomics. Nature 
Communications 2019, 10:1516.

[64]	 Zhou Z, Luo M, Zhang H, Yin Y, Cai Y, Zhu ZJ: Metabolite 
Annotation from Knowns to Unknowns through 
Knowledge-Guided Multi-Layer Metabolic Networking. 
Nature Communications 2022, 13:6656.

[65]	 Ernst M, Kang KB, Caraballo-Rodríguez AM, Nothias 
LF, Wandy J, Chen C, et al.: MolNetEnhancer: Enhanced 
Molecular Networks by Integrating Metabolome Mining 
and Annotation Tools. Metabolites 2019;9:144.

[66]	 Cocco N, Llabrés M, Reyes-Prieto M, Simeoni M: MetNet: 
A Two-Level Approach to Reconstructing and Comparing 
Metabolic Networks. PLoS One 2021, 16:e0246962.



Acta  
Materia  
Medica Review Article

140      Acta Materia Medica 2023, Volume 2, Issue 2, p. 126-141 
© 2023 The Authors. Creative Commons Attribution 4.0 International License

[67]	 Lee S, van Santen JA, Farzaneh N, Liu DY, Pye CR, 
Baumeister TUH, et al.: NP Analyst: An Open Online 
Platform for Compound Activity Mapping. ACS Central 
Science 2022, 8:223–234.

[68]	 Wandy J, Zhu Y, van der Hooft JJJ, Daly R, Barrett MP, 
Rogers S: Ms2lda.org: Web-based Topic Modelling 
for Substructure Discovery in Mass Spectrometry. 
Bioinformatics 2018, 34:317–318.

[69]	 Wolstencroft K, Haines R, Fellows D, Williams A, Withers 
D, Owen S, et al.: The Taverna Workflow Suite: Designing 
and Executing Workflows of Web Services on the 
Desktop, Web or in the Cloud. Nucleic Acids Research 
2013, 41:W557–W561.

[70]	 Hemmerich J, Gurinova J, Digles D: Accessing Public 
Compound Databases with KNIME. Current Medicinal 
Chemistry 2020, 27:6444–6457.

[71]	 Wolfender JL, Nuzillard JM, van der Hooft JJJ, Renault 
JH, Bertrand S: Accelerating Metabolite Identification in 
Natural Product Research: Toward an Ideal Combination 
of Liquid Chromatography-High-Resolution Tandem Mass 
Spectrometry and NMR Profiling, In Silico Databases, and 
Chemometrics. Analytical Chemistry 2019, 91:704–742.

[72]	 Shahaf N, Rogachev I, Heinig U, Meir S, Malitsky S, 
Battat M, et al.: The WEIZMASS Spectral Library for 
High-Confidence Metabolite Identification. Nature 
Communications 2016, 7:12423.

[73]	 Wang M, Bandeira N: Spectral Library Generating Function 
for Assessing Spectrum-Spectrum Match Significance. 
Journal of Proteome Research 2013, 12:3944–3951.

[74]	 Gu J, Gui Y, Chen L, Yuan G, Lu HZ, Xu X: Use of Natural 
Products as Chemical Library for Drug Discovery and 
Network Pharmacology. PLoS One 2013, 8:e62839.

[75]	 Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, Mehta SS, et al.: 
Identification of Small Molecules Using Accurate Mass 
MS/MS Search. Mass Spectrometry Reviews 2018, 37: 
513–532.

[76]	 Ramirez-Gaona M, Marcu A, Pon A, Guo AC, Sajed T, 
Wishart NA, et al.: YMDB 2.0: A Significantly Expanded 
Version of the Yeast Metabolome Database. Nucleic Acids 
Research 2017, 45:D440–D445.

[77]	 Nielsen KF, Månsson M, Rank C, Frisvad JC, Larsen 
TO: Dereplication of Microbial Natural Products by 
LC-DAD-TOFMS. Journal of Natural Products 2011;74: 
2338–2348.

[78]	 Mahieu NG, Spalding JL, Gelman SJ, Patti GJ: Defining and 
Detecting Complex Peak Relationships in Mass Spectral 
Data: The Mz.unity Algorithm. Analytical Chemistry 2016, 
88:9037–9046.

[79]	 Böcker S, Dührkop K: Fragmentation Trees Reloaded. 
Journal of Cheminformatics 2016, 8:5.

[80]	 Meusel M, Hufsky F, Panter F, Krug D, Müller R, Böcker 
S: Predicting the Presence of Uncommon Elements in 
Unknown Biomolecules from Isotope Patterns. Analytical 
Chemistry 2016, 88:7556–7566.

[81]	 Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte 
A, et al.: PubChem Substance and Compound Databases. 
Nucleic Acids Research 2016, 44:D1202–D1213.

[82]	 Chapman Hall: Dictionary of Natural Products [https://
dnp.chemnetbase.com/] Accessed on date 2023.02.26.

[83]	 Allard PM, Genta-Jouve G, Wolfender JL: Deep 
Metabolome Annotation in Natural Products Research: 
Towards a Virtuous Cycle in Metabolite Identification. 
Current Opinion in Chemical Biology 2017, 36:40–49.

[84]	 Schymanski EL, Neumann S: The Critical Assessment of 
Small Molecule Identification (CASMI): Challenges and 
Solutions. Metabolites 2013, 3:517–538.

[85]	 Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka 
W, Cajka T, et al.: Hydrogen Rearrangement Rules: 
Computational MS/MS Fragmentation and Structure 
Elucidation using MS-FINDER Software. Analytical 
Chemistry 2016, 88:7946–7958.

[86]	 Laponogov I, Sadawi N, Galea D, Mirnezami R, Veselkov 
KA: ChemDistiller: An Engine for Metabolite Annotation 
in Mass Spectrometry. Bioinformatics 2018, 34:2096–2102.

[87]	 Bowman AP, Heeren RMA, Ellis SR: Advances in Mass 
Spectrometry Imaging Enabling Observation of Localised 
Lipid Biochemistry within Tissues. Trends in Analytical 
Chemistry 2019, 120:115197.

[88]	 Spengler B: Mass Spectrometry Imaging of Biomolecular 
Information. Analytical Chemistry 2015, 87:64–82.

[89]	 Vallet M, Vanbellingen QP, Fu T, Le Caer JP, Della-Negra 
S, Touboul D, et al.: An Integrative Approach to Decipher 
the Chemical Antagonism between the Competing 
Endophytes Paraconiothyrium variabile and Bacillus 
subtilis. Journal of Natural Products 2017, 80:2863–2873.

[90]	 Peypoux F, Bonmatin JM, Wallach J: Recent Trends in 
the Biochemistry of Surfactin. Applied Microbiology and 
Biotechnology 1999, 51:553–563.

[91]	 Baltz RH: Natural Product Drug Discovery in the 
Genomic Era: Realities, Conjectures, Misconceptions, and 
Opportunities. Journal of Industrial Microbiology and 
Biotechnology 2019, 46:281–299.

[92]	 Timmermans ML, Paudel YP, Ross AC: Investigating 
the Biosynthesis of Natural Products from Marine 
Proteobacteria: A Survey of Molecules and Strategies. 
Marine Drugs 2017, 15:235.

[93]	 Kleigrewe K, Almaliti J, Tian IY, Kinnel RB, Korobeynikov 
A, Monroe EA, et al.: Combining Mass Spectrometric 
Metabolic Profiling with Genomic Analysis: A Powerful 
Approach for Discovering Natural Products from 
Cyanobacteria. Journal of Natural Products 2015, 
78:1671–1682.

[94]	 Nagarajan M, Maruthanayagam V, Sundararaman M: A 
Review of Pharmacological and Toxicological Potentials 
of Marine Cyanobacterial Metabolites. Journal of Applied 
Toxicology 2012, 32:153–185.

[95]	 Hanahan DJ, Al-Wakil SJ: The Biosynthesis of Ergosterol 
from Isotopic Acetate. Archives of Biochemistry and 
Biophysics 1952, 37:167–171.

[96]	 Tang JKH, You L, Blankenship RE, Tang YJ: Recent Advances 
in Mapping Environmental Microbial Metabolisms 
through 13C Isotopic Fingerprints. Journal of the Royal 
Society, Interface 2012, 9:2767–2780.

[97]	 Steyn PS, Vleggaar R, Simpson TJ: Stable Isotope Labelling 
Studies on the Biosynthesis of Asticolorin C by Aspergillus 
multicolor. Evidence for a Symmetrical Intermediate. 
Journal of the Chemical Society, Chemical Communications 
1984, 765–767.

[98]	 Townsend CA, Christensen SB: Stable Isotope Studies of 
Anthraquinone Intermediates in the Aflatoxin Pathway. 
Tetrahedron 1983, 39:3575–3582.

[99]	 Holm DK, Petersen LM, Klitgaard A, Knudsen PB, 
Jarczynska ZD, Nielsen KF, et al.: Molecular and Chemical 
Characterization of the Biosynthesis of the 6-MSA-
derived Meroterpenoid Yanuthone D in Aspergillus niger. 
Chemistry and Biology 2014, 21:519–529.

https://dnp.chemnetbase.com/
https://dnp.chemnetbase.com/


Acta  
Materia  
MedicaReview Article

Acta Materia Medica 2023, Volume 2, Issue 2, p. 126-141      141 
© 2023 The Authors. Creative Commons Attribution 4.0 International License

[100]	 Bode HB, Reimer D, Fuchs SW, Kirchner F, Dauth C, Kegler 
C, et al.: Determination of the Absolute Configuration 
of Peptide Natural Products by using Stable Isotope 
Labeling and Mass Spectrometry. Chemistry 2012, 
18:2342–2348.

[101]	 Klitgaard A, Nielsen JB, Frandsen RJN, Andersen MR, 
Nielsen KF: Combining Stable Isotope Labeling and 
Molecular Networking for Biosynthetic Pathway 
Characterization. Analytical Chemistry 2015, 
87:6520–6526.


