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Incomplete information about connectivity and functionality of elements of networked control systems is a
challenging issue in applying model-based security analysis in practice. This issue can be addressed by
modelling techniques providing inherent mechanisms to describe incomplete information. We present and
exemplary demonstrate a new, ontology-based method to adaptively model and analyse networked control
systems from a security perspective. Our method allows modelling different parts of the system with different
levels of detail. We include a formalism to handle incomplete information by applying iterative extension and
iterative refinement of the model where necessary. By using machine-based reasoning on an ontology model
of the system, security-relevant information is deduced. During this process, non-obvious attack vectors are
identified using a structural analysis of the model and by connecting the model to vulnerability information.
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1. INTRODUCTION

Comprehensive security analysis is a fundamental
step in securing the Smart Grid. However,
due to the complexity of the System Under
Evaluation (sue), together with the heterogeneous
nature of the Smart Grid, this analysis is a difficult
and tedious task. Machine-supported analysis,
based on a formal description of the system, is
a possibility to cope with this complexity. Hence,
recent work on machine-based reasoning like
Sommestad et al. (2013); Ji et al. (2009); Ou et al.
(2005); Zakeri et al. (2006) introduced some degree
of automation to this process.

The key factor for such a model-based analysis is the
accuracy and completeness of the underlying model.
Achieving accuracy and completeness in practice is
often the hardest part of the analysis. The security
analyst has to cope with incomplete or inaccurate
information about the sue. Moreover, not all parts of
the system need to be modelled on the same level of
detail.

Current models for ontology-based reasoning re-
quire complete information with respect to the lan-
guage they define and do not allow to have different
levels of detail. In contrast, in this paper we provide
an ontology to model networked control systems —
typical for industrial control systems and the Smart
Grid — in a flexible and adaptive way. Our generic

ontology language allows modelling systems on dif-
ferent levels of detail. We give an iterative process
that allows developing a system description in an
adaptive way: The basic elements in our ontology are
modules and interfaces. The analyst starts with an
initial system template, the initial module, and iden-
tifies the (external) interfaces of the system. Then,
iteratively, interfaces and modules are expanded,
hereby increasing the information about the system
and the level of detail. The expansion needs not to be
done evenly, that is, some parts of the system can be
described more in detail than others.

This approach allows us to focus our modelling
on those parts of the system that are interesting
for the security analysis. Moreover, comprehensive
information about the system is not always
available, or is acquired subsequently after a
preliminary assessment. Our approach enables such
a procedure, as at any stage a security assessment
can be conducted. In addition, our modular approach
allows reusing already modelled parts.

In this work, we provide an ontology language
specification for adaptive modelling and describe its
refinement and expansion method. The approach
shows its full power once the information gathering
process is supported by automatic tools. Hence, we
present a short outlook on how standard information
security tools can be used to further automate
this process. Then we demonstrate the use of
the models by applying a machine-based security
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analysis onto it. Our machine-based reasoning
allows the discovery of potential attack vectors. We
further illustrate, how already known vulnerabilities
documented in various sources can be incorporated
and used in the security analysis.

The paper is organised as follows. In Section 2, we
introduce the basic language elements for modelling.
Further definitions are introduced later in the paper
when they become relevant. Section 3 describes
the iterative process of model refinement through
expansion of interfaces and modules. There, we
also provide an outlook on how such a process can
be supported by tools. In Section 4, the machine-
based deduction of implicit knowledge is addressed.
The modelling of vulnerabilities and the linkage to
vulnerability databases are described in Section 5.
Section 6 describes the automated security analysis
based on our ontology language. Related work is
given in Section 7. We conclude and present an
outlook for further applications of our approach in
Section 8.

2. ADAPTIVE ONTOLOGY FOR NETWORKED
CONTROL SYSTEMS

2.1. Basic Concepts

An ontology in the formal description language
OWL 2 DL is expressed in terms of ‘concepts’,
‘roles’, and ‘individuals’ (see Hitzler (2008)). The
membership of an individual I to a concept C is
denoted by C(I). Roles are partial functions on
individuals. A role r(x , y) can be interpreted as a
relation between individuals x and y, meaning x
has a property r to y. We define the domain and
range of roles by writing them as partial functions
(r : 〈domain〉 �→ 〈range〉). If C1 is a sub-concept
of C2 (i.e. ∀ x : C1(x) → C2(x)), we denote this by
C1 � C2, and analogue for sub-roles. This hierarchy
of concepts is used by a semantic reasoner to infer
and extend the model. The operators ≡, 	, and 

are concept equality, concept union, and concept
intersection, respectively. The concept containing
all individuals is denoted by � while the empty
concept is denoted by ⊥. For a role R and a
class C, the class-expression ∃R.C denotes the
set of all individuals connected via R to another
individual, which is an instance of C. Furthermore,
∀R.C describes the class of all individuals for which
all via R related individuals must be instances of C.
Number restrictions (like ∃≥n) are used to describe
the number of individuals, related to a role. In
addition, we give expressions in predicate logic.
Variables in predicate logic are written as ?x.

Expressions about classes allow the machine-based
reasoner to deduce implicit knowledge that is not

explicitly stated. Assume for instance that a concept
C1 � C2. Then any individual I that is in C1 is by
definition also in C2 and therefore any statement
made on the more general concept C2 holds also
for I. In particular, the operations ≡, 	, and 
 allow
construction of new concepts. The reasoner is also
able to identify contradictions in the model. The
inferring of new roles is addressed in more detail in
Section 4.

The basic concepts in our modelling of networked
systems are Interface and Module. Modules charac-
terise entities such as systems, hardware, software,
or components. Interfaces provide connection points
between modules and comprise hardware interfaces
(e.g. connectors), protocol interfaces, or interprocess
communication interfaces of an operating system.

We further distinguish interfaces in Sender and
Receiver. These sub-concepts indicate the ability
of an Interface to send respectively receive data.
The actual existence of both abilities is defined
as concept Bidirectional. A bidirectional interface
which is InitiateOnly does not accept incoming
communication (e.g. a client) and only processes
communications it started previously. A bidirectional
interface which is ListenOnly does not initiate
any communication (e.g. a server) but processes
incoming communication only. Relations between
these sub-concepts are listed below:

Interface ≡ Sender 	 Receiver (1)

Bidirectional ≡ Sender 
 Receiver

ListenOnly � Bidirectional

InitiateOnly � Bidirectional

⊥ ≡ InitiateOnly 
 ListenOnly

The following basic roles are defined for interfaces
and modules:

• hasInterface : Module �→ Interface assigns
interfaces to modules.

• connected : Sender �→ Receiver indicates the
possibility of two interfaces to communicate
(with respect to connection requiring compat-
ibility).

• communicates : Sender �→ Receiver indicates
that two interfaces are communicating.

• compatible : Sender �→ Receiver indicates that
two interfaces are compatible

Formally, these roles are defined by specifying the
domain and the range of each role:

Interface � ∀hasInterface.Module (2)

∃hasInterface.� � Module

65



Adaptive Modelling for Security Analysis of Networked Control Systems
Wolf • Wiezorek • Schiller • Hansch • Wiedermann • Hutle

For the sake of brevity, we will omit such definitions
for the remainder of the paper and provide only the
partial function specification.

2.2. Compatibility of Interfaces

Instances of the concept Interface can only
communicate if they are ‘compatible’. To model this
fact, compatible interfaces have to be derived from
classes that are defined compatible. This is achieved
by predicate logic expressions that are equivalent
to Semantic Web Rule Language (swrl) rules. For
each compatibility, we provide such a rule. Intuitively,
these rules can be regarded as the communication
protocols supported by the interfaces:

Example 1 In order to model the compatibility
between a HttpServer and a HttpClient, the following
expressions are added to the model:

HttpServer � ListenOnly

HttpClient � InitiateOnly

HttpServer(?i1) ∧ HttpClient(?i2)
→ compatible(?i1, ?i2) �

Only compatible interfaces can be connected and
only connected interfaces can communicate:

communicates � connected � compatible (3)

In order to illustrate the model refinement process
presented in this work, we use a system as depicted
in Example 2 as a running example.

Example 2 A high level model of an automation
system:

System

WAN IO

Module(System) ∧ hasInterface(System, WAN)

∧ hasInterface(System, IO)

∧ Bidirectional(WAN)

∧ Bidirectional(IO)
�

2.3. Security Relations

Instances of Interface can be secured, i.e., protected
against eavesdropping and manipulation. A secured
Interface is member of the concept Secured.

Key material is a member of the concept Key. The
following roles describe the linkage between keys
and secured interfaces:

• hasKey : Module �→ Key denotes which
modules have knowledge of a certain key.

• acceptsKey : Interface �→ Key denotes that an
secured Interface accepts a key to access the
connection.

2.4. Functional Dependencies and Access

The outputs of a module depend on the values it
receives. In Example 2, if the output IO of System
could result as a function based on received values
on WAN, such a dependency would exist (which
normally should not be the case). An attacker
could then use this property to manipulate the
output of a module. We capture these input/output
dependencies in a generalised way by the following
role:

• depends : Interface �→ Interface denotes a
dependency between two interfaces, i.e., the
input at the first interface determines in some
way the output at the second interface.

However, the presented role is more general
than in the example above. In particular, we
can state that any interface which uses another
interface (e.g. a network stack) depends on that
interface:

usesinterface(?i1, ?i2) ∧ ¬ Secured(?i1) (4)

→ depends(?i1, ?i2)

Further, any communication implies a dependency
between the communicating interfaces. Thus, com-
municates is a sub-role of depends:

communicates � depends (5)

In some cases interfaces allow the modification of
the functionality of the associated module. This is,
for example, the case for programming interfaces of
Remote Terminal Units (rtus) or for remote access
interfaces. Without any further specification, we
assume by default the worst case that access to
an interface allows (the user or an attacker) to fully
control the module it belongs to. If this assumption
does not apply interfaces are added to the concept
NotControllable.

NotControllable � Interface (6)

3. ITERATIVE MODULE AND INTERFACE
REFINEMENT

In order to support a progressive modelling of a
system, we apply a hierarchical approach. Initially,
we consider the whole sue as a single module,
and identify the interfaces of this module. In the
final model, these are the external interfaces.
Example 2 shows how such a modelling might
look.
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Then, in an iterative process, interfaces and modules
are expanded to generate a refined model. This
approach allows a model to be more fine granular
at sensitive places, and more coarse grained
where only limited information is available. When
the system is sufficiently modelled, a security
analysis (which in our case uses additionally a
vulnerability database as input) can be performed.
The identification of sensitive places and the
sufficiency of the modelling process is subject to
security best practices and has to be part of future
work. The technique also allows continuation of
the model refinement process after a preliminary
security analysis. The following figure shows the
overall model refinement process.

Initial Template

Expand Interfaces

Expand Modules

Security Analysis Vulnerability
Database

Attack Vectors

3.1. Expansion of Interfaces

When refining a part of the system, usually modules
and interfaces are expanded. In general, it is
recommended to expand interfaces prior to their
providing modules. This process is described in the
following steps .

Step 1: Add contained sub-interfaces
The first step of expansion is to add new interfaces
to the module and to relate them to the original one
with an originatesFromI role.

• originatesFromI : Interface �→ Interface
denotes that the first Interface results from an
expansion of the second Interface.

• usesInterface : Interface �→ Interface denotes
that the first Interface uses the second
Interface to implement the communication.
This is used e.g. to model network stacks.

Example 3 An examination of the Interface WAN in
Example 2 shows that the interface contains an
HTTP connection using a TCP/IP stack. Therefore,
we expand this Interface as depicted below.

System

WAN TCPIP

WAN HTTP

IO

originatesFromI(WAN HTTP, WAN)

∧ originatesFromI(WAN TCPIP, WAN)

∧ hasInterface(System, WAN HTTP)

∧ hasInterface(System, WAN TCPIP)

∧ usesInterface(WAN HTTP, WAN TCPIP)

Note that the Interface WAN remains part of the
knowledge base, although not depicted in the figure
above. �

Expanded interfaces, i.e., those for which an
originatesFromI role exists, are hidden in the network
view of the system but remain in the ontology. In
an interface expansion step, each sub-interface is
provided by the same module as the interface it
originates from.

Step 2: Determine if the new interfaces allow access
If the original interface is not controllable, i.e.,
access to this interface does not allow controlling
the associated module, all expanded interfaces are
also not controllable. Otherwise, each new interface
needs to be assessed if it is part of the concept
NotControllable.

Example 4 Based on Example 3 the new interfaces
are considered. Without a vulnerability present, the
System is not controllable from neither the WAN HTTP

nor the WAN TCPIP interface:

NotControllable(WAN HTTP) ∧ NotControllable(WAN TCPIP)

�

Step 3: Connect existing communication to new
sub-interfaces
If there was a communicates or connected role to
the original interface, we examine for each new
interface if the role needs to be copied. Naturally, if
there was a communicates, there should be at least
one interface in the expanded model that also has
a communicates role with the peer of the original
interface. The same procedure applies for all other
roles.

Continuing the running example, where the external
interface WAN is not yet connected, communicate
connections an attacker might use are introduced in
Example 5.

Example 5 For a security analysis we assume,
that the attacker can access both interfaces,
so communicates(Attacker, WAN) is already
part of the model (cf. Section 6). The
following roles are therefore added to the
model:

communicates(Attacker, WAN HTTP)∧
communicates(Attacker, WAN TCPIP)

�
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3.2. Expansion of Modules

To allow a more detailed analysis of a system,
modules can be partitioned into sub-modules. The
link between a module and its sub-modules is
described using the originatesFromM role:

• originatesFromM : Module �→ Module denotes
that the first module results from an expansion
of the second module.

Step 1: Add contained sub-modules
When expanding a module, all sub-modules are
added to the knowledge base and connected with
the originatesFromM role. In this step, it is important
that the list of sub-modules is complete, i.e., that
indeed the sum of all sub-modules constitute the
module. In case there are parts that are not
supposed to be modelled, a “remainder” module can
be used. Expanding the module System presented
in Example 3 reveals several sub-modules depicted
in Example 6.

Example 6 An examination of the network plan
shows that the System comprises a PC that is used
for SCADA and a rtu; in addition there is a firewall
(FW) and a Switch.

System

FW

Switch

PC RTU
WAN TCPIP

WAN HTTP

IO

originatesFromM(FW, System)

∧ originatesFromM(Switch, System)

∧ originatesFromM(PC, System)

∧ originatesFromM(RTU, System) �

Step 2: Assign external interfaces
Using the hasInterface role, the original interfaces
are assigned to the expanded modules. Each
interface of the original module must be assigned
to exactly one module in the expanded model. In
Example 7 this is performed based on Example 6.

Example 7 We analyse our system and locate the
TCP/IP interface at the firewall and the IO interface
at the rtu. The HTTP connections are transparently
routed over the firewall, thus this interface is at the
PC:

hasInterface(FW, WAN TCPIP) ∧ hasInterface(PC, WAN HTTP)

∧ hasInterface(RTU, IO)

�

Note that the assignment to the outer entity (in our
example the System) remains.

Step 3: Create internal interfaces
All internal interfaces are added to the model.
They are attached using hasInterface to the newly
created modules and added to the proper interface
sub-concepts in order to provide information about
compatibility of interfaces. There is no need for
originatesFromX roles for these new interfaces as
their origin can be determined by the modules they
are attached to by hasInterface. In Example 8,
internal interfaces are integrated to the model.

Example 8 The following internal interfaces are
added to the model: internal Ethernet, TCP/IP, and
Industrial Ethernet.

hasInterface(FW, ETH1 FW) ∧ EthInterface(ETH1 FW)

hasInterface(FW, TCPF) ∧ TcpIpInterface(TCPF)

hasInterface(Switch, ETH1 Switch) ∧ EthInterface(ETH1 Switch)

hasInterface(Switch, ETH2 Switch) ∧ EthInterface(ETH2 Switch)

hasInterface(PC, ETH1 PC) ∧ EthInterface(ETH1 PC)

hasInterface(PC, TCPP) ∧ TcpIpInterface(TCPP)

hasInterface(PC, IE1 PC) ∧ IndustrialEthernet(IE1 PC)

hasInterface(RTU, IE1 RTU) ∧ IndustrialEthernet(IE1 RTU)
�

Step 4: Communication between internal interfaces
Finally, the newly created interfaces are linked using
the communicates role (in case the components are
supposed to communicate) and the connected role
(if they are connected, it is possible that they could
communicate). This step is illustrated in Example 9.

Example 9 All linked interfaces communicate with
their counterparts:

System

FW

Switch

PC RTU
WAN TCPIP

WAN HTTP

TCPP

ETH1 PC

IO
TCPF

ETH1 FW

IE1 PC

IE1 RTU

ETH1 Switch ETH2 Switch

For each pair of interfaces that are linked we add a
communicates role:

communicates(ETH1 FW, ETH1 Switch)

...

Note that the connected role follows implicitly from
(3). �

Step 5: Add access information
Similar to Step 2 of the expansion of interfaces (see
Section 3.1), it needs to be assessed if the new
interfaces are in the concept NotControllable.
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Step 6: Add functional dependencies
For all new interfaces not connected with a
communicates role (for which the dependency role
is given implicitly), the depends role needs to be
examined.

Example 10 In the expanded system of Example 9,
we identify that all interfaces except the IE1 RTU
are in NotControllable. Further, there are functional
dependencies inside the FW and the rtu, as depicted
in the figure in Example 13. �

3.3. Semantical information gathering

In addition to the structural expansion of modules
and interfaces, we use sub-concepts to represent
additional information about the module respectively
interface. The purpose is twofold: first, only
by specifying subtypes, can specific knowledge
necessary for a non-trivial security analysis be
collected. Second, the recognition and reuse of
previously refined models is possible.

3.3.1. Typing of Sub-models
When expanding interfaces and modules, the new
individual should be added to a concept that
captures as much information about the individual
as possible. This is illustrated based on a PC and
its operating system in the following Example 11.

Example 11 A new module m is a Windows PC,
and we know that it is a Windows 7. We associate
Windows with m, and Windows7 as a sub-concept of
Windows, and state Windows7(m). �

3.3.2. Recognition and Reuse of Sub-models
A detailed sub-concept hierarchy enables the
collection of a template library for already modelled
systems. Subsequent to Example 11, we can reuse
the full expanded model as a template for other PCs
running Windows 7.

3.4. Tool-based Expansion

As stated initially, the model expansion steps can be
performed manually but show their full power when
combined with tools generating this information au-
tomatically. Security tools for information gathering
are good candidates to provide such information. We
illustrate this approach by showing how a generic
TCP/IP interface of a system can be expanded into
a set of interfaces that are actually present in the
system:

nmap is a tool commonly used to scan a host for
open ports (see Lyon (2008)). For instance, we could
obtain triples (protocol, port, status) when scanning
the IP interface of a specific host, where protocol
is from {tcp, udp, ...}, port is a number between
0 and 216, and status is {open, closed, filtered} .

Let ?m be a module of a network that we want to
expand. In a first step we query in swrl for all IP
interfaces of this module:

hasInterface(?m, ?i) ∧ IpInterface(?i)
→ sqwrl:select(?i)

Then let IF4711 be one of these interfaces where
nmap found an open TCP/80 port. By adding this to
our knowledge base we expand IF4711:

TCP80Interface(IF4711TCP80)∧
originatesFromI(IF4711TCP80, IF4711)

4. INFERRING ABOUT MODELS

A major advantage of ontological modelling is that
in addition to the explicitly gathered information,
further correlations can be expressed by adding
rules. These often simple rules can be evaluated by
a reasoner. Even in large systems, where it would
be difficult to keep track of consequences if done
manually, a reasoner can evaluate queries such as
consistency.

To represent this inferable knowledge, adequate
rules need to be added. Some important rules are
presented in this section.

4.1. Inferring connected Relations

An important issue for security analysis is to
determine the interconnection of a system. Even
designers are often not aware of all connections in
complex systems.

A starting point when inferring further connections is
that two interfaces are connected if

• they are compatible and

• the base interfaces they are using are
connected and

• they are either not secured, or the key is
shared.

These points are formalised by the statement below:

hasInterface(?m1, ?i1) ∧ hasInterface(?m2, ?i2)∧
usesInterface(?i1, bi1) ∧ usesInterface(?i2, ?bi2)∧
connected(?bi1, ?bi2) ∧ compatible(?i1 , ?i2)∧
(

¬ Secured(?i1) ∧ ¬ Secured(?i2) ∨
Secured(?i1) ∧ Secured(?i2)∧

(hasKey(?m1, ?k1) ∧ acceptsKey(?i2, ?k1) ∨
hasKey(?m2, ?k2) ∧ acceptsKey(?i1, ?k2))

)
→ connected(?i1, ?i2) (7)
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4.2. Inferring communicates Relations

It is worthwhile to examine communicates roles as
these represent actual communication in the sue.
The addition of these roles allows, for example, to
identify communication where none should occur
according to the design of the system (e.g. ‘air-
gapped’ systems).

If two interfaces communicate and each uses only
one base interface, then the base interfaces are
communicating. This is expressed by the statement
below:

communicates(?i1, ?i2)∧ (8)

usesInterface(?i1, ?bi1) ∧ (= 1)usesInterface(?i1)∧
usesInterface(?i2, ?bi2) ∧ (= 1)usesInterface(?i2)
→ communicates(?bi1, ?bi2)

If an interface uses more than one base interface,
more specific rules (e.g. protocol related) can be
included.

5. VULNERABILITY MODELLING

Vulnerabilities describe the system’s behaviour
(more specifically interfaces) with respect to attacks.
Some assumed properties are no longer in
the presence of vulnerabilities. We introduce a
new concept Vulnerability for this. For example,
privilege escalation vulnerabilities may provide
control through interfaces despite being modelled as
NotControllable.

Vulnerabilities are characterised by the kind of
affected interfaces and the effects on them. In order
to describe this, we introduce a new role

• isVulnerable : Interface �→ Vulnerability
denoting that an Interface is vulnerable to a
Vulnerability.

5.1. Vulnerability Classes

Attacks can either be enabled via inadequate
configuration or via vulnerabilities in interfaces. We
propose to consider the following three concepts of
vulnerabilities:

CodeExecution
An Interface modelled to be NotControllable allows a
manipulation of the Module of the Interface by using
this kind of vulnerability.

For example, arbitrary code execution vulnerabilities
such as CVE-2014-6271 (Shellshock) are in this
class.

CryptoIneffectiveness
An Interface modelled to be Secured allows a
communication with interfaces belonging to a
Module regardless of the corresponding hasKey
Relation.

For example, weaknesses in cryptographic algo-
rithms, such as the man-in-the-middle downgrade
of TLS to weak export ciphers described by Adrian
et al. (2015), are in this class.

InformationDisclosure
Confidential information modelled to be known only
to the module, such as keys, is assumed to be
extractable through an Interface by this kind of
vulnerability.

This vulnerability class manifests often in weak
passwords or exposition of secret internal states,
such as improper input validation like CVE-2014-
0160 (Heartbleed).

The following Example 12 visualises this
vulnerability.

Example 12 The vulnerable interface leaks the key
to the attacker.

key1

Module1 Module2

AttackerCVE-2014-0160

hasKey

hasKey

isVulnerable

communicates

connected

acceptsKey

The Attacker could use the obtained hasKey
to communicate to Module2 after exploiting this
vulnerability. �

All described Vulnerability classes are sub-concepts
of Vulnerability:

CodeExecution � Vulnerability

CryptoIneffectiveness � Vulnerability

InformationDisclosure � Vulnerability

6. SECURITY ANALYSIS

A security analysis is possible after each step of
model expansion. In the beginning of the expansion
process the results will be more generic and will
make conservative security assumptions. In order
to achieve detailed results, more information has
to be added by selectively expanding the model.
The results of the analysis can point to parts of the
model, which may need further expansion in order
to obtain more useful results. It is assumed that

70



Adaptive Modelling for Security Analysis of Networked Control Systems
Wolf • Wiezorek • Schiller • Hansch • Wiedermann • Hutle

attacks only propagate through defined properties
(see (Section 6.2).

6.1. Assign Publicly Known Vulnerabilities

As an extension of the modelling it might be
possible to assign known vulnerabilities. There
exist many services capable of gathering and
distributing information about vulnerabilities, e.g.
Jajodia et al. (2011). The information from these
sources can be aggregated, converted, and put
into the model to obtain a more detailed and up-
to-date analysis. As a basis, the modules have to
be identifiable types of software or hardware such
as Common Platform Enumeration (cpe). For the
cpe, all known vulnerabilities and their Common
Vulnerabilities and Exposures (cve) can be queried
from the services. These vulnerabilities can then be
mapped to the affected interfaces of the modules.
The vulnerabilities then have to be classified for
further analysis. This can be done, for example,
by mapping the Common Weakness Enumeration
(cwe) contained in the cve to vulnerability classes
(Martin et al. (2005)).

6.2. Identifying Attack Vectors

The model including vulnerabilities is a directed
graph. In a first step to identify attack vectors, the
target (T) and the start point (A) of the attack have to
be defined.

An edge from ?m to ?i if is added to the attack graph
if the following condition holds:

• hasInterface(?m, ?i). This represents the fact
that control of a module allows controlling the
associated interfaces.

An edge from ?i to ?m is added if one of the following
conditions hold:

• hasInterface(?m, ?i) ∧ ¬NotControllable(?m).
This reflects the case that the interface
(potentially) allows controlling the module it
belongs to.

• hasInterface(?m, ?i) ∧ NotControllable(?m) ∧
isVulnerable(?i, ?v) ∧ CodeExecution(?v).
This reflects the case where the interface does
not allow controlling the module by design, but
is used to gain access by a code execution
vulnerability.

An edge from ?i1 to ?i2 is added if one of the
following conditions hold:

• connected(?i1, ?i2). This represents the fact
that access to an interface allows accessing
the connected interface.

• usesInterface(?i1, b1)∧usesInterface(?i2, ?b2)∧
connected(?b1, ?b2) ∧ compatible(?i1, ?i2) ∧
CryptoIneffectiveness(?v) ∧
isVulnerable(?i2 , ?v)
This reflects the case where a communication
is protected by an ineffective method, and
circumvented by an attacker that has access
to the lower level media.

• depends(?i1, ?i2). This represents the situation
where the manipulation of an interface leads to
changes in a functionally dependent interface.

The single paths of the attack graph are the attack
vectors. It is possible to extend this with rules for
information disclosure of key material. This leads
to complex attack vectors including and and or
conditions, and is omitted for sake of brevity.

In Example 13, the running example is used to
illustrate a security analysis.

Example 13 The extraction of one specific attack
path is depicted based on an augmented Example 9.

Attacker

System

FW

Switch

PC RTU

WAN TCPIP

ATKR

WAN HTTP

TCPP

ETH1 PC

IO
TCPF

ETH1 FW

IE1 PC

IE1 RTU

NotControllable(TCPP) ∧ NotControllable(ETH1 PC)∧
NotControllable(IE1 RTU) ∧ NotControllable(WAN TCPIP)∧
CodeExecution(TCPP)

One resulting attack path can be described as
follows. The labels of the edges are the matching
terms from above.

IO IE1 RTU
depends

IE1 PC

communicates

PC
hasInterface

TCPP

hasInterface

TCPF
CodeExecution ∧ NotControllable ∧ hasInterface

WAN TPCIP

depends

ATKR
connected

�
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7. RELATED WORK

Description logic based reasoning is a promising
approach to efficiently identify vulnerabilities and
security gaps in modelled systems. Ji et al.
(2009); Zakeri et al. (2006); Ou et al. (2005)
prove the applicability of this method for security
analysis. While their work focusses on the analysis
of the model, there is no special focus on
constructing the ontology model for the analysis
and might not be sufficiently comprehensive for a
practical, conclusive analysis of complex systems.
Security-focussed ontologies are presented by
Kim et al. (2005); Fenz and Ekelhart (2009);
Fitzgerald (2010). In order to infer models from
such ontologies and reason about their elements,
semantic reasoners, as described by Glimm et al.
(2014); Sirin et al. (2007), are the method of choice
to ensure an efficient and formal correct proceeding.

As previously pointed out, the quality of a model
based analysis is directly dependent on the quality of
the used model. The most prevalent and widespread
modelling language in the field of computer science
is the Unified Modeling Language (uml), which is,
however, not designed for automated, machine-
based security analysis. Specific modelling elements
are provided as language extensions, like for
security SecureUML by Lodderstedt et al. (2002)
and UMLSec by Jürjens (2002), or complete dialects
such as SysML (which focusses on support of
the specification, analysis, design, verification and
validation of systems and systems-of-systems).
While these model languages are effective during
time of design, they lack methods to break down
or expand single components and describe object
relations. Detailed knowledge about the critical
components, their parts, and relations is however
crucial for the analysis. None of the methods allow
an ontology-based completion process by using
patterns of known elements, ontological knowledge,
and a semantic reasoner.

The Cyber Security Modelling Language (CySeMol)
by Sommestad et al. (2013) and its extension by
Holm et al. (2015) combine UML-based information
system modelling with Bayesian attack graphs
to assess attack probabilities for a modelled
system. The use of the relational model and the
thereupon built inference engine allows the far-
reaching evaluation of ‘what-if’ scenarios. Networks
consisting of well-known components can be
evaluated efficiently due to the predefined granularity
of the components. While this approach enables
modifications of the model during analysis, it does
not include iterative dissection, refinement or a way
to model a lack of knowledge about the components
of the system.

When searching for vulnerabilities of modules, it
is essential to have links to their corresponding
entries at vulnerability databases (like NIST NVD or
Bugtraq). Promising connectors to such lists of cves
are the cpe or the cwe. cpe is a standardised method
of describing and identifying classes of applications,
operating systems, and hardware devices present
among an enterprise computing system. cwe is a
list of software weaknesses that might result in
a vulnerability of a product. These lists can be
used in combination with previous investigations.
The creation and linking of such databases to
assign weaknesses, idiosyncrasies, faults and flaws
(WIFFs), described by Martin et al. (2005), enables
various forms of automated security analysis and
penetration reports like e.g. Knorr et al. (2011).

Tools to perform an attack graph based security
analysis are described by Ou et al. (2005); Lippmann
et al. (2006); Noel et al. (2009); Jajodia et al. (2011).
It is typical for these approaches to separate the
system model generation from the model analysis.
The input, which is required to create the model, is
gathered by a network security scanner (like Nessus)
and combined with some topology information in a
predefined class model, especially information on
how devices are interconnected. During the analysis
of the model, vulnerability databases are searched
for known vulnerabilities of the modelled modules
while the initially created model itself remains
unmodified.

To the best of our knowledge, all the works
described above do not address incomplete or
varying granularity of knowledge about the parts of
the sue nor how to refine the initial model as part of
the analysis. The created model is considered as a
complete and correct basis for the entire analysis.
Modifications are only used to evaluate effects of
augmenting or removing modules. Our approach,
in contrast, uses a reasoning engine not only to
evaluate to, but also to refine and expand the model
with ontological knowledge as well as predefined
patterns.

8. CONCLUSION

In this paper, an modelling approach for machine-
based security analysis using ontologies is pre-
sented. We propose a process of selective iterative
model refinement, which allows different levels of
detail for different parts of the system. For this, we
provide an ontology language that allows us to for-
mally describe the system and to infer implicit knowl-
edge. We illustrate the applicability of the resulting
model for security analysis by combining the model
with vulnerability information. Our security analysis
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reveals attack vectors resulting from paths through
the system and from exploiting vulnerabilities.

The approach is very generic and further applica-
tions can be considered. For example, the analysis
can be enriched by applying probability values to the
vulnerability classes and using a probability analysis
(like in Bayesian networks) to find the most relevant
attack vectors. For large systems and more detailed
analysis, more tool support is mandatory and under
current development.
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