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Abstract

Refractory and/or relapsed (r/r) diffuse large B-cell lymphomas after treatment with two lines of systemic 
chemoimmunotherapy exhibit diversity in genetics, tissue biology, and pathology, as well as poor prognosis. Patient 
TCRαβ cells engineered with a CD19-specific chimeric antigen receptor (CAR) have shown promising clinical outcomes 
in r/r diffuse large B-cell lymphoma. The ZUMA-1 study, the JULIET study, and the TRANSCEND NHL 001 study of three 
prototype 19CAR-T cells have indicated an overall response rate of 52–82%, a complete response rate of 40–58%, 
and a 12-month progression-free survival of 33.2%–46.6%, with clinically manageable treatment related toxicity. 
At the 5-year follow-up, relapse was observed in approximately 57% of patients within 1 year. Understanding of 
the risk factors for non-response remains insufficient. In addition to intrinsic tumor resistance, such as aberrant 
apoptotic signaling, downregulation or loss of tumor-associated antigens (TAA), an immunosuppressive tumor 
microenvironment, and CAR-T cell exhaustion in vivo have been suggested to be important risk factors. Mechanisms 
underlying 19CAR-T cell exhaustion under chronic TAA exposure, and limited 19CAR-T cell trafficking and infiltration 
into the tumor mass have been reported. Moreover, tumor escape in the presence of low TAA density remains a 
challenge in 1928ζ CAR-T cell treatment. In this review, we provide an overview of modified modular CAR elements 
and their synergistic effects in controlling T-cell function. We then briefly discuss novel strategies against tumors 
with low TAA density, such as bispecific tandem or loop CAR recognition domains, the development of human 
leukocyte antigen-independent synthetic TCRαβ double-chain receptors integrated into the constant region of the 
TCRα chain, and armored CAR-T cells targeting the tumor microenvironment.

Keywords: T cell engineering, chimeric antigen receptor (CAR), low-density antigen, synthetic TCR, immune 
suppressive tumor microenvironment

1. INTRODUCTION

Lymphoid neoplasms are broadly divided into B-cell lym-
phoid, T-cell, NK-cell, and dendritic cell neoplasms, and 
Hodgkin lymphomas (HL) [1-3]. In contrast to the cure 
rate of ≥ 85% in patients (pts) with HL [4-6], the mor-
bidity and mortality of adult non-Hodgkin lymphoma 
(NHL), including 45.8% of diffuse large B cell lymphoma 
(DLBCL), ranked 10th death in China before 2016 [7, 
8]. Among more than 18 different DLBCL subtypes, 

worse outcomes were reported with co-occurrence of 
MYD88L265P and CD79B mutation in activated B-cell-
like (ABC)-DLBCL (MCD subtype), and ABC-DLBCL with 
gain-of-function of NOTCH1 mutation (N1 subtype). 
MCD and N1 subtypes had 26% and 36% 5-year over-
all survival (OS) after rituximab-based chemoimmuno-
therapy, respectively [9]. In addition, high-grade-B cell 
lymphomas with c-Myc/8q24 and BCL2/18q21 transloca-
tion (double hit) or with BCL6/3q27 translocation (triple 
hit) are highly resistant to chemotherapy [10]. Before 
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the advent of autologous CD19 chimeric antigen recep-
tor (CAR)-T cell (19CAR-T cell) therapy, the 2-year OS of 
patients with chemotherapy-resistant DLBCL was 20%, 
and the median OS was 6.2 months, according to the 
SCHOLAR-1 study [11]. Axicabtagene ciloleucel (axi-
cel), prototypic 1928ζ CAR-T cells, have been reported 
to result in a 54% 2-year OS in patients with r/r DLBCL 
after two or more lines of treatment in the ZUMA-1 
study [12,  13]. In  addition, the introduction of axi-cel 
into second-line therapy in patients with r/r DLBCL or 
infusion of axi-cel as part of first line therapy in patients 
with double- or triple-hit HGBCL significantly increased 
event-free-survival (EFS), and overall response rate 
(ORR)/complete response (CR) compared with standard 
therapy [14, 15].

Despite high treatment effectiveness, grade ≥3 
cytokine release syndrome (CRS) and immune cell asso-
ciated neurotoxicity (ICAN) from axi-cel occur in 13% 
and 28% of treated patients with r/r DLBCL, respectively, 
after two or more lines of treatment [16-18]. Notably, 
CRS increases rapidly within 5–10 days after transfusion 
of axi-cel [17]. The clinical and biological factors of indi-
vidual patients have been associated with the risk of 
CRS and ICAN after 19CAR-T cell therapies. These factors 
include individual inflammatory status, intestinal micro-
biota, tumor burden, genomic instability of r/r DLBCL, 
lymphocyte depletion protocols, intrinsic quality char-
acteristics of 19CAR-T cells, pyroptosis of B-cell cancer, 
endothelial or macrophage activation, and IL-6 level 
[19-23]. During CRS progression, local (L)-CRS is observed 
in patients with a high tumor burden, including local 
activation and expansion of 19CAR-T cells, activation of 
myeloid cells [24], and secretion of tumor necrosis factor 
(TNF)-α, interferon γ, and IL-1ß. L-CRS is a precursor of 
systemic (S)-CRS [25]. S-CRS is ameliorated by synergistic 
blockade of TNF-α, IL-1ß, and inhibition of focal adhe-
sion kinase (FAK) [26]. In addition, tocilizumab, corticos-
teroids, and ruxolitinib are frequently used to control 
S-CRS [27-29]. In addition, metoprolol, a cardioselec-
tive ß1-adrenergic receptor blocker, has recently been 
reported to improve CRS and serum levels of IL-6 [30].

Approximately 57% of patients with r/r DLBCL expe-
rience disease progression or relapse after autologous 
19CAR-T cell therapy [31, 32]. For example, early disease 
progression within 30 days or after 30 days has been 
reported to have a median OS of 3.75 months and 9.28 
months, respectively [33]. Tumor intrinsic factors, such 
as two or more extra nodal sites, a high total metabolic 
volume, elevated serum C-reactive protein (CRP) and 
lactate dehydrogenase, the presence of apolipoprotein 
B mRNA editing catalytic polypeptide 3 (APOBEC), cyt-
idine deaminase mutagenesis-associated signatures 2 
and 13, the presence of 3p21.31, a chromosomal dele-
tion containing the tumor suppressor RHOA, aberrant 
apoptotic signaling, and oxidative DNA damage are 
closely associated with early disease progression after 
19CAR-T cell treatment [34, 35]. In addition, CD19 
loss and/or decrease in B-cell cancer is associated with 

resistance 19CAR-T cell therapy [36]. The mechanisms 
of CD19 loss in B-cell malignancies have been exten-
sively studied [36]. These mechanisms include pre-exist-
ing CD19-negative clones [37], acquired genetic point 
mutation of CD19 exon 3 from p.163 (R to L) or p.174 
(L to V) [38], loss of serine/arginine-rich splicing factor 
3 (SRSF3) [39], hyper-glycosylation of CD19 [40], mye-
loid lineage switch due to dysregulation of PAX5 [41], 
Ikaros DNA binding protein [42], and the EBF1 zinc fin-
ger containing transcription factor [43]. Moreover, the 
presence of fewer than 3000 membrane bound CD19 
molecules per r/r DLBCL results in failure to activate 
1928ζ CAR-T cells. This aspect is reflected by decreased 
phosphorylation of extracellular signal-regulated kinase 
(pERK) in 19CAR-T cells [44, 45]. Furthermore, 19CAR-T 
cell exhaustion under an immunosuppressive tumor 
microenvironment (TME) leads to disease progression 
or relapse. Chronic TAA exposure in the TME results in 
constitutive activation of 19CAR-T cells, differentiation, 
epigenetic alteration, and upregulation of immune 
checkpoint molecules [46-48]. Recently, numerous novel 
strategies have been developed to modify T cells to 
overcome TME and tumor heterogeneity TAA. This lit-
erature review provides an overview of modular mod-
els of prototypical CAR constructs, and their synergis-
tic effects in controlling T-cell function. Subsequently, 
novel CAR modifications and T-cell engineering strat-
egies are summarized. Notably, bispecific tandem or 
loop CAR-T cells significantly enhance therapy-associ-
ated safety and high efficacy in patients with r/r DLBCL. 
In addition, CAR integrating at TCRα chain constant 
region by using clustered regularly interspaced short 
palindromic repeats (CRISPR) derived single guide RNA 
and Cas9 and recombinant adeno associated viral vec-
tors (rAAV) enhances tumor rejection, and delays CAR-T 
cells exhaustion in vivo. Furthermore, human leukocyte 
antigen independent synthetic TCR and antigen recep-
tors are able to respond to low density tumor antigens 
with little tonic signaling. Armored CAR-T cells facilitate 
CAR-T cell migration and infiltration, and survive in the 
TME of r/r DLBCL.

2. CAR ELEMENTS AND THEIR SYNERGISTIC 
EFFECTS IN CONTROLLING CAR-T CELL FUNCTION

2.1 Affinity and avidity of CAR
The B cell response to antigens depends on the anti-
gen/BCR affinity threshold [49]. Activation of TAA spe-
cific CAR-T cells depends on the affinity of CAR, surface 
CAR density, and TAA expression per cancer cell [50-52]. 
Typical second-generation CAR constructs have had great 
success in treating hematologic cancers [53-55]. Second-
generation CARs consist of five modular domains: the 
extracellular TAA binding domain, ectodomain of the 
hinge region, transmembrane domain, co-stimulatory 
domain, and three repetitive immune tyrosine activa-
tion motifs (ITAM) of the CD3ζ chain. The ectodomain 
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of the antigen binding domain, together with the hinge 
region, facilitates TAA recognition. The second-genera-
tion CAR construct was developed from the first-gener-
ation antibody-based CAR construct, designed in 1989. 
The single chain variable fragment (scFv) of mouse mon-
oclonal antibodies (mAb) against TAA is commonly used 
as a TAA binding domain. The development of camel 
heavy-chain antibody, human Fab antibodies, and natu-
ral immune receptors, such as NKG2D, has expanded the 
number of disease targets [56]. At the molecular level, 
scFv consists of a variable heavy chain (VH) and a varia-
ble light chain (VL). Each VH and VL has four framework 
regions (FR1–4) and three complementarity determining 
regions (CDR1–3). Specifically, CDR1–3 of CAR-scFv (FMC63 
mAb, IgG2a) bind membrane-bound epitopes adjacent 
to exons 3 and 4 of CD19 [28]. FR1–4 of CAR-scFv facili-
tate binding of CDR1–3 to CD19. Studies have shown that 
FR1–4 of scFv of FMC63 mAb are much more stable than 
FR1–4 of scFv of GD2 specific CAR-T cells and CD22 spe-
cific BBζ CAR-T cells. Therefore, 19BBζ CAR-T cells have 
little antigen-independent scFv-clustering that triggers 
tonic signaling. In general, CAR-T cell tonic signaling 
results in TAA independent constitutive CD3ζ activation, 
terminal differentiation, and exhaustion of CAR-T cells 
[57, 58]. However, tonic signaling delivers activation sig-
nals to CD22BBζ CAR-T cells (m971 mAb) and overcomes 
insufficient reactivity against low-density CD22 TAA in 
r/r B-ALL. For CD22BBζ CAR-T cells, short scFv linkers 
(5 amino acids) have a much more autonomous tonic 
signaling effect through antigen-independent multim-
erization of scFv than the long linker sequence of 20 
amino acids. The affinity of CD22BBζ CAR-scFv with 
a short-linker sequence (6.10 nM) is not significantly 
different from that of CD22BBζ CAR-scFv with a long-
linker length (1.70 nM) [59, 60]. The affinity of scFv can 
be measured with the equilibrium dissociation constant 
(KD) toward monovalent TAA in solution. The KD value 
and affinity of CAR-scFv of mAb are inversely related. 
The affinity of CAR-scFv is often considered an impor-
tant parameter for evaluating the specificity and sensi-
tivity of TAA. The affinity of scFv of mouse mAbs ranges 
from 1 micromolar (μM) to 1 nanomolar (nM). To date, 
no guidelines are available for developing optimal CAR 
affinity for a given antigen. However, relevant retro-
spective studies evaluating clinical and preclinical data 
on the affinity of CAR for solid cancer cells have shown 
that an intermediate affinity (KD of ~20–100 nM) of CAR-
scFv has better clinical efficiency than a higher affinity 
[50, 61]. However, this finding does not apply to the 
Food and Drug Administration (FDA)-approved 19CAR 
binding domain. The scFv of FMC63 mAb has been used 
in three prototypic 19CAR-T cells and has high affin-
ity (KD of 0.33 nM) [57, 58]. A novel CD19 CAR-scFv of 
CAT mAb has 42-fold lower affinity (KD of 14 nM) than 
that of CAR-scFv of FMC63 mAb. Although both share 
a similar binding epitope, the relatively lower affinity 
of CAR-scFv of CAT mAb results in lower activation-in-
duced cell death (AICD), CD19 antigen trogocytosis, or 

antigen reduction after CD19 binding. Moreover, per-
sistence of the low-affinity of 19CAR-scFv of CAT mAb 
were superior compared to high affinity 19CAR-T cells in 
pediatric patients with r/r B-ALL [62, 63]. The low-affin-
ity of CAR-scFv of CAT mAb decreases severe off-target 
toxicity [64]. In contrast to monovalent affinity, polyva-
lent interaction between multiple receptors, particularly 
dimerized CAR and ligands, increases the overall bind-
ing strength (functional avidity) and thus antigen sen-
sitivity. For example, CAR dimerization by two cysteine 
residues of the proximal region of the CD8α transmem-
brane domain (TMD) increases the functional avid-
ity of CAR-T cells. Moreover, the CD8α TMD of CAR-T 
cells stabilizes the surface expression of CAR in T cells 
[65, 66]. The extracellular location of the TAA, and its 
accessibility for binding CAR-T cells is determined by the 
hinge region of the CAR ectodomain. Post-translational 
modification by N-linked glycosylation of the CD28 
hinge domain facilitates CAR surface expression [67]. 
Moreover, CAR using the CD28 hinge forms a homod-
imer through its cysteine residue. Furthermore, CD28 
TMD of CAR facilitates the formation of a heterodimer 
with the endogenous CD28 molecule of T-cells through 
the conserved YxxxxT motif [68]. Axicabtagene ciloleu-
cel contains a CD28 hinge, CD28 TMD, and CD28 co-stim-
ulatory domain, and thus has higher TAA sensitivity 
than FDA-approved lisocabtagene maraleucel (Liso-cel) 
and tisagenlecleucel (Tis-cel) (Figure 1) [52, 69-71]. The 
immunoglobulin (Ig) like domain of the CD8α hinge and 
TMD (~5 nm) of Tis-cel; Ig like domain of CD28 hinge 
and TMD (~6 nm) of axicabtagene ciloleucel (axi-cel); 
and mutant IgG4-based long hinge and CD8α TMD 
(~7  nm) of Liso-cel show a non-classical immune syn-
apse structure after ligand binding [12, 52, 68, 71, 72]. 
The spatial boundary of the immune synapse is approx-
imately 15 nm. According to the segregation model of 
T cell activation, use of a proper hinge size (<15 nm) of 
CAR-T cells efficiently excludes the negative regulator 
of phosphatase CD45 from the non-classical immune 
synapse before antigen-dependent phosphorylation 
signals are transmitted by kinases [73, 74]. Although the 
CD8α hinge resists hinge proteolysis, modification of 
the hinge length (39 amino acids) decreases the treat-
ment-associated adverse effects of Tis-cel with 19BBζ 
(71) CAR-T cells. Notably, the long CD8α hinge length 
of 55 aa in 19BBζ (86) CAR-T cells is associated with a 
diminished incidence of severe CRS and ICAN in patients 
with r/r B-NHL, but promising clinical efficacy [69, 75].

2.2 Costimulatory domains for CAR
Incorporation of the costimulatory domain 4-1BB (BB) 
results in more than 1000-fold in vivo expansion and 
10-year long-term persistence of CD4+19BBζ CAR-T 
cells in patients with chronic lymphocytic leukemia 
(CLL) [76,  77]. In contrast, first-generation 19ζ CAR-T 
cells lacking the co-stimulatory domain have an in 
vivo persistence of 7 days in patients with LBCL, and 
human anti-mouse CAR-scFv has been reported; this 
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treatment does not produce potent anti-tumor effects 
[78-81]. After activation, the cytoplasmic domain of 
4-1BB constitutively potentiates non-canonical NF-κB 
signaling, thereby downregulating Bim apoptotic pro-
teins, up-regulating anti-apoptotic B cell lymphoma-ex-
tra-large (Bcl-xL), and activating ERK of 19BBζ CAR-T 
cells [82]. Moreover, uptake of 4-1BB in CAR promotes 
mitochondrial biogenesis, mitochondrial fatty acid oxi-
dation, and metabolic reprogramming of central mem-
ory CAR-T cells. Faster in vivo expansion of CD8+19CAR-
Tcm cells than CD4+19CAR-Tcm cells has been observed 
[83, 84]. In addition, antigen independent CAR-scFv 
self-aggregation and tonic 4-1BBCD3ζ signaling contin-
ually activate TRAF2-NF-κB signaling and Fas dependent 
cell death [85]. Toxicity to T cells can be mitigated by 
attenuating CAR expression through the self-inactivat-
ing non-long terminal repeat (LTR) promoter of a len-
tiviral vector [86]. Moreover, 4-1BB co-stimulation ame-
liorates the exhaustion of 19BBζ CAR-T cells compared 
with 1928ζ CAR-T cells [58]. Furthermore, 19BBζ CAR-T 
cells ameliorate exhaustion by recruiting THEMIS-SHP1 
phosphatase, which decreases the phosphorylation of 
CAR-CD3ζ [87]. Moreover, 19BBζ CAR-T cells have slower 
tumor rejection kinetics than 1928ζ CAR-T cells after ini-
tial antigen binding [88]. Intracellular signaling strength 
balances the effector function and memory develop-
ment of CAR-T cells. Incorporation of the CD28 tyrosine 
residue YMNM-PYAP” proximal to, and CD3ζ distal to, 
the cell membrane facilitates binding of the p85 subunit 
of phosphatidylinositol 3-kinase (PI3K) and IL-2 secretion 
[89]. Activation of the PI3K-Akt-mTOR-PKC-theta-NF-kB 

pathway regulates glucose metabolism and T cell dif-
ferentiation. In addition, adaptor proteins such as 
IL-2-inducible T-cell tyrosine kinase (Itk), filamin A, Lck, 
and Grb2/Vav interact with the distal carboxy-terminal 
proline-rich PYAP motif of the co-stimulatory domain 
of CD28. The involvement of the Slp-76/linker for acti-
vated T cell (LAT) proteins is less than that in native TCR 
signaling [90, 91]. Several downstream effectors lead 
to transcriptional activation of the canonical activated 
protein 1 (AP1) c-Jun, and Ca2+ flux-mediated calcineu-
rin-nuclear factor of activated T cells (NFAT) pathway 
[92]. Thus, 1928ζ CAR-T cells with effector memory (EM) 
exhibit greater amounts of phosphorylated proteins 
and cytotoxic molecules, and faster in vivo tumor rejec-
tion kinetics than 19BBζ CAR-T cells during antigen rec-
ognition [93]. Percentage of EM phenotype in the final 
products of 1928ζ CAR-T cells are demonstrated to be 
one of key factors that positively affect complete clinical 
response in r/r DLBCL patients [94]. Phospho-proteomic 
analysis of activated 1928ζ CAR-T cells revealed a large 
abundant intracellular phosphorylation signals, which 
resulted in activation-induced cell death [87, 95, 96], 
because the in vivo proliferation kinetics and long-term 
persistence of CAR-T cells are closely correlated with 
the duration of clinical remission [97]. Genetic methods 
have been developed to balance the effector or mem-
ory function of 1928ζ CAR-T cells. For example, engi-
neering of 1928ζITAM CAR-T cells to reserve an ITAM of 
CD3ζ proximal to the T cell membrane prolongs the in 
vivo persistence of 1928ζITAM CAR-T cells. In contrast, the 
intensity of intracellular signaling and antigen sensitivity 
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Figure 1  |  Functional representation of three prototypical FDA-approved CD19-specific CAR elements, and their delivery viral 
vectors, promoters, and cellular starting material for autologous CAR-T cell production.
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is significantly attenuated [98]. In addition, substitution 
of CD3ζ in 1928ζ CAR-T cells with a CD3ε ITAM and CD3ε 
signal sequence decreases signal intensity and cytokine 
production through recruitment of the inhibitory Csk 
kinase [99]. Furthermore, genetic mutation of asparag-
ine to phenylalanine in YMNM in CD28 decreases ter-
minal differentiation of EM cells and exhaustion of 28ζ 
CAR-T cells [100].

Third-generation CAR-T cells have been developed by 
selecting and positioning one or more co-stimulatory 
domains from members of the CD28/B7 IgG superfamily, 
and/or members of the tumor necrosis factor receptor 
type II (TNFR II) family, such as OX40, CD27, and CD40 
[101]. Recently, an alternative type III transmembrane 
protein, B cell-activating factor receptor (BAFF-R), has 
been identified as a new potent costimulatory domain 
of CAR-T cells [102]. Direct fusion of CD28 and the 4-1BB 
costimulatory domain of 1928BBζ CAR-T cells has more 
favorable in vivo persistence in patients with minimal 
r/r NHL after autologous HSCT than 1928ζ CAR-T cells 
[103, 104]. Similarly, direct fusion of inducible T-cell co-
stimulator (ICOS) proximally, and 4-1BB distally, from 
the cell membrane prolongs the survival and in vivo per-
sistence of 19ICOSBBζ CAR-T cells [105]. In contrast to 
the direct infusion of two co-stimulatory domains, use 
of parallel CAR constructs for co-expression of mem-
brane proximally positioned CD28 and 4-1BB results in 
functional persistence and enhanced anti-tumor rejec-
tion [106]. Moreover, parallel 1928ζ CAR constructs 
co-expression of membrane proximal 4-1BB ligand (L) 
not only support 1928ζ-41BBL persistence but also acti-
vate interferon regulatory factor 7 dependent type  I 
interferon production. The release of IFNß further acti-
vates innate and adaptive anti-tumor immunity [107]. 
In another well studied case, parallel 20BBζ CAR incor-
poration of full-length antigen independent OX40 into  
T cells recruits TNR associated factors 2 and 5, thereby 
activating the NF-κB pathway, the anti-apoptotic gene 
BCL-2, and the PI3K-AKT pathway. The combination 
of 20BBζ CAR signaling and antigen independent full-
length OX40 costimulatory signaling reduce 20BBζ-OX40 
CAR-T cells apoptosis, exhaustion, and improved in vivo 
persistence, anti-lymphoma efficacy compared with 
20BBζ CAR-T cells [108].

A novel multiple chain chimeric immunoreceptor 
construct composed of ITAM with activating protein of 
12 Da (Dap12) covalently binding the transmembrane 
domain of killer immunoglobulin-like receptor (KIR)
S2, and KIRS2 conjugated to an antigen-specific scFv 
have been investigated. Notably, the antigen-specific 
KIRS2/Dap12 has stable surface expression and potent 
anti-tumor activity. After ligation of the antigen, KIRS2/
Dap12 binds Syk and Zap70 kinase [109]. Optimization 
of CD19-scFv-KIRS2/Dap12-4-1BB engineered T cells 
by adding the co-stimulatory domain 4-1BB has been 
found to result in 100% CR and optimal IL-2 secretion, 
faster proliferation and persistence, and potent anti-tu-
mor activity, as compared with non-co-stimulated 

CD19-scFv-KIRS2/ Dap12. In addition, no ICANs and CRS 
have been detected in four adult patients with r/r B-ALL 
[110].

2.3 CAR delivery with viral vectors
To date, most autologous CAR-T cells and universal allo-
geneic CAR-T cells are produced ex vivo. The human 
immunodeficiency-derived third-generation self-
inactivation lentiviral vector (SIN) with the U3 region of 
the 3´ long terminal repeat (LTR) removed minimizes the 
risk of replication-competent recombination. SIN LTR 
lentiviral vector constructs containing a central polypu-
rine Tract (cPPT) sequence increase the transduction rate 
[111]. However, integration of CAR by lentiviral vectors 
at high multiplicity of infection results in multiple copies 
of CAR per T-cell genome and genotoxicity of the viral 
vectors. The FDA recommends that the viral vector copy 
number per CAR-T cell be fewer than five copies [112]. 
However, maintaining constitutive CAR transcription 
and protein expression with fewer than five copies per 
CAR-T cell is challenging. The selection of robust inter-
nal enhancer and promoter sequences can overcome 
epigenetic silencing, in addition to the introduction of 
a Woodchuck hepatitis virus post-transcriptional regula-
tory element in the 3´ untranslated region of the lenti-
viral vector of SIN LTR, the incorporation of a chromatin 
domain insulator flanking the properly sized transcrip-
tion unit, and the addition of scaffold/matrix attach-
ment regions [113-116]. The murine stem cell virus-based 
γ-retroviral vector is used to make axi-cel, and the 
murine stem cell virus LTR controls the transcription of 
axi-cel. Intron-containing promoters such as Elongation 
Factor 1α are used to drive transcription of CAR in lenti-
viral vectors. Despite the efficiency of viral vector deliv-
ery [117], the immunological barrier of the cytosolic 
DNA sensor to the viral vector sequence, the epitope 
encoded by the viral vector, the immune response to 
the transgene, and the transcriptional repression of the 
viral vector remain challenges [118-121]. In addition, the 
distribution of the lentiviral vector (LV) integration sites 
influences clinical treatment outcome by modulating 
in vivo proliferation of 19CAR-T cells in patients with 
chronic lymphocytic leukemia (CLL). Specifically, inte-
gration into the host T-cell methylcytosine dioxygenase 
TET2 allele together with a hypomorphic mutation in 
the second TET2 allele resulted in TET2 gene mutation. 
A single clonal proliferation of TET2- disrupted 19CAR-T 
cells with a less differentiated central memory pheno-
type induced CLL remission [119, 122, 123].

2.4 Precision genome engineering of CAR
Site-specific integration of CAR into the host genome 
has demonstrated clinical safety and efficacy. This 
method relies on the introduction of a site-specific 
break in the genome and the presence of homologous 
DNA sequences at double-stand breaks to perform 
high-fidelity homologous recombinational repair in 
host cells. In mammalian cells S or G2 phase, site-specific 
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DNA double-stand breaks (DSB) could be generated 
by nucleofection of clustered regularly interspaced 
short palindromic repeats (CRISPR) associated system 
(Cas)9 and specific CRISPR Cas9 single guide (sg) RNAs 
efficiently and relatively precise. CRISPR Cas9/sgRNA is 
derived from the type II CRISPR/Cas system of microbial 
nuclease system. Moreover, rational design of the length 
and sequences of homologous arm of donor template 
DNA is key to HRR-mediated genome editing. Methods 
of delivering homologous donor template DNA include 
chemical transfection, pseudovirus particles from bio-
logical methods, and physical methods. Ex vivo electro-
poration, recombinant adeno associated virus (rAAV) 
donor vectors, non-integrating lentiviral vectors are 
efficient in transferring transgene incorporating donor 
template DNA [124, 125]. Another non-viral transgene 
approach for site-specific insertion of transgenes is the 
fusion of a highly soluble Sleeping Beauty (SB) 100X 
transposase with a catalytically dead Cas9 (dCas9). The 
choice of integration sites of SB 100X-dCas9 depends on 
the design of the gene-specific sgRNA. SB 100X trans-
poson gene insertion sites are located approximately 
300 base pairs downstream of sgRNA targets [126, 127]. 
Specifically, non-viral PD-1 locus integrated CD19-4-1BB-
CD3ζ CAR-T cells in eight patients with r/r B-NHL have 
resulted in an 87.5% CR rate and durable responses for 
1 year without grade 3 toxicity. This treatment has out-
performed LV-19BBζ CAR-T cells [128]. Although genetic 
PD1 gene deletion reverses immunosuppression by PD-1 
ligands [129], long-lasting PD-1 mRNA knockdown by 
stable transgenic expression of PD-1 targeted short hair-
pin (sh) RNA decreases surface PD-1 on CD19 CAR-T cells 
and impairs long-term anti-tumor function, particularly 
at lower ratios of effector cells to target cells. Similarly, 
an anti-PD1 blocking mAb accelerates CAR-T cell early 
differentiation and maturation, attenuates prolifera-
tion, and diminishes survival [130, 131]. Different from 
targeting CAR to the PD-1 locus, CC chemokine recep-
tor 5 (CCR5) locus, adeno-associated virus site 1 (AAVS1) 
locus, and ß2M locus, targeting CAR to the TCRα chain 
constant region (TRAC) locus disrupted endogenous TCR, 
enhanced T cell potency after engineering. Specifically, 
integration of CAR to the TRAC locus averts 1928ζ CAR-T 
cells tonic signaling, delays 1928ζ CAR-T cells differen-
tiation and exhaustion through optimal regulation of 
surface CAR levels after repetitive antigen stimulation. 
Surface 1928ζ CAR at the TRAC locus are downregu-
lated within 12 hours (h) of antigen binding. The den-
sity of surface 1928ζ CAR in T cells gradually increased 
at 24  h after initial CD19 antigen binding. Recyclable 
1928ζ CAR at the TRAC locus through the endocyto-
sis pathway favored less-exhausted TRAC-1928ζ CAR-T 
cells after repeated antigen exposure [128, 132]. Data 
demonstrated that CD8+CAR-T cell function is abro-
gated following endogenous TCR activation. The TRAC 
site-specific CAR integration minimizes competitive acti-
vation of endogenous TCR signaling on CAR-T cell [133]. 
Binding of cognate ligands initiates ubiquitination of 

lysine residues of the cytoplasmic domain of CAR and 
lysosomal degradation of polyubiquitinated CAR [134, 
135]. To ameliorate the loss of surface CAR in LV inte-
grated CAR-T cells, a recyclable CAR that lacks the lysine 
residues of the intracellular domain can block the CAR 
ubiquitination pathway and promote CAR recycling to 
the T cell surface. TRAC locus integrated CAR-T cells 
have a dynamic uniform CAR surface density, thereby 
bypassing the CAR ubiquitination pathway [136].

2.5 Manufacturing CAR-T cells with younger 
phenotypes
In addition to patient status, age, tumor burden, and 
tumorigenic mutations, the numbers and quality of 
CD3+T cells in peripheral blood during leukapheresis 
in an individual patient may serve as clinical biomark-
ers for predicting the anti-tumor efficacy of autologous 
CAR-T cell products [35, 137].

Collection of CD3+T cells from adult cancer patients 
receiving T cell-impairing drugs, who have chronic infec-
tions and rapidly progressive disease, poses a challenge 
to providing good leukapheresis products before CAR-T 
cells production. In addition, thymus involution occurs 
with age and is accompanied by decreasing naïve T cell 
egress from thymus [138]. Clinical data have shown 
that a CD3+ T  cell count above a threshold of 553/
μL is associated with rapidly proliferating expansion 
kinetics in the peripheral blood 7 days after tisagen-
lecleucel infusion, and favorable progression free sur-
vival (PFS) and OS in patients with r/r DLBCL [139, 140]. 
Moreover, an increased frequency of naïve or stem-cell 
memory phenotype (CD3+Tscm) of CD8 T cells apheresis 
is independently associated with a sustained response 
to tisagenlecleucel [141, 142]. In contrast, senescence 
CD8+CD57hiCD39hiCD28low 19CAR-T cells or exhausted 
CD8+PD-1hiLAG3hi 19CAR-T cells are closely associated 
with decreased in vivo proliferative capacity and cyto-
toxicity in non-responders with r/r DLBCL [143]. For the 
treatment of adult patients with r/r LBCL, the dosage 
selection of axicabtagene ciloleucel, tisagenlecleucel, 
and Liso-cel should consider the available numbers of 
transduced 19CAR in CD3+ T cells of autologous final 
CAR-T cells product, patients’ body weight (kg), tumor 
burden, CAR constructs, the choice of pre-condition-
ing lymphodepletion regimen [144-146]. Strategies are 
needed to increase the efficacy and achieve the neces-
sary amounts of CAR-T cells by supplementation with 
targeted drugs during the CAR-T cell production pro-
cess. The production of autologous CAR-T cells involves 
activation of CD3+ T cells, CAR delivery by viral or non-vi-
ral methods, and an expansion process to achieve the 
required numbers. Preparing cellular starting material 
before CAR-T cell manufacture, enrichment of less-dif-
ferentiated Tscm cells in leukapheresis peripheral blood 
mononuclear cells is ideal for overcoming T cells func-
tional exhaustion of cancer patients. However, T cells 
derived from most adult patients with r/r DLBCL have 
no active metabolic status or terminal differentiation, 
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and may be exhausted and express detectable immune 
checkpoint molecules. Moreover, in vitro activation of 
CD3+ T cells and CAR transduction with lentiviral vectors 
lead to T cell differentiation and exhaustion. Numerous 
developments have been made to shorten the in vitro 
manufacturing time and achieve transient cessation of 
CAR-T cell activation through the selection of epige-
netic or enzymatic inhibitors to produce less differen-
tiated “young” CAR-T cells [147, 148]. T cell exhaustion 
is a process of epigenic modification characterized by 
the expression of several key transcription factors, 
such as TOX and Nuclear Receptor Subfamily 4 Group 
A Member 3 (NRA4). NRA4 suppresses T cell factor 1 
(TCF1). NFAT of activated T cells also activates the TOX/
NRA4 axis [149-153]. In addition, Enhancer of Zeste 2 
(EZH2), the catalytic subunit of the repressive Polycomb 
complex 2, silences memory-associated genes through 
trimethylation of histone 3 lysine 27 [154]. In addition, 
DNA methyltransferase 1 (DNMT1), DNA methyltrans-
ferase 3B (DNMT3B), and DNA methyltransferase 3A 
(DNMT3A) induce genome-wide de novo DNA methyla-
tion in terminally exhausted T cells [155, 156]. Recently, 
studies have focused on enrichment of CAR-Tscm cells 
or active metabolic CAR-T cells by modifying CAR-T cell 
transduction or expansion processes with small mole-
cule drug inhibitors targeting epigenetic or metabolic 
enzymes. For example, addition of 10 nM decitabine, an 
inhibitor of DNA methyltransferase, synchronously with 
tandem CD19/CD20 CAR transduction, enriches human 
CAR-T cells with a memory phenotype [157]. In another 
case, the FDA-approved Src kinase inhibitor dasati-
nib targeting Lck or Fyn has been found to attenuate 
proximal CAR-T cell signaling and to be associated with 
less differentiated CAR-T cells during ex vivo expan-
sion [148]. Similarly, TWS119, an agonist of the Wnt/β-
catenin pathway, arrests effector T cell differentiation 
and enriches CD8+ stem-cell memory T cells (Tscm) [158]. 
As a cytokine supplement, the γc cytokine family mem-
ber IL-15 downregulates mTOR activity and increases 
enzymes associated with fatty acid oxidation, thereby 
maintaining the metabolic state of the Tscm population 
[159, 160]. IL-21 acts synergistically with IL-15 during 
lentiviral transduction and expansion, thereby enrich-
ing functional CD8+CAR-Tcm cells [161, 162]. Moreover, 
overexpression of the canonical AP-1 of heterodimeric 
c-Jun/fos prevents exhaustion of CAR-T cells [163].

2.6 Target cell killing mechanism of CAR-T cells
Understanding how TAA specific CAR-T cells eliminate 
cancer cells could help develop better T cell engineering 
strategies. Ligand binding-induced CAR-scFv aggregation 
forms a non-classical immune synapse between CAR-T 
cells and tumors. The disorganized pattern of Lck, the 
multiple interactions between lymphocyte function-asso-
ciated antigen (LFA)-1 and intercellular adhesion mole-
cule 1 (ICAM-1), and the mechanical force at the non-clas-
sical immune synapse may mediate the effector functions 
of CAR-T cells, such as the secretion of cytokines and 

cytolytic enzymes into targeted cancer cells. The kinase 
Lck mediates abundant CD3ζ phosphorylation, and stim-
ulates faster and higher basal activation of CD28CD3ζ 
CAR-T cells. THEMIS-SHP1 counteracts the extent of CD3ζ 
phosphorylation and mild activation of 4-1BBCD3ζ CAR-T 
cells in non-classical immune synapses [87]. Granzymes 
initiate the caspase-dependent mitochondrial apopto-
sis pathway and caspase-independent permeabilization 
of the mitochondrial outer membrane. In contrast, dis-
ruption of the nonclassical immune synapse-dependent 
release of perforin and the granzyme pathway is one 
mode of resistance to CAR-T cell therapy. The inter-
action of CD58−/− r/r DLBCL with CD2+19CAR-T cells is 
lost, thereby weakening the formation of non-classical 
immune synapses with cancer cells, and helping cancer 
cells escape killing by 19CAR-T cells [164, 165]. Similarly, 
in IFNγR1−/− glioblastoma, ICAM is downregulated at the 
transcriptional level. ICAMlo IFNγR1-/- glioblastoma failed 
to form a non-classical immune synapse with LFA1+ CAR-T 
cells, and thus glioblastoma escaped CAR-T cell killing 
[166]. Moreover, the Fas ligand homotrimer of activated 
CD8+CAR-T cells mediates the trimerization of the Fas 
(death) receptor in cancer cells and leads to apoptosis. 
Similarly, Fc-receptor-activated CAR-T cells of the extra-
cellular spacer domain of IgG CH2CH3 lead to AICD in 
vivo through the Fas ligand-Fas receptor axis. Chronic TAA 
exposure and repeated stimulation induce AICD of CAR-T 
cells [71, 167]. In contrast, cancer cells with mutagenesis 
of Fas associated death domain (FADD), BH3-interacting-
domain death agonist (BID), caspase 8, and TNF receptor 
superfamily member 10B (death receptor 5) escape apop-
tosis in the presence of CAR-T cells [168, 169]. In particu-
lar, NOXA, a protein of the Bcl2 family, has been iden-
tified as a central regulator of resistance to CAR-T cells 
in r/r DLBCL. NOXA is potential biomarker for r/r DLBCL 
non-response [170]. Moreover, TNF-associated apopto-
sis-inducing ligands (TRAIL and CD253) selectively trigger 
apoptosis of tumor cells expressing TRAIL death recep-
tors (DR). For example, TRAIL-R1 (DR4) specific CAR-T cells 
have shown cross cancer antitumor efficacy in preclinical 
studies. The combination of TRAIL-R2 (DR5) CAR-T cells 
targeting myeloid-derived suppressor cell (MDSC) and 
MUC1-specific CAR-T cells against breast cancer have 
shown superior anti-tumor potential against breast tum-
ors [171, 172]. Moreover, caspase 3-mediated gasdermin 
E-dependent pyroptosis in B-cell cancers is associated 
with cytokine release syndrome [21, 173] (Table 1).

3. Challenges and solutions of 
autologous second-generation CD19 
specific CAR-T cells therapy in r/r DLBCL

Second-generation CD19-specific CAR-T cells promised a 
good clinical outcome in approximately 43% of treated 
r/r DLBCL patients within one year. However, to increase 
the clinical response rate for those non-responders, 
T-cell engineering strategies have been developed. To 
overcome low TAA density tumors, immunosuppressive 
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TME and CAR-T cell exhaustion, the development of 
bispecific tandem or loop CAR recognition domains, 
human leukocyte antigen-independent synthetic TCRαβ 
double-chain receptors integrated into the constant 
region of the TCRα chain, and armored CAR-T cells were 
presented in the following sections (Figure 2). 

3.1 Bispecific CAR-T cells
Dual antigen specific CAR-T cells have efficacy and clin-
ical safety for patients with CD19+ and/or CD19−/low 
relapse, or native B cell cancers co-expressing two TAAs 
[174, 175]. Bispecific CAR-T cells have been clinically 
applied in several strategies, including the simultaneous 

Table 1  |  Multiple mechanisms used by CAR-T cell to eliminate targeted cancer cell.

1 2 3 4 5

CAR-T cell mediated
cytotoxicity by secreting
perforins, and granzymes.

Nature. 322 (6082): 831–4.
Nat. immunol. 12 (8): 770–7.

Fas ligand of CAR-T
cell

Cell. 88(3):355–65
Cancer Discov.
2021; 11: 599–613

TNF related apoptosis-
inducing ligand (TRAIL)-
death receptors (DR) 4 or
DR5 specific CAR-T cell

J Immunother Cancer. 
2021 Nov;9(11):e003237

Front Mol Biosci. 2021
Dec 20;8:756599

Granzyme B secreting
CAR-T cell

Sci Immunol. 2020 Jan
17;5(43):eaax7969.

CAR-T cell secreting
TNF-α, IFN-γ, IL-2

Apoptosis. 2003
Jun;8(3):237–49

Science. 2002 May
31;296(5573):
1634–5 Transient

non-
classical
immune
synapse

Apoptosis (programmed cell death)

Homotrimer of Fas
receptor

Apoptosis

Pore forming
perforin, and
granzymes

TRAIL-DR
4 positive cancer cell or TRAIL-DR5
positive myeloid derived suppressor cells 

DR-dependent apoptosis

Caspase-3
cleavage of
gasdermin E

Pyroptosis of gasdermin E
expressing cancer cells

CAR-T cells

Cancer cells and
immunosuppressive
tumor
microenvironment   

Anti-cancer effects
of TNFR1 and IFN-γR
signaling pathway
are affected by whether 
IFN-γ signaling and
TNFR1 signaling are
concerted, and/or by the
existence of complex
tumor microenvironment

Challenges and solutions of autologous second-generation CD19 specific CAR-T cell therapy in r/r DLBCL 

CAR-T cells exhaustion
Insufficient reactivity against
cancer cell with low-density TAA

Immunosuppressive tumor
microenvironment 

1. Manufacturing non-viral PD-1
integrated CD19, and/or TAA specific
4-1BBCD3�CAR-T cells. 

2. Engineering TRAC-integrated-CD19,
and/or TAA specific CD28CD3ζCAR-T
cells. 

1. Development of TRAC-HIT
receptors in T cells targeting CD19,
and/or TAA.

2. Utilizing tandem CAR-T cells targeting
 cancer cells with two TAAs.

1. Construction of CAR-T cells
targeting immunosuppressive cells,
such as MDSC, TAN, TAM.

2. Construction of hypoxia-activated
CAR-T cells.

3. Combination of hyaluronidase
and CAR-T cells that secrete anti-
PD-L1 to overcome the physical
barrier, and immune checkpoint
blockade.

Figure 2  |  Challenges and solutions in CAR-T cell therapy for r/r DLBCL.
The illustrated chart lists demonstrate three types of challenges in the current CAR-T cell therapy for the treatment of patients with r/r DLBCL. 
The proposed solutions are indicated. MDSC, myeloid derived suppressor cell; TAN, tumor associated neutrophils; TAM, tumor associated 
macrophages; TRAC, TCRα chain constant region; HIT, human leukocyte antigen independent TCR αβ receptor.
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transduction of two separate CAR vectors into T cells 
or the use of a bicistronic CAR construct for expression 
of two separate CARs in a single vector, the parallel-
production of two separate antigen-specific CAR-T cells, 
administered sequentially within a day (cocktail CAR-T 
cells), or the sequential infusion of two antigen-specific 
CAR-T cells within a short time interval. Notably, after 
undetectable CD19BBζ CAR-T cells in peripheral blood 
of the patient, sequential administration of humanized 
CD22BBζ CAR-T cells within short time intervals pro-
motes expansion of initial shrinking CD19BBζ CAR-T 
cells in the r/r B-NHL patients [176]. Moreover, a cocktail 
of CD22-28BBζ CAR-T cells and CD19-28BBζ CAR-T cells 
has been found to result in an ORR of 72.2% and 50% 
CR after treatment of 38 patients with r/r B-NHL. The 
median PFS was 9.9 months, and the median OS was 18.0 
months after a median follow-up of 14.4 months [177]. 
In addition, the combination of high-dose chemother-
apy, autologous stem cell transplantation, and a cocktail 
of CD22-28BBζ CAR-T cells and CD19-28BBζ CAR-T cells 
has been found to achieve a CR of 83.3% in 42 patients 
with aggressive r/r DLBCL after a median follow-up of 
24.3 months [178].

In the development of a dual scFv in a single CAR 
design, product development of bispecific CAR-T cells 
could be evaluated more consistently. Bispecific tandem 
CARs have been developed by linking two separate scFvs 
in tandem. Bispecific loop CARs have been developed by 
linking two separate scFvs in a loop structure. The advan-
tages of bispecific tandem or loop CAR is functional 
bivalency when bind to two separate TAAs of a target 
cell. By increasing the overall avidity of the non-classical 
immune synapse between the bispecific CAR-T cells and 

cancer targets, the “on-target” effects are increased, 
and the “off-target” effects are deceased. Notably, tan-
dem CD20 (leu-16 mAb)/CD19 (FMC63 mAb) BBζ CAR-T 
cells have shown superior clinical safety and high effi-
cacy in treating patients with r/r DLBCL: a 79% ORR, 
71% CR, and 64% 12-month PFS have been achieved in 
33 patients with r/r B-NHL in a phase I/II clinical trial. In 
long-term follow-up, an impressive PFS of 27.7 months 
was observed. Importantly, tandem CD20/CD19 BBζ 
CAR-T cells are associated with diminished ICAN severity 
[175, 179-181]. Bispecific tandem CD19 (FMC63 mAb)/
CD22 (humanized) BBζ CAR-T cells have been found 
to achieve an ORR of 87.5% and a CR of 62.5% in the 
treatment of 16 patients with r/r DLBCL. The 2 year OS 
and PFS rates were 77.3% and 40.2%, respectively, in 
the phase I clinical trial. Of note, 16 patients with r/r 
B-NHL had no ICAN and little occurrence of severe CRS 
[182]. Bispecific looped CD19 (FMC63 mAb), VH-CD22 
(M971 mAb), and VL-CD22VH-CD19VL BBζ CAR-T cells 
have achieved a 62% ORR and 29% CR in 21 patients 
with r/r LBCL (Table 2) [183].

3.2 Native TCRαβ receptor and endogenous CD3 
signaling machinery
Thymus-derived mature TCRαβ are highly sensitively 
to human leukocyte antigen (HLA)-loaded exogenous 
intracellular peptides (pep/HLA) and are approxi-
mately 100-fold more sensitive than 1928ζ CAR-T cells. 
Experimental data have indicated that approximately 
1–50 ligands of the non-self-peptide/HLA complex per 
target cell triggers CD8+CTL activation signals. In addi-
tion, one to four exogenous Pep/HLA complexes per 
target cell triggers CD4+T cell activation. However, the 

Table 2  |  Comparative advantages and disadvantages of different forms of CAR-T cells targeting two tumor-associated 
antigens.

Forms of CAR-T cells targeting two 
tumor-associated antigens

Advantages Disadvantages

Sequential administration or CAR-T 
cell cocktails by mixing of two separate 
antigen-specific CAR-T cells

1. Simple product development
2. �Combinations and dosages can be flexibly 

adjusted according to clinical need

1. High cost
2. Highly variable CAR-T cell cocktails

Generation of dual CAR-T cells through 
simultaneous transduction of a T cell 
with two different CAR vectors, thus 
resulting in two scFvs in a single T cell

1. Easy product development 1. �Inconsistency of dual CAR-T cell 
products

2. �Challenges in pharmaceutical product 
control

Bispecific tandem CAR-T cells with two 
distinct scFvs connected in tandem in a 
single CAR construct

1. Simple product development 
2. �Dual scFv design increases the functional avidity 

of the tandem CAR-T cells and the efficacy
3. Safety

1. �Technical challenges in development 
of optimized tandem CARs 

Bicistronic CAR vectors encoding two 
different CARs on the same T cell

1. �Easy evolution of bicistronic CAR on the basis 
of the combination of two separate single-
chain CAR sequences

1. �Possible homogeneous recombination 
between two separate single-chain 
CAR sequences

2. �Potential CAR-T cell tonic signaling 
and exhaustion because of the two 
copies of intracellular CD3-zeta chains
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presence of at least 3000 CD19 molecules per target 
cell triggers 1928ζ CAR intracellular signal transduction 
in T cells. The CD19 density of a normal B cell is ~20,000 
molecules per cell. Low CD19 density (clone SJ25C1) 
is more common in CD10-positive DLBCL than CD10-
negative nodal DLBCL samples [184]. A CD19 site-den-
sity of 952 molecules per r/r DLBCL biopsy has been 
found to result in CD19low relapse and progression 
3 months after initial diagnostic CR [183]. Follicular 
lymphoma have CD19low antigen in 79% cases [185]. 
The decrease in CD19 antigen may be mediated by 
impaired membrane trafficking [186]. Trogocytosis 
of 19CAR-T cells has resulted in a decrease in CD19 
in malignant B cells in a co-culture experiment [187]. 
A low CD22 density of less than 3000 molecules per 
malignant B cell impairs the functionality and per-
sistence of 22BBζ CAR-T cells [59]. Furthermore, the 
CD20 site density is ~100,000 molecules per normal 
mature B cell [184]. CD20 expression below the level 
of 25,000 molecules per B-cell lymphoma is regarded 
as a low CD20 expression, and might not benefit from 
rituximab-based chemoimmunotherapy [188]. Native 
TCRαβ have a KD of 1–100 μmol/L toward foreign pep-
tide-loaded HLA, whereas CAR-T cells have a KD of 
approximately 0.001  μmol/L toward the native pro-
tein epitope. Direct comparison of antigen sensitivity 
between CAR-T and native TCRαβ is difficult, owing to 
different antigen recognition models and intracellular 
signal activation by antigen binding [189, 190].

TCRαβ is a non-covalent heterodimer non-covalently 
associated with three preferred subunit pairs of CD3γε, 
CD3δε, and CD3ζζ. The TCRαβ-CD3 octamer has a stoi-
chiometry 1:1:1:1 of TCRαβ:CD3γε:CD3δε:CD3ζζ dimeric 
modules. Each CD3γ, CD3δ, and CD3ε chain has a single 
ITAM, and the CD3ζ chain has three tandem ITAMs. At 
the molecular level, thymus-derived somatic V-diverse-
(D)-junction (J) recombination, and the addition and 
removal of nucleotides at the VD and DJ junctions in 
complementary determining region 3 (CDR3) of the 
TCR variable (V)β chain of a developing T cell clone 
are responsible for the immune surveillance of vari-
ous exogenous Pep/HLA complexes. CDR3 of TCR-Vα is 
determined by V and J, as well as by the addition and 
removal of nucleotides at the VJ junctions of develop-
ing T cell clones [191]. CDR3 of both TCR-Vα and TCR-Vβ 
recognizes the specific Pep/HLA complex. CDR1 and 
CDR2 of both TCR-Vα and Vβ contact the side chains of 
HLA alleles [192]. In addition, CD4 or CD8 coreceptors 
are costimulatory receptors that enhance the interac-
tion between TCRαβ and pep/HLA. The involvement 
of the CD8β coreceptor enhances the TCRαβ response 
against low-affinity Pep/HLA ligand during thymic 
positive selection, through the formation of a TCRαβ-
coreceptor zipper [193]. In addition, eight conserved 
amino acid peptides of the membrane-proximal region 
of the TCR-α chain constant region (TCR-Cα-CPM) pro-
mote close approach to the CD8 coreceptor and antigen 
reactivity [194, 195]. Importantly, a homologous genetic 

mutation in the TCR-α constant chain (TRAC) impairs 
assembly and/or intracellular transport of the TCR-αβ 
complex, thus resulting in a lack of surface expression of 
the TCR-αβ complex and of thymic egress of TCR-αβ cells 
in patients [196].

The presence of an immunological synapse com-
posed of TCRαβ and pMHC complexes facilitates a cas-
cade of proximal transmembrane signaling. The mature 
immunological synapse consists of the peripheral 
supramolecular activation cluster, as well as the central 
supramolecular activation cluster, which is enriched in 
TCRαβ, coreceptors, costimulatory receptors, inhib-
itory receptors, phosphorylated tyrosine kinase Lck, 
Src homology region 2 (SH2)-containing ζ-chain-asso-
ciated protein kinase 70 (ZAP70), cytoplasmic protein 
tyrosine phosphatases (PTPs) of SH2-containing protein 
tyrosine phosphatase 2 (Shp2), and PKC-theta [197, 
198]. Several molecular models have been proposed 
to explain how TCR-αβ binding of the non-self-pep-
tide HLA triggers signal transduction of CD3 complex 
consisting of three dimers of CD3γε, CD3δε, CD3ζζ. 
According to the conformational change model, Pep/
HLA binding triggers the movement of the proximal 
C-terminus of the CD3ζ transmembrane helix and the 
exposure of ITAMs of CD3ζ [199]. The Src-family kinases 
p56Lck and p59FYN phosphorylate ITAMs (YXXL/V) of 
CD3ζζ, CD3γε, and CD3δε. Phosphorylated ITAMs recruit 
several key enzymes and adaptors including Lck kinase, 
ZAP70, and phosphorylated adaptor of LAT, thus further 
amplifying the activation signal [199]. Phosphorylated 
LAT acts as a docking site that recruits multiple signa-
ling proteins associated with the T-cell membrane (LAT 
signalosomes) and results in activation of several down-
stream pathways [200]. The recruitment of Lck to the 
intracellular tail of CD4 or CD8 coreceptors, and the 
cyclic interaction of CD4 or CD8 with the β2-domain of 
HLA-DR or the α3-domain of HLA-A2 amplify the T-cell 
response to foreign antigens by a million-fold [201]. 
In addition, CD3ζ K33 polyubiquitination mediated by 
the E3 ligase Cbi-b and Itch counteracts the phospho-
rylation of CD3ζ of activated T cells via the endocytic 
pathway [134]. CARs are designed to be independent of 
endogenous TCR/CD3 signaling. Activated 1928ζ CAR-T 
cells have fewer phosphorylated linkers for activated T 
cells (LAT) in comparison with canonical TCR signaling. 
LAT phosphorylation is not detected in activated 19BBζ 
CAR-T cells [96, 202]. Increasing evidence indicates that 
enhancement of intracellular signaling strength after 
antigen recognition increases the antigen sensitivity of 
CAR-T cells [96, 203]. Low density tumor antigen sensi-
tivity of 19BBζ CAR-T cells is enhanced by activation of 
the phosphorylated LAT-signaling pathway through the 
insertion of the CD3ε signal sequence [96].

3.3 Human leukocyte antigen-independent TRAC 
locus integrated synthetic TCRαβ
To eliminate tumor cells with low-density antigens, an 
ultra-sensitive human leukocyte antigen independent 
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synthetic TCRαβ receptor (HIT) has been constructed by 
replacing the endogenous TCR-Vβ and TCR-Vα with VH 
and VL of scFv, respectively. The synthetic chimeric VHCβ 
and VLCα heterodimer was integrated and expressed in 
the TRAC locus (TRAC-HIT) of recipient T cells by CRISPR/
Cas9/sgRNA and rAAV donor template. Immunoglobulin 
VH and VL of TRAC-HIT directs surface antigens recog-
nition of target cell, and CD3γε, CD3δε, CD3ζζ three 
dimers-mediated signaling in TRAC-HIT T cells. Moreover, 
the TRAC-HIT-receptors provide higher antigen sensi-
tivity than that of TRAC-28ζ CAR-T cells. Experimental 
data show that as few as 20 surface CD19 molecules 
per B-cell cancer can be recognized and killed by TRAC-
HIT-receptors modified T cells after phosphorylation of 
extracellular signal regulated kinase (pERK), CD3ζ, CD3ζ 
associated protein kinase (ZAP70), and degranulation. 
In contrast, TRAC-28ζ CAR-T cells can kill target cells 
carrying 200 CD19 molecules. Similarly, low abundance 
target of approximal 370 surface CD70 molecules per 
acute myeloid leukemia (AML) could be efficiently elim-
inated by CD70-knockout CD70 specific TRAC-HIT T cells. 
Moreover, constitutive expression of the CD80/4-1BB 
ligand in CD70-knockout CD70 specific TRAC-HIT T cells 
significantly improved its in vivo survival and anti-AML 
potency compared with CD70-knockout CD70 specific 
TRAC-CAR-T cells [204].

In contrast to the construction of the TRAC-HIT recep-
tor, the mutant synthetic T-cell receptor and antigen 
receptor (mutSTAT) has been constructed by grafting the 
endogenous TCR-Vβ and TCR-Vα with VL and VH of scFv, 
and replacing the human TCR-Cβ and TCR-Cα sequences 
with corresponding murine sequences. Furthermore, an 
additional disulfide bond was introduced between the 
chains in the murine (m) TCR-Cβ(S57C) and mTCR-Cα 
(S48C), and a hydrophobic sequence was introduced 
into the transmembrane domain of mTCR-Cα (S48C) 
to improve surface display and achieve proper pairing 
between VH-mTCR-Cα (S48C) and VL-mTCR-CαCβ (S57C) 
chains. In addition, the mTCR-Cα-connecting peptide of 
mutSTAT function in correctly pairing of TCR/CD3 com-
plex after T cell engineering. Lentiviral vector-mediated 
transduction of mutSTAT is effective against solid can-
cers, particularly solid cancer cells with low antigen den-
sity, which outperform 28ζ CAR-T cells. In the resting 
state, mutSTAT has lower tonic signaling than 28ζ CAR-T 
cells [205]. Moreover, mutSTAT co-stimulated with OX40 
significantly prolongs the in vivo persistence. CD19 spe-
cific mutSTAR-OX40 has been found to have a 100% CR 
rate in treating 18 patients with r/r B-ALL 4 weeks post 
infusion in a phase I clinical trial: 75% (12/16) patients 
remained leukemia-free after a median follow-up of 
545 (433–665) days; 55.6% patients (10/18) had mild 
CRS; and two patients had grade III neurotoxicity [206]. 
In another preclinical study, VL and VH domain of the Fab 
of human anti-CD19 (ET190L1, clone) were fused with 
the δ chain and γ chain of TCR respectively to direct CD19 
antigen specificity and antigen dependent CD3γε/CD3δε/
CD3ζζ signaling, cytokine production, degranulation. 

Significantly, Fab antibody TCRγδ engineered T cells had 
less differentiated and exhausted Tscm phenotype, and 
a lower CRS than 19CAR-T cells in patients derived xeno-
graft leukemia model [207]. In another construct design, 
a TCR fusion construct (TRuCs) contained an anti-CD19 
scFv bound to one of the full-length TCR/CD3 octamer 
subunits, including TCR-Vα, TCR-Vβ, CD3γ, CD3δ, or 
CD3ε, via a flexible glycine serine linker. TRuCs became 
an integral component of the TCR-CD3 octamer and 
did not affect the Pep/HLA-mediated T cell response. 
Although TRuC-T and CAR-T differ in the quality of 
intracellular signaling, TRuC-T elicits a potent anti-tu-
mor response in both hematologic and solid cancer xen-
ograft mouse models [208].

3.4 Targeting the immunosuppressive tumor 
microenvironment
Immune checkpoints, tumor stroma, immunosup-
pressive cells, hypoxia, and metabolic limitations in 
the TME of r/r DLBCL hinder CAR-T cell therapy [209]. 
Infiltration of the TME with immunosuppressive CD4+T 
cells, exhausted CD8+T cells, myeloid cells, normal B 
cells, cancer-associated fibroblasts (CAFs), chronic hep-
atitis B viral infection, and potential cell-cell interac-
tion between malignant B cells and tumor-infiltrating 
cells promote tumor cell survival and immune inva-
sion [210,  211]. Moreover, activation of hypoxia-in-
ducible factor 1 alpha in r/r DLBCL upregulates the 
enzyme hexokinase 2, thus promoting glucose meta-
bolism and facilitating tumor growth under hypoxic 
stress. However, under hypoxic stress (<2% O2 con-
centrations), expansion, cytokine production, and 
granzyme B release of second-generation CAR-T cells 
are markedly diminished. Decreases in protein synthe-
sis and defective CAR-T cell metabolism in TME have 
been reported [212-214]. Hypoxia-activated CAR-T 
cells have been engineered to adapt and survive in 
the TME [215]. CAFs promote r/r DLBCL survival, angi-
ogenesis, and cancer niche formation. CAFs upreg-
ulate the expression of fibroblast activation protein 
(FAP), smooth muscle α-actin (αSMA), programmed 
cell death ligand 1 (PD-L1), and PD-L2, thereby sup-
pressing PD1+CAR-T cells [216]. Patients with r/r DLBCL 
expressing PD-L1 have shown poor overall survival 
[217]. Hyaluronidase and checkpoint blockers against 
anti-PD-L1 manipulated CAR-T cells degrade hyalu-
ronic acid in the extracellular matrix, and facilitate 
deep CAR-T cell invasion in the TME [218]. In addition, 
resident endothelial cells and fibroblastic reticular 
cells upregulate PD-L1, thus transforming lymph node 
podoplanin+ fibroblastic reticular cells into CAF-like 
immunosuppressive cells. Armored CAR-T cells secret-
ing PD-1 blocking scFv have been engineered to over-
come PD-L1 mediated immune suppression [219]. Data 
have indicated that infiltration of tumor associated 
macrophages from r/r DLBCL TME is negatively associ-
ated with remission status after 19CAR-T cell therapy 
[220]. In addition, CD11b+HLA-DR− myeloid derived 
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suppressor cells are associated with poor PFS and OS 
of 19CAR-T cells [221]. Metastasis of B cell lymphoma 
is associated with the epithelial-to-mesenchymal tran-
sition process [222]. Hyaluronan synthase 2 (HAS2), 
and tumor growth factor β (TGFβ) regulate epitheli-
al-to-mesenchymal transition [223] via phosphorylation 
of SMAD1/5 [224]. Overcoming the tumor suppressor 
TGFβ by constructing both TGFβ- and TAA-responsive 
CAR-T cells may expand the therapeutic window of r/r 
DLBCL [225,  226]. In addition, limited trafficking and 
infiltration of CAR-T cells into the TME are challenges, 
particularly for patients with extranodal lesions of r/r 
DLBCL in soft tissue [227, 228]. Modification of CAR-T 
cells expressing specific chemokines directs CAR-T cells 
into the TME. Local injection of 19CAR-T cells in com-
bination with intravenous infusion and radiotherapy 
before 19CAR-T cell therapy are effective alternative 
methods [229, 230]. PETN-deficient r/r DLBCL are infil-
trated with a large numbers of myeloid derived sup-
pressor cells (MDSC), Tregs, and abundant expression 
of indoleamine 2,3-dioxygenase (IDO1) protein, an 
immunosuppressive enzyme involved in a rate-limit-
ing step of tryptophan catabolism. PETN-deficient r/r 
DLBCL exhibited reduced infiltration of CD8+CTL and 
NK cells compared with suppressive immune cells, 
which establish immunosuppressive TME in r/r DLBCL 
after PETN-deficiency [231]. To activate the immune 
response, peptide vaccines, oncolytic virus, and Toll 
like receptor agonists have been developed to recruit 
T cells into the TME in r/r DLBCL. A peptide cocktail 
vaccine consisting of a 21 amino acid peptide from IDO 
(DTLLKALLEIASCLEKALQVF) and a 19 amino acid pep-
tide from PD-L1 (FMTYWHLLNAFTVTVPKDL), together 
with nivolumab (anti-PD-1), has achieved an ORR of 
80% and 43% CR with a median PFS of 26 months. 
CD4+ T cells and CD8+ T cells have been found to infil-
trate into tumor sites in responder patients [232].

4. CONCLUSION

CD19 specific CAR-T cells do not induce clinical remis-
sion in approximately 57% of patients with relapsed 
and/or refractory DLBCL. In tumors with TAA hetero-
geneity especially low density surface expression of 
TAA, the immunosuppressive tumor microenvironment 
poses challenges for the current CAR-T cell therapies. 
Moreover, CAR-T cell exhaustion under an immuno-
suppressive tumor microenvironment TME potentially 
limit its long-term efficacy. With the rapid develop-
ment of CAR design, and novel T cell engineering strat-
egies, evidences have accumulated that a synthetic T 
cell receptor, independent of human leukocyte anti-
gen, delay engineered T cell exhaustion, and have at 
least 10 fold super TAA sensitivity than CD28 co-stim-
ulated CARs. Moreover, the development of bispecific 
tandem CAR-T cells or loop CAR-T cells not only maxi-
mizes clinical safety but also overcomes the heteroge-
neity of TAAs of cancer cell. Future autologous and/

or allogeneic T cell engineering technologies are grad-
ually being developed to target the dynamic, compli-
cated TME and identify combinatory targets against 
the TME to address unmet clinical needs.
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