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Abstract

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a potential treatment for patients with B-cell 
lymphoma in whom standard therapy has failed. The U.S. Food and Drug Administration (FDA) has approved 
anti-CD19 CAR T-cell products for B-cell lymphoma. However, growing experience has shown that treatment has 
limitations, such as relapses due to tumour mutations or CD19 antigen loss, unexpanded CAR T-cells, and/or poor 
persistence of CAR T-cells. Understanding the limitations of CAR T-cell therapy is essential to achieve the full potential 
of this therapeutic strategy. In this review, we analyse factors potentially affecting the efficacy of CAR T-cell therapy, 
explore the mechanisms of resistance to CD19 CAR T-cell therapy in B-cell lymphoma, and summarise potential 
strategies to overcome treatment barriers.
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1. INTRODUCTION

CD19 is present on the surfaces of all B lineage cells 
except plasma cells. Patients with relapsed/refractory 
(R/R) B-cell lymphoma have poor prognosis [1]. CD19 
is a transmembrane protein that is largely restricted to 
B-cells and most B-lineage malignancies, and plays a 
critical role in B-cell development and maturation [2, 3]. 
Anti-CD19 chimeric antigen receptor (CAR) T-cells are an 
effective treatment for R/R B-cell lymphomas that are 
CD19 antigen positive. CAR T-cells, unlike normal T-cells, 
recognise lymphoma independently of the human leu-
kocyte antigen system and then destroy tumours [4, 5].

Axicabatagene ciloleucel (axi-cel) and tisagenle-
cleucel (tisa-cel) have been approved by the U.S. Food 
and Drug Administration (FDA) for the treatment of 
patients with refractory or relapsed disease after two 
previous treatment regimens for aggressive B-cell non-
Hodgkin’s lymphomas (NHLs) [6, 7]. Although specta
cular results have been achieved with CAR T-cell therapy 
in the treatment of R/R B-cell lymphoma, with overall 
response rates ranging from 40% to 83% reported in 
trials (ZUMA1, TRANSCEND, and JULIET) and real world 
cohorts, 30–50% of patients eventually develop disease 

progression or relapse after infusion, usually within 1 
year of treatment [8, 9]. In addition, nearly 10–20% of 
patients do not achieve remission after treatment with 
anti-CD19 CAR T-cells [8-11]. As CAR T-cell therapies 
become more common, their limitations must be under-
stood. In this review, we discuss factors influencing the 
persistence of CAR T-cells, as well as salvage strategies 
after CD19 CAR T-cell therapies fail.

2. CURRENT STATUS OF CD19 CAR T-CELLS IN THE 
TREATMENT OF B-CELL LYMPHOMA

The multicentre, single-arm phase I/II study of axi-cel 
for relapsed or refractory B-NHL (ZUMA-1) showed a 
treatment objective response rate (ORR) of 83%, includ-
ing a complete remission rate (CR) of 58%. After a fol-
low-up period of longer than 4 years, the median over-
all survival (OS) was 25.8 months, with a 4-year OS rate 
of 44%. The 4-year OS for patients with an event-free 
survival (EFS) event after month 12 (EFS12; n=57) was 
7% (95% confidence interval [CI], 2–16), and that for 
patients without EFS12 (n=44) was 91% (95% CI, 78–97) 
[12]. As compared with the ZUMA-1 research base-
line, real world research data on axi-cel in Center for 
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International Blood and Marrow Transplant Research 
(CIBMTR) groups include a greater proportion of older 
patients with poor physical fitness scores among 1343 
cases of diffuse large B-cell lymphoma (DLBCL), more 
patients with double-or triple-hit lymphoma, and more 
patients who had previously received autologous stem 
cell transplant (ASCT). Curative effects were observed, 
with an ORR of 73.6% and a CR of 56.1%. The JULIET 
study data from tisagenlecleucel and CIBMTR (tisa-cel 
real world study) data show an ORR of 52–59.4% and CR 
of 40% for R/R B-cell lymphoma. The median follow-up 
was 40.3 months (n=115), and the progression-free 
survival (PFS) rates were 33% and 31% at 24 and 36 
months, respectively [13]. The results of the NHL001 
transfer study of lisocabtagene maraleucel showed an 
ORR of 73% and a CR rate of 53%.

 However, some patients did not achieve remission. 
A multicentre study has reported outcomes of axicabat-
gene treatment failure. The median follow-up period 
was 12.9 months, and disease progression (progressive 
disease [PD]) occurred in 136 of 275 patients (49%), pri-
marily in patients who did not respond to CAR T-cells, 
had severe cytokine release syndrome (CRS), and had 
previously received bridging therapy (BT) [14]. In a study 
at the Fred Hutchinson Cancer Research Center, the 
OS was 5.3 months after CAR T-cell failure. The overall 
prognosis was poor, particularly for patients who expe-
rienced disease progression within 30 days of CAR T-cell 
infusion [15].

3. KILLING MECHANISMS OF CAR T-CELLS

CAR T-cells are have specific antigen receptors whose 
function is independent of T-cell receptor/peptide-MHC 
(TCR/pMHC). CAR T-cells permanently attack tumour 
cells through T-cell activation signals and the CD28 
or 4-1BB structural domain [16]. CAR T-cells use three 
mechanisms to attack cancer cells. Through Fas/Fas 
ligand mediated lysis of tumour cells and cleavage of 
granzyme and perforin, activated CAR T-cells perform 
cytokine-induced killing and enhance anti-tumour activ-
ity [17, 18].

4. RESISTANCE MECHANISMS TO CAR T-CELL 
THERAPY

4.1 T-Cell
4.1.1 CAR T-cell exhaustion.  Sustained antigen stimu-
lation leads to T-cell exhaustion, defined as inhibition 
of T-cell proliferation and effector function, thus result-
ing in failure of CAR T-cell therapy [19, 20]. CAR T-cell 
exhaustion may cause CAR T-cell therapy resistance. 
An increase in exhausted CD8+ T-cells in the apheresis 
lymphocyte product is associated with non-response 
and relapse after CAR T-cell treatment [21-23]. High 
expression of lymphocyte-activated gene-3 (LAG-3) and 
TIM domain-containing protein-3 (TIM-3) in CAR T-cell 
infusion products correlates with decreased response to 

CD19 CAR T-cell therapy and early relapse of DLBCL [22]. 
In addition, an increase in the frequency of cells express-
ing LAG-3 and a decreased ability to secrete cytokines 
after stimulation may decrease antileukemic efficacy 
and lead to CD19-positive relapse [23]. These results sug-
gest combination opportunities with immuno-oncology 
agents, such as checkpoint inhibitors, tyrosine kinase 
inhibitors, and immunomodulatory agents, that could 
revive persistent CAR T-cells [24].

4.1.2 CAR T-cell phenotype.  Initial T-cell phenotype, 
such as the percentages of CD4+ and CD8+ CAR T-cells, 
determines the persistence of CAR T-cell responses [25-
28]. According to some studies, a 1:1 ratio of CD4+CD8+ 
T-cells is optimal for CAR T-cell products [29, 30]. Detailed 
analysis in the ZUMA-1 trial of axi-cel in large B-cell lym-
phoma (LBCL) has indicated that the limited number of 
CCR7+CD45RA+ or CD8+ T-cells relative to tumour burden 
is associated with failure to achieve a durable response. 
Moreover, the number of infused CCR7+CD45RA1+ 

T-cells is associated with objective response and peak 
CAR T-cells [31]. CAR T-cell production can be optimised 
by selection and enrichment of T-cells before production 
of CAR T-cells [32-34].

4.1.3 Other possible influencing factors.  Other factors 
that may influence the persistence of CAR T-cell expan-
sion in vivo include aberrant signalling pathways within 
CAR T-cells and the interaction between CAR T-cells and 
tumour cells [35, 36]. Abnormal apoptotic pathways are 
another mechanism affecting CAR T-cell toxicity. In addi-
tion, T-cell subpopulations continue to change with age 
[37, 38].

4.2 CAR construct design
CAR construct design is another parameter likely 
to affect the properties of CAR T-cell products, and 
their expansion kinetics and duration of persistence 
in vivo [39].

The four major components of CARs are the extra-
cellular antigen-binding domain, the hinge region, 
the transmembrane domain, and the intracellular sig-
nalling domain. The targeted antigen-binding domain 
of CARs requires high affinity but cannot induce 
toxicity in T-cells [40, 41]. The hinge region is also 
important, and its composition and length affect the 
recognition of antigenic epitopes [42, 43]. CAR trans-
membrane structural domains affect CAR expression 
and stability [44-46]. Intracellular signalling domains 
significantly affect the persistence of cellular prod-
ucts [39]. CD28 and 4-1BB are the two co-stimulatory 
structural domain choices used in most preclinical 
and clinical studies. CD19-28ζ T-cells exhibit strong 
functional potential and expansion, but are rapidly 
depleted after expansion, whereas CD19-BBζ T-cells 
have better persistence. The median CD19-BBζ and 
CD19-28ζ CD19+ relapse rates are 16.7% and 22.7%, 
respectively [47].
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4.3 CAR immunogenicity
Compared with mouse-derived CAR T-cells, humanised 
CAR T-cells have similar anti-tumour effects but are less 
immunogenic and more durable [48-50]. Moreover, 
CAR immunogenicity can be decreased by modifica-
tion of the hinge region and transmembrane structural 
domains [49, 51].

4.4 Tumour mutations
CD19 antigen-negative recurrence may be associated 
with tumour mutations in response to immune stress. 
The mechanisms are as follows:
•	 Acquired CD19 shift mutations [52]
•	 Selective splicing of CD19 antigen [53]
•	 Downregulation of CD19 antigen density [54]
•	 CD19 negative subclones already present at diagno-

sis; recurrence of negative subclones when CD19 pos-
itive clones are cleared [39]

•	 Altered tumour spectrum [55]

4.5 Immunosuppressive microenvironment
Systemic inflammation is likely to be due to immune sys-
tem dysregulation caused by tumours and the tumour 
microenvironment (TME), inadequate expansion of 
axial cells, and ultimately treatment failure. In the TME, 
many cell types, including myeloid-derived suppressor 
cells (MDSCs), regulatory T-cells, and tumour-associated 
macrophages, can cause immune suppression [56]. 
Programmed cell death protein-1 (PD-1) on the surfaces 
of tumour-specific T-cells binds programmed cell death-
ligand 1 (PD-L1) on the surfaces of tumour-associated 
macrophages or MDSCs in the TME, thus triggering 
apoptosis and depletion of lymphocytes in tumour tis-
sue [57]. Studies have shown that CAR T-cell expansion 
and a low sustained response rate may be associated 
with high IFN signalling in the TME and high levels of 
circulating MDSCs [58].

4.6 Recipient-associated factors
4.6.1 Tumour burden.  Disease burden may positively 
influence the degree of cell expansion [10, 11] and the 
immunological microenvironment [39, 58]. A study by 
the American CAR T-Cell Consortium has suggested that 
high preinfusion lactate dehydrogenase (LDH) levels 
significantly contribute to poor survival outcomes [59]. 
Published data from ZUMA-1 suggest that a high base-
line tumour burden decreases durable response rates 
[60]. A retrospective multivariate study conducted in 
France has found that patients with LBCL with exten-
sive disease (metabolic tumour volume, mean tumour 
volume (MTV) greater than 80.42 ml) and two or more 
extranodal lesions are more likely to experience disease 
progression than those without these two factors after 
treatment with CAR T-cell therapy (axi-cel and tisa-cel) 
[61]. In another study, 273 adults with R/R LBCL from two 
centres were treated with CD19 CAR T-cells with axi-cel 
[98, 36%], tisa-cel [76, 28%], and lisocabtagen-maraleu-
cel [28, 10%]. In multivariate analysis, bulky disease at 

apheresis (HR 2.05 [1.07–3.95], P=0.031) has been associ-
ated with poorer OS [62].

4.6.2 Bridging therapy (BT).  Patients requiring BT have 
poorer PFS and OS without relapse and increased mor-
tality. Possible reasons include more advanced disease 
condition in patients receiving BT, e.g., more patients 
with stage III/IV, International Prognostic Index (IPI) 
score ≥3, elevated LDH and extensive disease [63, 64]. 
Immunosuppression is further aggravated by haemocy-
topenia after BT [63].

4.6.3 Lymphodepletion before CAR T-cell infusion.  
Lymphodepletion is also important for CAR T-cell expan-
sion, and certain chemotherapeutic agents such as 
fludarabine may be effective in lymphodepletion [29].

4.6.4 Previous treatment.  Cytotoxic therapy before CAR 
T-cell therapy results in lymphopoenia: sufficient T-cells 
for CAR T-cell therapy cannot be collected in 79% of 
patients [65]. In addition, chemotherapy before CAR T-cell 
therapy may disrupt the metabolic pathways of T-cells in 
vivo, thus further affecting the durable persistent reactiv-
ity of CAR T-cells [66]. Clinical studies have shown that the 
use of cytarabine and cyclophosphamide decreases early 
phenotypic T-cell subsets, and differences in T-cell subsets 
are associated with expansion of CAR T-cells [65].

4.6.5 Severe cytokine release syndrome and other tox-
icities.  Severe CRS and other toxicities pose obstacles to 
the efficacy of CAR T-cell therapy. Whether long-term 
steroid use affects the efficacy of CAR T-cell therapy in 
patients who experience severe CRS reactions requires 
further investigation [39].

5. CURRENT SALVAGE STRATEGIES FOR CD19 CAR 
T-CELL FAILURE

Currently, no standard regimen exists for LBCL after CAR 
T-cell failure.

5.1 Combination therapy with targeted agents
A small sample study has indicated that in patients with 
PD after CAR T-cell therapy, five patients who received 
BTK inhibitors (BTKi) had non-germinal center B-cell 
(non-GCB) cells of origin. The ORR and CRs were 50% and 
38% for BTKi. The median PFS was 1.2 mo for BTKi (n=8). 
BTKi may be attributed a immunomodulatory effect on 
previously CARTs [67]. The exact mechanism of the syner-
gistic effects of BTKi and CAR T-cells is unclear. Ibrutinib 
treatment significantly increases the implantation and 
expansion of CAR T-cells, decreases expression of immu-
nosuppressive PD-1 and CD200, and enhances their cyto-
toxic activity [68].

5.2 Immunomodulatory therapies
5.2.1 Immune checkpoint inhibitors.  Preclinical data 
have shown that PD-1/PD-L1 inhibitors increase the 
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efficacy of CAR T-cell therapy [69, 70]. Blocking the 
PD-1/PD-L1 pathway helps restore the functions of 
CD8+ effector T-cells, while inhibiting the function of 
regulatory T-cells and MDSCs and enhancing the anti-
tumour effects [57]. One study has reported an ORR of 
27% (one partial remission (PR) and two CR cases) in 
11 cases of lymphoma relapsed after CAR T-cell treat-
ment after a single infusion of pembrolizumab, and 
the American CAR T-cell Consortium has reported a 
similar trend [15]. This previous study showed that the 
median time to the first dose of pembrolizumab was 3.3 
months (range: 0.4–42.8 months). Of 12 patients, nine 
had a re-expansion peak of CART19 cells in peripheral 
blood (CART19 transgene copy number) between days 
2 and 14 (median 3 days) after the first pembrolizumab 
dose. Responsive patients had more than one re-expan-
sion peak during pembrolizumab treatment, whereas 
non-responsive patients had only a single re-expansion 
peak or no expansion after the first pembrolizumab 
dose. After treatment with pembrolizumab, grade 3 
CRS occurred in one patient, and grade 3 neutropoe-
nia was observed in three patients [15]. The ZUMA-6 
study is a phase I study evaluating the PD-L1 inhibitor 
atezumab in combination with axi-cel at different time 
points. However, no positive results have been found 
to date [61]. Clinical studies have examined cytotoxic 
T-lymphocyte-associated antigen-4 (CTLA-4) antibodies, 
such as ipilimumab, for their role in enhancing the effi-
cacy of CAR T-cell therapy [71].

5.2.2 Lenalidomide-based therapies.  Combined use of 
lenalidomide (LEN) at the time of cell expansion after 
CAR T-cell transfusion increases the efficacy of CAR T-cell 
treatment in patients at high risk of relapse. One study 
has reported failure in 59 patients after CAR T-cell infu-
sion including tisa-cel (n=33) or axi-cel (n=26). A higher 
ORR (7/11, 63.6%) and CR rate (4/11, 36.4%) have been 
observed in 11 patients receiving combined LEN within 
day (D) 15 after CAR T-cell infusion. In addition, six of 
the evaluable patients with LEN (≤D15) had a higher 
expansion rate of CAR T-cells in the blood in the first 28 
days after CAR T-cell infusion (P=0.042) than the other 
patients, including patients with combined treatment 
with LEN after D15 (P=0.033) [72].

Another study has reached a similar conclusion: 
among the 36 patients who relapsed after CAR T-cell 
infusion in the first month, LEN was initiated in 17 
patients before D15. The PFS was significantly longer 
than that in other patients, with a median of 68 days 
(95% CI, 52, not reached) compared with 35 days (95% 
CI, 28–70) (P=0.035). In univariate analysis, 13 patients 
with early combination LEN had higher CAR T-cell 
expansion in the blood during the first 28 days than the 
other patients [73].

In a National Cancer Institute study, several drugs 
including venetoclax, ibrutinib, obinutuzumab, and LEN 
(Vipor) have been combined for six cycles of 21 days 
each to assess the efficacy. The following treatments 

were administered: venetoclax at four dose levels (200 
mg, 400 mg, 600 mg and 800 mg) peros (PO) on D2–14, 
ibrutinib 560 mg PO on D1–14, prednisolone PO 100 mg 
on D1–7, obinutuzumab IV 1000 mg on D1–2, and LEN 
15 mg PO on D1–14. The ten patients in whom CAR T-cell 
therapy failed had an ORR of 40% and a CR of 30% [74].

5.3 Noncellular immunotherapeutic approaches
5.3.1 Loncastuximab.  Loncastuximab tesirine is a 
humanised anti-CD19 monoclonal antibody conju-
gated to a pyrrolobenzodiazepine dimer toxin as an 
antibody drug conjugate (ADC). The open-label, sin-
gle-arm LOTIS-2 trial applied loncastuximab tesirine 
monotherapy to 145 patients with R/R LBCL. The rec-
ommended dosage was 0.15 mg/kg every 3 weeks for 
two cycles, and 0.075 mg/kg every 3 weeks for each 
subsequent cycle. Of particular note, the ORR in 13 
patients in whom CD19 CAR T-cell therapy failed was 
46.2%. Among all patients, adverse events such as 
anaemia and neutropoenia, and non-haematologi-
cal events such as fatigue and nausea, were common 
after administration [75, 76]. Because biopsy to assess 
CD19 expression was required in patients who had 
previously received CD19-targeted therapy, these pre-
liminary results are limited to patients in whom CD19 
expression was maintained [75].

5.3.2 Polatuzumab vedotin.  Polatuzumab vedotin (PV) 
is an ADC consisting of an anti-CD79b mAb and an anti-
mitotic agent called mono-methyl auristatin E, which 
has been approved for patients with R/R LBCL. Studies 
of CD19 CAR T-cell treatment failure have shown 
that, among all patients receiving further treatment, 
PV-based therapy was associated with the highest ORR 
(52–73%) and CR(35–40%) in patients with PD [67, 77]. 
Chemotherapy was associated with the poorest survival 
(6-month OS 25%; 95% CI, 11–59), whereas PV-based 
treatment was associated with a survival of 67% (50–
89%) [77]. The median PFS was highest with polatu-
zumab vedotin combined with bendamustine and 
rituximab (PBR) (8.9 months, n=14) [67, 77]. The three 
factors associated with OS prognosis were age ≥65 
years, bulky disease at apheresis, and CAR T-cell refrac-
tory disease [77]. A multicentre retrospective analysis 
has assessed the efficacy of PV-based treatment in 57 
patients with LBCL who relapsed or progressed after 
CAR T-cell therapy. Patients received PV 1.8 mg/kg intra-
venously (IV) every 3 weeks, and the number of patients 
treated with the combination of PV and rituximab or PV 
and bendamustine was 45 (95%) and 35 (61%), respec-
tively. Treatment was effective in 25 patients (44%), of 
whom 8 (14%) achieved CR. The median follow-up was 
47 weeks (95% CI, 40–54), and the median PFS was 10 
weeks (95% CI, 5–15). Multifactorial analysis showed 
that the two factors associated with shorter PFS were 
bone marrow involvement (HR 5.2; 95% CI, 1.8–15; 
P=0.003) and elevated LDH (HR, 5.0; 95% CI, 1.4–16; 
P=0.01) [78].
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5.3.3 CD22-ADC.  TRPH-222 contains an antibody 
directed against CD22 and the antimitotic agent met-
formin, which has been tested in R/R LBCL. TRPH-222-
100 was an open-label, multicentre dose-escalation 
study followed by a dose-extension phase (from 0.6 to 
10 mg/kg). A total of 22 patients were enrolled in the 
study, including four previously treated with CAR T. Five 
CR and one PR were observed at doses ranging from 0.6 
to 5.6 mg/kg at the end of cycle 6. TRPH-222 was well 
tolerated and caused a low incidence of adverse reac-
tions including thrombocytopoenia, neutropoenia, and 
peripheral neuropathy [79].

5.3.4 CD3-CD20 bispecifc antibody.  CD3-CD20 bispecifc 
antibodies have relatively long half-lives and appear 
to offer higher response rates in R/R B-cell lympho-
mas [80]. In addition, CD3-CD20 bispecifc antibodies 
have the potential to circumvent the shortcomings 
of CAR T-cells while achieving high response rates. 
Mosunetuzumab is a full-length, fully humanised IgG1 
bispecific antibody targeting both CD3 and CD20. 
GO29781 is an open-label, multicentre, phase I/Ib 
study in R/R B-cell NHL, administering mosunetuzumab 
with step-up dosing on days 1, 8, and 15 of cycle 1, 
and then on D 1 of each subsequent 21-D cycle. A total 
of 16 patients who had received prior CAR-T therapy 
were evaluable for efficacy (seven DLBCL, five trans-
formed follicular cell lymphoma [tr FL], and four folli-
cular cell lymphoma [FL]). The ORR and CR rates were 
43.8% (7/16) and 25.0% (4/16, two DLBCL, and two 
FL), respectively. Quantitative PCR detected the expan-
sion of prior CAR T-cells after administration. CRS was 
observed in 28.4%, and Gr 3 CRS occurred in 1.4% of 
patients. Neurological adverse events were reported in 
44% of patients (Gr 1, 28.0%; Gr 2, 12.8%; Gr 3, 3.2%) 
[80]. Another study targeting the CD3-CD20 antibody 
(REGN1979) included three cases of DLBCL that had 
relapsed after CAR T-cell treatment, thus resulting in 
two of three CRs with REGN1979 at doses of 80/160/320 
mg, consisting of 12 weekly IV doses followed by 
administration at 2-week intervals for 12 doses (36 
weeks total) [81]. Gloftamab (RG6026) is also a candi-
date for the treatment of CD19 CAR T-cell failure [61]. 
Epcoritamab (GEN3013) has been reported to elicit 
three objective responses in four relapsed DLBCL cases 
after CAR T-cell therapy [82].

5.4 Cellular immunotherapeutic approaches
5.4.1 CD19 CAR T-cell reinfusion.  Several studies have 
shown that the use of an intensive lymphodepletion 
regimen increases the expansion and persistence of ini-
tial CAR T-cells [83]. In ZUMA-1, CD19 CAR T-cells were 
reinfused in patients who had responded to treatment 
and were still CD19 positive after relapse. Of the 13 
patients, 54% had an ORR, with four CR and three PR. 
The median time to remission was 81 days, and two 
patients were still in remission at the last follow-up. 
The Fred Hutchinson Cancer Research Center has shown 

an ORR of 39%, with CR achieved in 20% (44 patients) 
with LCBL after CAR T-cell recurrence. The addition of 
fludarabine to the second conditioning and the infusion 
of a higher CAR T-cell dose were both associated with an 
achievable durable response [84].

5.4.2 Replacement of humanised CD19 CARs.  A clinical 
trial (NCT02374333) is currently underway to humanise 
CD19 CARs to overcome rejection of the murine-derived 
anti-CD19 construct [85].

5.4.3 Alternative CARs targeting other B-cell markers.  
Preliminary results of an autologous 41BB CAR T-cell 
treatment with LBCL against CD22 have recently been 
reported. The trial incorporated three patients who 
relapsed on CD19 CAR T-cell treatment and were treated 
with a single infusion of autologous 1×106 CAR22+ 

T-cells/kg and showed an ORR of 100%, with one CR and 
two PRs, at the time of the last follow-up (mean, 7.8 
months; range, 6–9.3). CD22 CAR T-cell therapy was well 
tolerated, without any nonhematologic adverse events 
higher than grade 2 [86].

CD37 CAR T-cells can be used to treat B-cell lympho-
mas lacking CD19 antigen expression [87]. Moreover 
anti-CD38 CAR T-cells exhibit potent cytotoxicity against 
B-NHL both in vitro and in vivo [88].

5.4.4 Bispecific CARs or dual targeted CAR T-cells.  The 
ORR for CD19-CD22 dual-targeted CAR T-cell therapy in 
11 patients with B-NHL (DLBCL, mantle cell lymphoma 
[MCL], or chronic lymphocytic leukemia [CLL]) has been 
found to be 82% [89]. AUTO3, also a CD22-CD19 dual-
targeted CAR T-cell type, has shown significant activity 
in a phase I/II study in R/R DLBCL (n=23), with an ORR of 
65% (CR=48%) [90]. Multi-target preclinical studies of 
CAR T-cells have included targeting of CD19-CD20, CD19 
and CD22 [91], and several clinical trials of these strate-
gies are ongoing.

5.4.5 Universal CAR T-cell approaches and CAR-NK.  If 
the reason for the failure of CD19 CAR T-cell ther-
apy is a patient’s T-lymphocyte dysfunction, universal 
CAR T-cell salvage therapy may be an option. Several 
research groups are investigating donor-based CAR 
T-cell therapy. Donor-derived CAR T-cells and gene-ed-
ited “off-the-shelf” universal CAR T-cells are under 
active development [92, 93]. Results have shown a low 
incidence of grade III or IV graft-versus-host disease 
[94-96].

Other potential advantages of include different 
cytokine responses between CAR natural killer (NK) cells 
and CAR T-cells [97, 98]. Allogeneic natural killer cells 
(NK-CARs) are another immune cellular platform that 
has several advantages over allogeneic CAR T-cells: they 
can be selected from cord blood or healthy donors who 
are HLA mismatched with the recipient, do not cause 
graft-versus-host disease, and are less susceptible to the 
inhibitory effects of TME [99].
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5.5 Allogeneic hematopoietic stem cell 
transplantation
In one study, 12 patients who relapsed after treatment 
with CD19 CAR T-cells subsequently underwent alloge-
neic hematopoietic stem cell transplantation (alloHSCT). 
The mean age was 59 years (41–68); one patient (8.3%) 
had already received alloHSCT, and six (50%) had 
received autologous HSCT. The best response rates of 
CR and PR to CAR T-cells were 50% and 25%, respec-
tively [67]. Another study has reported high response 
rates in patients who received alloHCT, because of their 
young age, with an ORR of 73% and an OS of 70% at 
6 months [77]. In a study of CD19 CAR T-cell treatment 
failure in patients with B-cell acute lymphoblastic leu-
kemia (B-ALL), only 40% of patients responded to sal-
vage treatment, and the remission duration was short, 
with a median of 5.8 months, despite subsequent con-
solidative alloHSCT [100]. AlloHCT remains a potentially 
curative therapy for selected patients, more than half of 
whom achieve durable remission; however, few patients 
receive alloHCT.

6. CONCLUSIONS

CAR T-cell therapy is one of the most promising lym-
phoma treatments ever developed. With the U.S. FDA 
approval of multiple commercial CAR T-cells for clinical 
use, the landscape of R/R B-cell lymphoma treatment 
has evolved rapidly in recent years. As more experi-
ence is gained with these therapies, the understanding 
and treatment of relapse after CAR T-cell therapy will 
improve. Various aspects of CAR T-cell treatment can be 
considered to find ways to improve outcomes, such as 
how to select patients, how to improve CAR T-cell char-
acteristics, and how to improve the potential for subse-
quent T-cell expansion [39].

Re-biopsy should be the first step after relapse of CAR 
T-cell therapy, if possible, to confirm the diagnosis and 
perform evaluation through molecular studies [101-
103]. Similarly to multi-agent chemotherapy, strategies 
targeting multiple antigens could address these relapse 
mechanisms, thus providing a pathway to more dura-
ble remission. CAR T-cell therapy has synergistic effects 
in combination with immune checkpoint inhibitors or 
other immunomodulatory therapies, and may clinically 
improve the speed of response, and the depth and dura-
tion of treatment [104].

 Pola-BR elicits a high ORR rate and PFS. Loncastuximab 
tesirine may be available for R/R DLBCL, particularly 
for patients who relapse after CAR T-cell therapy. 
Consistently, bispecifc antibodies appear to be effec-
tive after CAR T-cell failure. Dual and tandem CAR 
T-cell therapy has the potential to overcome resistance 
to CAR T-cell therapy and prolong survival. Allogeneic 
NK-CARs provide another immune cell platform [13]. 
Finally, for patients who have regained effective treat-
ment after CAR T-cell failure, consolidation with autol-
ogous or allogeneic transplantation may be considered 

[105,  106]. Future studies should prospectively investi-
gate the optimal sequence of antibody-based and cellu-
lar immunotherapies and develop strategies to decrease 
relapse and increase survival after CD19 CAR T-cell ther-
apy [107, 108].
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