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A ligand-activated transcription factor, peroxisome proliferator-activated receptor (PPAR) regulates fatty acid uptake and
transport. In several studies, upregulation of PPAR expression/activity by cancer cells has been associated with cancer
progression. Worldwide, cancer of the cervix ranks fourth among women’s cancers. Angiogenesis inhibitors have improved
treatment for recurrent and advanced cervical cancer since their introduction 5 years ago. In spite of that, the median overall
survival rate for advanced cervical cancer is 16.8 months, indicating that treatment effectiveness is still lacking. Thus, it is
imperative that new therapeutic methods be developed. In this work, we first downloaded the PPAR signaling pathway-related
genes from the previous study. In addition, the single-sample gene set enrichment analysis (ssGSEA) algorithm was applied to
calculate the PPAR score of patients with cervical cancer. Furthermore, cervical cancer patients with different PPAR scores
show different sensitivity to immune checkpoint therapy. In order to screen the genes to serve as the best biomarker for
cervical cancer patients, we then construct the PPAR-based prognostic prediction model. The results revealed that PCK1,
MT1A, AL096855.1, AC096711.2, FAR2P2, and AC099568.2 not only play a key role in the PPAR signaling pathway but also
show good predictive value in cervical cancer patients. The gene set variation analysis (GSVA) enrichment analysis also proved
that the PPAR signaling pathway is one of the most enriched pathways in the prognostic prediction model. Finally, further
analysis revealed that AC099568.2 may be the most promising biomarker for the diagnosis, treatment, and prognosis in
cervical cancer patients. Both the survival analysis and Receiver Operating Characteristic curve demonstrated that AC099568.2
plays a key role in cervical cancer patients. However, to our knowledge, this is the first time a study focused on the role of
AC099568.2 in cervical cancer patients. Our work successfully revealed a new biomarker for cervical cancer patients, which
also provides a new direction for future research.

1. Introduction

Each year, approximately 500,000 women are diagnosed with
invasive uterine cervical cancer (UCC) worldwide, resulting
in 273,000 deaths [1]. It is estimated that over 70% of cancer
patients have reached a very advanced stage of their illness
[2]. It is reported that 604,127 women worldwide will be diag-
nosed with cervical cancer by 2020 [3]. There could be
approximately 7million fewer cases of human papillomavirus
(HPV) over the next half-century with screening campaigns
and broad-spectrum vaccinations for HPV [4]. According
to recent guidelines released by the International Federation

of Gynecological Ecology and Obstetrics (FIGO), a variety
of imaging tools, surgery, and pathology can be used to
stage cervical cancer [5]. Given the high costs of additional
tests, a clinical approach is still considered acceptable in
low- and middle-income countries [6]. Although HPV
infection is ubiquitous and a major etiological factor in
the carcinogenesis process, it is not always detectable in
all patients with UCCs [7]. Approximately 75% of cervical
cancer patients develop polypoidal exophytic masses inside
the ectocervix caused by squamous cell carcinoma [8].
There are also instances where the endocervix may become
dilated due to ulcerations, barrel adenocarcinomas, or
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adenosquamous cell carcinomas, which originate from the
columnar epithelium [9]. There are several routes of
spread, including the direct extension to the vaginal
mucosa, the adjacent parametrial tissues, the bladder, or
the rectum [10]. A growing body of knowledge is available
about the oncology, tumor biology, and tumor morphology
of cervical cancer at present. This field is also currently
interested in identifying genetic, molecular, and immuno-
histochemical markers as early detection tools for precan-
cerous lesions and neoplastic processes. As part of
oncology, a biomarker is often a gene, DNA, RNA, pro-
tein, enzyme, antigen, or other cellular and biological
product [11]. There is evidence that these lesions may
occur at various stages of carcinogenesis under the influ-
ence of therapy. Many modern reviews and articles have
discussed these lesions [12].

Since 1990, Issemann and Green have been discovering
ligand-activated transcription factors called peroxisome
proliferator-activated receptors (PPARs) [13]. There are
three different subtypes of PPAR, PPAR α, and PPAR β/δ,
which are located on different chromosomes and encoded
by specific genes [14]. In spite of their significant homology,
these three proteins differ in their tissue distribution, an
affinity for ligands, and biological function [15]. Many mod-
ern reviews and articles on carcinogenesis describe how
these lesions can be detected at various stages of carcinogen-
esis, as well as how therapy can influence their development
[16]. However, few studies focused on the correlations
between PPAR signaling pathways and UCC. Therefore,
we aim to explore the potential association between UCC
and PPAR signaling pathways by bioinformatics analysis.

The Cancer Genome Atlas (TCGA) database was used to
obtain expression data for this study to investigate the role of
PPAR signaling pathways in UCC. In addition, the single-
sample gene set enrichment analysis (ssGSEA) algorithm
was applied to explore the score of PPAR signaling in
patients with UCC. A Gene Ontology (GO) enrichment
analysis and a Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis were also conducted in order
to identify potential pathways closely related to the key
genes. Finally, we decided to explore the potential biomark-
ers for better prognosis prediction of patients with UCC.

2. Methods

2.1. Dataset Downloaded. Data on mRNA expression and
clinical information were downloaded from the Cancer
Genome Atlas database for UCC patients. In addition, the
genes that are closely associated with the PPAR were also
obtained from the previous studies.

2.2. Tumor Immune Estimation Resource Analysis. The
Tumor Immune Estimation Resource (TIMER) software
program (https://cistrome.shinyapps.io/Timer/) provides a
comprehensive approach to analyze immune infiltration in
different cancer types. An analysis of TIMER was performed
to determine whether immune cell infiltration was related to
the level of expression of the immune-related cells.

2.3. Single-Sample Gene Set Enrichment Analysis. For each
tumor case, an individual score was calculated using ssGSEA.
In ssGSEA, ranking-based GSEA methods are used to com-
pute overexpression measures for genes of interest relative
to other genes in the genome. Based on log-transformed data
from RNA-Seq or microarray experiments, ssGSEA scores
were calculated. In the next step, we classified UCCs accord-
ing to related pathways (ssGSEA scores) and analyzed both
tumor purity and immune scores for each patient.

2.4. The Enrichment Pathway Analysis Based on the Key
Genes. Using functional enrichment, the data were further
analyzed to confirm the potential functions of the potential
targets. GO is widely used to annotate genes with their func-
tions, especially molecular functions (MF), biological path-
ways (BP), and cellular components (CC). Analyzing gene
function and related high-level genome function informa-
tion using KEGG enrichment analysis is practical and useful.
An analysis of the GO function of potential mRNAs and
enrichment of KEGG pathways was performed using the
ClusterProfiler package in R to better understand the onco-
genic functions of target genes.

2.5. Construction of the Prognostic Prediction Model of the
PPAR Signaling Pathways. Module members (MM) repre-
sent gene expression profiles that are correlated with genes
that belong to the module. We then performed univariate
analyses of each gene in the module to identify genes associ-
ated with the prognosis that were significantly associated.
We used COX regression based on the least absolute shrink-
age and selection operator (LASSO) to further narrow down
the candidate biomarkers for immunization prognosis using
the “glmnet” R package. Using the “survminer” R package,
samples were divided into low-risk and high-risk groups
based on a bivariate model with nonzero coefficients. R
was also used to perform the survival analysis.

2.6. Immune Cell Infiltration Analysis. An analysis of RNA-
seq data from UCC patients in different subgroups was con-
ducted to determine the relative proportions of 22 immune
infiltrating cells. To determine whether immune cell infiltra-
tion and gene expression are related, Spearman correlation
analysis was conducted.

2.7. Gene Set Variation Analysis. Gene set variation analysis
(GSVA), an unsupervised, non-parametric method, was
used to evaluate gene set enrichment. As a result of scoring
the genes of interest, followed by determining the biological
function of the sample, changes at the gene level were trans-
formed into changes at the pathway level in this study. In the
present study, gene sets were retrieved using the molecular
signatures database (version 7.0). The GSVA algorithm was
used to evaluate a wide range of samples for potential biolog-
ical function changes.

2.8. Gene Set Enrichment Analysis. Gene sets were retrieved
from MSigDB (http://www.gsea-msigdb.org/gsea/downloads
.jsp). In order to identify enriched GO terms from the gene
sets, GSEA was performed using the 50 best terms selected
from each subtype.
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3. Results

3.1. The ssGSEA Algorithm Was Used to Obtain the PPAR
Signaling Score for UCC Patients. On the basis of the former
study, we successfully obtained the genes that play a key role
in the PPAR signaling pathways. Finally, a total of 72 genes
were regarded as the genes that are closely associated with
the PPAR signaling pathways. Subsequently, by using the
ssGSEA algorithm, the patients with UCC were successfully
divided into low- and high-PPAR signaling pathways groups.
In addition, we also evaluate other pathways, such as choles-
terol metabolism, primary bile acid biosynthesis, fat digestion
and absorption, glycerolipid metabolism, and regulation of
lipolysis in adipocytes. The results demonstrated that the
PPAR-high group is associated with the high pathways of
cholesterol metabolism, primary bile acid biosynthesis, fat
digestion and absorption, glycerolipid metabolism, and regu-
lation of lipolysis in adipocytes (Figure 1(a)). Furthermore,
we then explore the correlation between Human Leukocyte
Antigen (HLA)-related genes and PPAR score (Figure 1(b)).
The results did not show potential associations. In addition,
we also discovered that high score of PPAR signaling pathway
is associated with a higher stromal score and estimate score
(Figure 1(c)). According to the differentially expressed analy-
sis, 290 genes were found to be differentially expressed,
including 57 genes that were up-regulated and 233 genes that
were down-regulated (Figures 1(d) and 1(e)).

3.2. The Potential Pathways That Are Closely Associated with
the Differentially Expressed Genes. Next, we performed the
enrichment pathways analysis based on the 290 different
expression genes. The results revealed that complement
and coagulation cascades, PPAR signaling pathway, choles-
terol metabolism, bile secretion, insulin resistance, fat diges-
tion and absorption, and glycolysis are the most enriched
pathways of KEGG terms (Figures 2(a) and 2(b)). Addition-
ally, for Hallmark terms, the most enriched pathways
involve coagulation, xenobiotic metabolism, bile acid metab-
olism, KRAS signaling dn, myogenesis, and angiogenesis
(Figures 2(c) and 2(d)).

3.3. Evaluation of the Association between PPAR Score and
Immune-Related Cells and Immune Checkpoint-Related
Genes. Subsequently, we aim to explore the potential correla-
tion between PPAR score and immune-related cells. A total
of 22 types of immune-related cells were identified. The
results finally revealed that the lower PPAR score is associ-
ated with more infiltration of CD4-activated T cells, while
the higher PPAR score is associated with more infiltration
of M2 macrophages (Figure 3(a)). In terms of the immune
checkpoint genes, the PPAR score is positively associated
with HAVCR2, while the PPAR score is negatively associ-
ated with CD274, PDCD1, CTLA4, LAG3, and PDCD1LG2
(Figures 3(b), 3(c), 3(d), 3(e), 3(f), and 3(g)).
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Figure 1: (a) The heat map reveals the results of the ssGSEA algorithm; (b) the different expression levels of HLA-related genes between
low- and high-PPAR groups; (c) the different immune-related score between low- and high-PPAR groups; (d) the heat map
demonstrated the differentially expressed genes between low- and high-PPAR groups; (e) the volcano map demonstrated the
differentially expressed genes between low- and high-PPAR groups.
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3.4. Construction of the PPAR-Based Prognostic Prediction
Model in UCC Patients. First, we obtained the mRNA expres-
sion data, as well as the clinical characteristics of UCC patients.
Next, we performed the differentially expressed analysis
betweenUCC patients and normal people. The results demon-
strated that a total of 5980 genes showed significant differences,

which includes 2033 up-regulated genes and 3947 down-
regulated genes (Figure 4(a)). The heat map shows the top 50
differentially expressed genes (Figure 4(b)). Subsequently, we
construct the prognostic predictionmodel based on the overall
survival (OS) of UCC patients. The univariate COX regression
analysis demonstrated that 19 genes are associated with the
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score; (i) the calibration score reveals the predictive value of risk score in UCC cohort.
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prognosis of UCCpatients (Figure 4(c)). The LASSO regression
analysis and multivariate COX regression analysis were then
performed to further explore the biomarkers for the prognosis
of UCC patients. The results demonstrated that PCK1,
MT1A, AL096855.1, AC096711.2, FAR2P2, and AC099568.2
are mostly associated with the prognosis of UCC patients.
We then successfully constructed the PPAR-based prognos-
tic prediction model. Each UCC patient was assigned
with the risk score as follows: Risk score = PCK1 ×
0.371061037507491 + MT1A × 0.181870631948255 +
AL096855.1 × 0.207868336512594 + AC096711.2 ×
0.570820588371621 + FAR2P2 × 0.801187844986532 +
AC099568.2 × −0.54499718389366 (Figures 4(d) and
4(e)). Based on the risk score, the UCC patients were divided
into low- and high-risk groups (Figure 4(f)). The survival anal-
ysis revealed that patients with higher risk scores tend to show
poorerOS (Figure 4(g)). In addition, the Area Under the Curve
(AUC) value of the Receiver Operating Characteristic (ROC)
curve was 0.751 at 1 year, 0.731 at 3 years, and 0.675 at 5 years,
respectively (Figure 4(h)). The calibration curve proves that
PPAR-based prognostic prediction model shows good predic-
tive value in UCC patients (Figure 4(i)).

3.5. Validation of the Role of PPAR-Based Prognostic
Prediction Model in Immune-Related Cells, Immune

Checkpoint Genes, Immune-Related Score, and Clinical
Characteristics. On the basis of the former analysis, we suc-
cessfully obtained the PPAR-based prognostic prediction
model, which involves six genes (PCK1, MT1A, AL096855.1,
AC096711.2, FAR2P2, and AC099568.2). We then performed
the immune infiltration analysis. The results demonstrated that
the risk score is positively associated with endothelial cells, M2
macrophage, monocyte, Natural Killer (NK) cell, neutrophil,
and cancer-associated fibroblasts. However, the risk score is
negatively associated with CD8+ naïve T cell, eosinophil, naïve
B cell, and T cell follicular helper (Figures 5(a), 5(b), 5(c), 5(d),
and 5(e)). The immune checkpoint analysis demonstrated that
the risk score is associated with IDO2, ADORA2A, VTCN1,
CD44, NRP1, and LGALS9 (Figures 5(f), 5(g), 5(h), and 5(i)).
In terms of immune score analysis, the higher risk score is asso-
ciated with a high stromal score (Figure 5(j)). For clinical char-
acteristics, the UCC patients with the high-risk score are
associatedwith higher age, T stage, andN stage, while the grade
is not associated with the risk score (Figures 5(k), 5(l), 5(m),
and 5(n)).

3.6. Exploration of the Potential Pathways That Are
Associated with Risk Score and PPAR-Related Genes. Then,
we performed the pathway enrichment analysis based on
the risk score. The GSVA analysis shows that the calcium

100

75

50

Pe
rc

en
t w

ei
gh

t

25

0

low

N0
N1
NX

high
Risk score

(n)

Figure 5: (a) The immune infiltration analysis based on the risk score; the correlation analysis between risk score and cancer-associated
fibroblasts (b); endothelial cells (c); macrophages (d); NK cell (e); (f–i) the correlation analysis between risks score and immune
checkpoint-related genes; (j) the correlation analysis between risk score and immune-related score; the correlation analysis between risk
score and age (k); grade (l); T stage (m); N stage (n).
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signaling pathway, receptor signaling pathway, PPAR signal-
ing pathway, and Transforming Growth Factor (TGF)-beta
signaling pathway are the most enriched KEGG terms
(Figure 6(a)). For Hallmark terms, angiogenesis, apical junc-
tion, coagulation, complement, E2F target, KRAS signaling,
and pancreas beta cells are the most enriched pathways. In
addition, we also explore the GO enrichment pathways based
on the PPAR-related genes (Figure 6(b)). For GO BP analysis,
blood coagulation, platelet degranulation, protein activation
cascade, regulation of hemostasis, and terpenoid metabolic
process are the most enriched pathways (Figure 6(c)). The
blood microparticle, lipoprotein particle, plasma lipoprotein
particle, protein–lipid complex, and platelet alpha granule
lumen are the most enriched GO CC enrichment pathways
(Figure 6(d)). In addition, the GO MF enrichment analysis
demonstrated that heparin binding, peptidase inhibitor activ-
ity, endopeptidase regulator activity, sulfur compound bind-
ing, and endopeptidase inhibitor activity are most associated
with PPAR-related genes (Figure 6(e)).

3.7. AC099568.2 May Play a Key Role in the UCC and PPAR
Signaling Pathway. Based on the PPAR-based prognostic

prediction model constructed in the previous analysis, we suc-
cessfully obtained six genes, which may be the biomarkers
(PCK1, MT1A, AL096855.1, AC096711.2, FAR2P2, and
AC099568.2) for UCC. Subsequently, we performed the sur-
vival analysis solely on these six genes. The results demon-
strated that the high expression of AC099568.2 is associated
with a better prognosis of UCC patients, while the other five
genes are not associated with the OS of UCC patients
(Figures 7(a), 7(b), 7(c), 7(d), 7(e), and 7(f)). In addition,
the ROC curve also proved the good predictive value of
AC099568.2 in the UCC cohort (Figure 7(g)). Additionally,
the expression level of AC099568.2 in UCC patients is higher
than normal cohort (Figures 7(h) and 7(i)). Subsequently, the
GSVA analysis demonstrated that midbody, regulation of cell
population proliferation, misfolded protein binding, response
to oxidative stress, and cyclin binding are positively associated
with AC099568.2. However, external encapsulating structure,
smoothened signaling pathway, kinase binding, microtubule
cytoskeleton, and response to xenobiotic stimulus are corre-
lated with the down-regulation of AC099568.2 (Figure 7(j)).
In addition, the GSEA analysis revealed that keratinization,
NK activation involved in immune response, negative

(e)

Figure 6: (a) The GSVA analysis based on the KEGG terms; (b) the GSVA analysis based on the Hallmark terms; (c) the GO BP enrichment
analysis; (d) the GO CC enrichment analysis; (e) the GO MF enrichment analysis.
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regulation of interleukin 8 productions, and positive regula-
tion of cytoplasmic translation are closely associated with
the AC099568.2 (Figure 7(k)).

4. Discussion

Every year, thousands of women die from cervical cancer.
Approximately 273,000 women die from cervical cancer
each year, despite preventive HPV vaccines and conven-
tional cancer treatments [17]. Malignant cells evade immune
surveillance by forming tumors, invading, and metastasizing
when their immune systems are perturbed [18]. A deeper
understanding of the immune system players that suppress
or promote cervical cancer is essential to develop more tar-
geted treatments with fewer side effects [19]. Using natural
processes of action to stimulate the immune system to fight
cancer cells, immunotherapy has become the most desirable
method of targeting cancer [20]. It is possible to treat cervi-
cal cancer with a variety of immunotherapy approaches,
including monoclonal antibodies, immune checkpoint
blockade therapy, adoptive cell transfer therapy, and oncoly-
tic viruses [21]. Recent studies have found that PPARs,
which are nuclear hormone receptors, may be used as ther-
apeutic targets for a variety of cancers, including lung cancer
[22]. Furthermore, PPARs participate in various cellular
functions, such as differentiation, proliferation, survival,
apoptosis, and motility [23]. Cancer risk is increased when
these cellular processes and metabolic disturbances are

dysregulated in tumors [24]. In recent years, with the develop-
ment of bioinformatics analysis, more and more research
started to focus on the advantages of bioinformatics analysis
in the treatment, prognosis prediction, and diagnosis of can-
cer patients [25–31]. In this work, we aim to explore the role
of PPAR signaling pathways in UCC patients. By using the
ssGSEA algorithm, the UCC cohort was successfully divided
into PPAR-low and PPAR-high groups. In addition, the dif-
ferentially expressed analysis revealed a total of 290 PPAR-
related genes. The pathway enrichment analysis also proved
that the PPAR signaling pathway is one of the most enriched
pathways. Cancer prevention and treatment may be improved
using PPAR modulators, including agonists and antagonists.
A number of factors contribute to cancer risk, including dys-
lipidemia, obesity, glucose intolerance, and low-grade inflam-
mation. Therefore, PPAR modulators can be used to treat
cancer by promoting proliferation, differentiation, and apo-
ptosis of cancerous cells. They have a significant role to play
in preventing various types of cancer, such as cancer of the
breast, lung, and pancreas.

Subsequently, by constructing the prognostic prediction
model based on the PPAR-related genes, we successfully
obtained a six-gene-based prognostic prediction model.
The survival analysis and ROC curve demonstrated that
the PPAR-based model shows good predictive value in
UCC patients. In addition, the immune checkpoint analysis
demonstrated that the expression level of many immune
checkpoint-related genes is closely associated with the
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Figure 7: The survival analysis of AC099568.2 (a); FAR2P2 (b); AC096711.2 (c); AL096855.1 (d); MT1A (e); PCK1 (f) in UCC cohort; (g)
the ROC curve of AC099568.2 in UCC cohort; (h) the box plot reflects the differentially expressed analysis of AC099568.2; (i) the results of
the paired differently expressed analysis; (j) the GSVA analysis of AC099568.2; (k) the GSEA analysis of AC099568.2.
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PPAR-based risk score, which may indicate that the PPAR
signaling pathway map influences immune checkpoint ther-
apy (Figure 8). As shown in the previous study, PPARα acts
as a transcription factor influencing intracellular signaling
events and cellular metabolism [32]. In conditions of various
immunological backgrounds, PPAR-targeted therapies have
become more commonly used due to their broad effects on
the immune system [33].

Finally, further analysis revealed that AC099568.2 may
be the most promising biomarker for the diagnosis, treat-
ment, and prognosis in UCC patients. Both the survival
analysis and ROC curve demonstrated that AC099568.2
plays a key role in UCC patients. However, to our knowl-
edge, this is the first time a study focused on the role of
AC099568.2 in UCC patients. Our work successfully
revealed a new biomarker for UCC patients, which also pro-
vides a new direction for future research.

5. Conclusion

In this work, we construct the PPAR-based prognostic predic-
tionmodel. PCK1,MT1A, AL096855.1, AC096711.2, FAR2P2,
andAC099568.2 not only play a key role in the PPAR signaling
pathway. Further analysis revealed that AC099568.2 may be

the most promising biomarker for the diagnosis, treatment,
and prognosis in cervical cancer patients.
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