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Abstract

Alzheimer’s disease (AD) is a type of brain disease that affects a person’s ability to perform daily tasks. Modern 
neuroimaging techniques have made it possible to detect structural and functional changes in the brain that are 
linked to AD, and machine learning (ML)-based methods have been extensively developed to help physicians achieve 
fast and accurate imaging-based AD detection. One critical issue when deploying ML methods in clinical applications 
is the domain shift that exists between the training and test data, which may significantly attenuate a model’s 
performance. To resolve this issue, domain adaptation (DA) is needed to narrow the performance gap between 
data from domains with different distributions. The purpose of this review is to offer insight into the state of ML 
and DA research in the field of neuroimaging-based AD detection. The limitations of existing studies, as well as 
opportunities for future studies, are discussed with the hope that more investigations will be conducted in the 
future to optimize the clinical workflow for AD diagnosis and treatment.
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1. INTRODUCTION

Alzheimer’s disease (AD) is the most frequent cause of 
dementia among the elderly. AD is a neurologic dis-
order that affects patient memory and cognitive skills 
[1]. Based on the 2022 World Alzheimer Report, AD is 
among the 7 major causes of death globally and 12.7 
million people ≥ 65 years of age will be diagnosed with 
AD by 2050 [2]. A recent national cross-sectional survey 
showed that 15.07 million Chinese people ≥ 60 years of 
age have dementia, making AD the 5th leading cause of 
death in China (including 9.83 million with AD, 3.92 mil-
lion with vascular dementia, and 1.32 million with other 
forms of dementia). Additionally, according to national 
research, the annual cost of treating AD patients in 
China in 2015 was 167.74 billion USD, and the growing 
treatment expenditures are projected to reach 1.8 tril-
lion USD by 2050 [2, 3]. Although there are currently no 

cures for AD, various therapies have been used to delay 
the development of some symptoms and decrease the 
cognitive impact on patients, such as memory loss [4, 5]. 
Therefore, detecting AD in the early stages is a critical 
challenge [4, 6].

Numerous studies have been conducted to detect AD 
using neuroimaging methods, including magnetic reso-
nance imaging (MRI) [7-9] and positron emission tomog-
raphy (PET) [10, 11]. Nevertheless, it is both resource-in-
tensive and time-consuming to analyze the acquired 
brain images due to the amount and complexity of the 
data. To this end, computer-aided diagnosis systems 
have been built to help identify biomarkers automat-
ically [6]. The detection of AD has greatly benefited 
from machine learning (ML), which is particularly help-
ful when working with complicated and abundant data 
[12, 13]. The performance of classical ML algorithms 
may be limited by the hand-crafted feature extraction 
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process, which makes it difficult to comprehensively 
mine the available data [5]. In contrast, deep learning 
(DL) techniques, such as convolutional neural networks 
(CNNs), have generated impressive results in AD detec-
tion due to the ability to automatically extract massive 
features from the input data [5].

Despite the fact that DL performance in neuroim-
aging-based AD detection has been reported to be 
promising, obtaining sufficient labeled imaging data 
to train DL models can be expensive and challenging. 
Most learning-based methods presume that the train-
ing (source domain) and test (target domain) sets have 
the same distribution such that an algorithm that has 
been optimized on the training set can be successfully 
applied to the test set. Due to the domain shift, which 
is caused by various factors, including different scan-
ning machines, different imaging protocols, different 
sites (hospitals), or even different imaging modalities, 
this data distribution assumption does not always hold 
true in practice. Domain shift may result in poor gener-
alization performance when a model that has been suc-
cessfully trained on the source domain is deployed to 
an unseen target domain [14]. To resolve these issues, 
transfer learning (TL) methods can be employed; the 
aim of TL is to leverage large amounts of data (e.g., 
ImageNet) to address various challenges with a smaller 
dataset [6, 14, 15]. Domain adaptation (DA) is one type 
of TL. DA refers specifically to a learning technique 
that aims to improve model performance on a tar-
get domain by using the knowledge learned from a 
source domain. DA has drawn increasing attention as a 
potential solution for the domain shift issue for med-
ical image datasets because DA attempts to narrow 
the performance gap between different, but related 
domains [1, 6].

DA has an important role in developing robust and 
clinically applicable ML-based AD detection models. 
Therefore, the main objectives of this paper are to pro-
vide a comprehensive review of the existing literature 
on DA-related ML method development for detecting 
AD and to discuss potential future research directions 
in this field.

2. DIFFERENT STAGES OF AD

AD is a neurologic disease that influences brain activ-
ity and gradually damages brain cells, leading to mem-
ory loss, instability in daily life, and ultimately death 
[16]. AD is thought to be a complex illness with mul-
tiple risk factors, including increased age, genetic fac-
tors, head trauma, vascular illnesses, infections, and 
environmental variables (e.g., heavy and trace metals) 
[17, 18]. According to the National Institute on Aging-
Association Alzheimer’s (NIA-AA), the clinical phases 
of AD can be divided into three major stages: preclin-
ical AD; mild cognitive impairment (MCI) due to AD; 
and dementia due to AD, often known as Alzheimer’s 
dementia. Alzheimer’s dementia is further classified into 

three sub-stages: AD with mild dementia (mild AD); AD 
with moderate dementia (moderate AD); and AD with 
severe dementia (advanced AD) [19]. Different symp-
toms and time durations can be observed during the 
different AD stages (Figure 1).

3. CLINICAL TECHNIQUES TO DETECT AD

Prior to the discovery of distinctive plaques and tan-
gles in the brain under a microscope, AD could not be 
diagnosed until the patient had passed away. Currently, 
neurologists, neuroradiologists, and researchers can 
more accurately diagnose AD in a patient while they are 
still alive [20]. There are different techniques for diag-
nosing AD [21], as follows: (1) Clinical evaluation – The 
patient participates in a clinical interview, and a men-
tal and physical assessment is performed. Additionally, 
a medical history and mental state assessments, such 
as the Montreal Cognitive Assessment (MoCA), Mini-
Mental State Examination (MMSE), and Mental Status 
Examination, might be used. (2) Blood tests – Blood tests 
are frequently used to rule out disorders that may influ-
ence or be the source of cognitive symptoms. These tests 
normally include a blood cell count, as well as kidney 
and thyroid function tests, and vitamin B12 and folate 
levels. (3) Neuroimaging – Enhanced imaging tech-
niques are utilized to determine the signals that lead 
to a more accurate AD diagnosis. Various neuroimag-
ing modalities, such as PET and MRI, can be used when 
detecting AD (Figure 2) [22].

The clinical symptoms of AD, such as a deterioration 
in cognitive and functional levels with a prominent 
disturbance of memory and other mental skills, can be 
identified through clinical assessment and blood test 
results. These are general symptoms of different types of 
dementia, however, which makes it challenging to dif-
ferentiate between AD and other diagnoses. Therefore, 
histopathologic verification is still require for a definite 
identification. Neuroimaging, on the other hand, serves 
a critical role because the brain can be observed in a 
non-invasive manner. Neuroimaging can also assist in 
monitoring the development of disease and the impact 
of treatment [23, 24].

Nevertheless, neuroimaging data are commonly 
high-dimensional and complex, which poses difficulties 
during manual inspection. Computer-aided diagnosis 
systems are highly desired to help physicians achieve 
fast and accurate neuroimaging data analysis. ML tech-
niques have had great success in different fields in 
recent decades, including medical and neuroimaging 
fields [25-27], and the ability and accuracy of large-
scale complicated data analyses have been significantly 
improved due to recent developments in DL techniques 
[21, 28-31]. Essential obstacles, however, still prevent 
the direct and efficient application of DL algorithms in 
the clinical setting because there are few labeled med-
ical datasets because annotating medical datasets is a 
labor-intensive, costly, and time-consuming procedure 
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that requires neurologists, neuroradiologists, and other 
experts [5]. In addition, due to privacy issues, sharing 
data between different hospitals or medical centers is 
often not feasible [32]. It is thus not surprising that a 
DL model built on data collected from one center fails 
to achieve the expected performance when applied to 
data collected from another center. This phenomenon 
is known as the domain shift issue, which needs to be 
addressed to build large-scale clinically applicable DL 
models. DA is a type of TL that can successfully address 

the problems of domain distribution disparity and insuf-
ficient annotated data [33].

4. DOMAIN ADAPTATION FOR AD DETECTION

4.1 Machine learning for AD detection
Because building ML models requires large quantities of 
labeled training data, most existing studies have adopted 
TL methods to address the data limitation problem [33, 
34] (Table 1). Hon et al. [35] used the OASIS MRI brain 

Figure 1  |  Different stages of AD.

Figure 2  |  Representative MRI scans of patients without (a) and with AD (b), as well as representative PET scans of patients 
without (c) and with AD (d). These images are from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
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imaging dataset to retrain the VGG-16 and Inception V4 
classifiers to identify AD after pretraining on ImageNet, 
and Acharya et al. [36] selected TL methods to classify 
MRI images of AD patients into various categories. These 
models include retrained versions of VGG-16, ResNet-50, 
and AlexNet. Khan et al. [37] utilized ImageNet to pre-
train a VGG model, and then employed layer-wise TL 
to retrain the top layers after freezing the lower-level 
layers. Aderghal et al. [38] used weak Gaussian blurring 
and shift translation as an augmentation technique to 
increase the sample size, then fine-tuned the model to 
distinguish AD from MCI and cognitive normal (CN) indi-
viduals using diffusion tensor imaging (DTI) after train-
ing the model using structural MRI (sMRI) data. Wee et 
al. [39] proposed a spectral graph CNN (graph-CNN) to 
detect MCI and AD using the ADNI-2 dataset, and the 
best-performing models were retrained to distinguish 
between AD and MCI on the ADNI-1 and Asian data-
sets. Ebrahimi-Ghahnavieh et al. [40] detected AD in 3D 
MRI images by first training a 2D CNN using ImageNet, 
then fine-tuning the CNN with ADNI data to extract dis-
criminatory features from 2D MRI scans. A long short-
term memory (LSTM) module was utilized to integrate 
the spatial relationships among the MRI images during 
the classification process after receiving the features 
obtained from the 2D CNN. Ebrahimi et al. [41] pre-
trained a 2D CNN (ResNet-18) using ImageNet before 
moving the learnable parameters to a 3D ResNet-18 by 
repeatedly copying the 2D filters into the third dimen-
sion. This practice served as an alternative to slicing 3D 
MRI data into 2D slices for AD classification. Then, these 
parameters were optimized as the entire model was 
trained using the MRI dataset.

Furthermore, Zaabi et al. [42] developed a two-stage 
process in which images were partitioned into distinct 
blocks to capture the area of the brain containing the 
hippocampus using regions of interest (ROIs). Then, dur-
ing the second stage, Zaabi et al. [42] classified the MRI 
images using two classifiers (randomly initialized CNN 
and TL models). The TL model leveraged the features 
obtained from the ImageNet-pretrained AlexNet, and 
Zaabi et al. [42] reported that the TL model provided more 
accurate results. Abed et al. [43] used three DL models 
(VGG-19, Inception v3, and ResNet-50) to initially train 
on ImageNet and subsequently fine-tuned on ADNI data 
to identify AD, MCI, and CN from sMRI images. Because 
the hippocampus is the initial region of the brain to be 
impacted by AD, atrophy of the hippocampus can be 
recognized using sMRI and DTI by preserving the shape, 
but reversing the appearance. As a result, Aderghal  
et al. [44] used sMRI data to train a 2-D+model [45], which 
was then fine-tuned using DTI images. Aderghal et al. 
[44] also used the LeNet model, which was previously 
trained on Modified National Institute of Standards and  
Technology (MNIST) data before being applied to sMRI 
and DTI data. A Deep Transfer Ensemble (DTE) network 
was established by Tanveer et al. [5] to classify AD, DL, 
and TL, and ensemble learning was used by the DTE. 

The described network can be viewed as a collection of 
model snapshots that are created by training a model 
with a random set of hyper-parameters. Ashraf et al. 
[46] used a number of data augmentation approaches 
to expand and improve the dataset for feature extrac-
tion, and a number of DL models that have already been 
trained, such as spiking neural networks, DenseNet, 
MobileNet, SqueezeNet, ResNet, VGG, and GoogLeNet, 
were retrained to provide diagnoses for AD patients.

All of these existing studies reported promising AD 
detection performance when utilizing different neural 
networks. Nevertheless, the researchers ignored the 
issue of domain shift during model testing, which may 
lead to a deteriorated inference performance.

4.2 Domain adaptation for AD detection
DA methods have been developed to solve the domain 
shift issue (Table 1). In general, DA can be classified into 
traditional and deep DA. Traditional DA approaches typ-
ically rely on conventional ML models and human-engi-
neered imaging characteristics. Moradi et al. [47] devel-
oped a hierarchical technique to distinguish AD and MCI 
participants from healthy controls. Moradi et al. [47] 
performed sparse logistic regression to extract features 
from MRI scans, then used these features in a binary clas-
sifier trained with a semi-supervised learning strategy. 
Additionally, Moradi et al. [47] addressed the domain 
shift between the ADNI source and the CADDementia 
target domains using an unsupervised DA (UDA) tech-
nique. In addition, Hofer et al. [48] described two sce-
narios related to the domain shift issue: (1) cross-dataset 
learning; and (2) the use of pretrained classifiers. Hofer 
et al. [48] employed a classifier that combined an SVM 
with a Gaussian kernel radial basis function (RBF).

Instance weighting is a common strategy used in tra-
ditional DA to solve the domain shift issue by applying 
different weights to the source domain data depending 
on how close the source domain data are to the target 
data, in which higher weights are typically assigned to 
source examples that are more closely related to the tar-
get samples. Following instance weighting, the domain 
gap between the source and target domains is reduced 
by training a learning model on the reweighted source 
samples [33, 34, 49]. Wachinger et al. [50] explored the 
instance weighting technique to overcome the domain 
gap issue by reweighting the source samples. Wachinger 
et al. [50] then used multinomial regression with a 
mixed l1/l2 norm to detect AD, MCI, and CN in MRI data. 
Furthermore, Zhou et al. [51] selected features from the 
MR images that would help in the diagnosis of AD using 
the information gain technique, and used instance 
weighting to close the domain difference between the 
domains. After comparing numerous classifiers, Zhou 
et al. [51] concluded that the TrAdaboost procedure 
achieved the highest accuracy.

Another widely utilized method in traditional DA is 
feature transformation (alignment), which minimizes 
the distribution difference between the source and 

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
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target domains, while preserving the essential structure 
of the original data by converting the source and target 
instances from the corresponding feature representa-
tion spaces to a shared feature space. A model can 
then be applied to the new feature space, which is less 
influenced by the domain gap [33, 49]. To distinguish 
between MCI-converters and -non-converters, Cheng  
et al. [52] presented a multimodal manifold-regularized 
TL (M2TL) technique to minimize the differences 
between the source and target domains. Examples from 
both domains were first chosen using M2TL-based sam-
ple selection, then the kernel-based maximum mean dis-
crepancy (MMD) distance was used. Finally, a M2TL was 
created by combining MMD and a manifold regulariza-
tion function with the sparse least squares classification 
algorithm; however, this strategy has the disadvan-
tage of not leveraging feature selection. Cheng et al. 
[52] further suggested a technique (the domain-trans-
fer learning approach [domain transfer SVM]), which 
involves domain transfer feature selection (DTFS) and 
domain transfer sample selection (DTSS). DTFS attempts 
to choose features (brain areas) from the source and 
target domains that are related to AD, and DTSS trans-
fers the data samples from the original feature space 
to the kernel space using the kernel learning method. 
Then, multi-task least absolute shrinkage and the selec-
tion operator (LASSO) are used for sample selection. 
Finally, they constructed a domain transfer support vec-
tor machine (DTSVM) to distinguish MC-converters from 
MCI-non-converters [53]. Guerrero et al. [54] attempted 
to integrate various feature spaces composed of mul-
tilevel relevant intensity characteristics acquired from 
images at 1.5T and 3T by presuming that images located 
in different feature subspaces adhere to the overall 
manifold framework, and these various spaces were 
joined via manifold alignment. A joint manifold was 
optimized on ROIs created by sparse regression and 
multilevel variable selection. Guerrero et al. [54] claimed 
that their method was the first to categorize the entire 
dataset by combining the intensity features of 1.5T and 
3T MRI images from ADNI-1, ADNI-GO, and ADNI-2 
into a unified manifold; however, the disadvantage of 
this method is the assumption that each feature space 
has a unique and ideal low-dimensional embedding. 
Problems may arise if there are significant differences 
in these embeddings. To reduce the gap between vari-
ous datasets and increase the classification performance 
with very little training data, Li et al. [55] suggested a 
successful strategy. In the feature space, different func-
tional MRI (fMRI) data sources have different sample 
distributions. According to the Li et al. [55] method, 
features from two distinct domains that were dispersed 
throughout two feature spaces were first extracted and 
selected, then using the modified subspace alignment 
method described by Fernando et al. [56], the example 
values from the two different feature spaces were then 
matched into a single subspace. Samples from the sin-
gle subspace were utilized to create the classifier for AD 

prediction. In addition, van Opbroek et al. [57] intro-
duced a feature-space transformation (FST) mechanism 
for hippocampus segmentation to address variations in 
feature representations across source and target data-
sets. To facilitate consistency between both the source 
and target feature spaces, the approach utilized unla-
beled source and target examples, which are sometimes 
known as source-target pairs. Then, median transforma-
tion was used to map the training data from the source 
feature space to the target feature space. If the data 
do not contain images of source-target pairs, however, 
this technique will not be effective. Wang et al. [58] 
used joint distribution adaption (JDA) to close the gap 
between the source and target domains. Data from the 
two domains were first mapped into a more consistent 
feature space before assigning further weights to the 
target domain samples. Then, a classifier was applied to 
detect AD in fMRI scans using data from the new con-
sistent feature space.

Deep DA methods integrate deep network features, 
such as the generative adversarial network (GAN) with 
adaptation techniques [33]. Sinha et al. [59] adopted an 
attention-guided GAN [60] to harmonize images from 
three publicly available brain MRI datasets to generate 
fake images. Then, a 2D AlexNet CNN model was used to 
predict AD. Moreover, a novel DA paradigm was created 
by Wang et al. [61] to address the domain shift issue. In 
one instance a pretrained model was fine-tuned using 
a subgroup of data, such as age range, race, or scan-
ner type, with a weight-constraint penalty term and TL. 
Wang et al. [61] modified a model trained in the source 
to the target in a multi-study using an auxiliary task, 
such as age regression or gender classification, which 
helps find the imaging features of the domain shift. 
The feature-extractor was retrained on the source task, 
and the main task-related variables were regularized to 
transfer the model to the target data.

The studies listed above only used one source and one 
target domain; however, several studies have focused on 
sharing data among different medical institutions (e.g., 
using more than one source domain), while preserving 
patient privacy [62]. To fully utilize the collected hetero-
geneous data for AD detection, Cheng et al. [63] estab-
lished a multi-domain TL (MDTL) technique. Two compo-
nents were crucial for the constructed MDTL structure: 
1) a model known as the multi-domain transfer feature 
selection (MDTFS) mechanism, which selects the most 
beneficial feature subset from multi-domain data; and 
2) a multi-domain transfer classification (MDTC) tech-
nique that identifies the presence of the disease to 
identify early-onset AD. Guan et al. [14] proposed a mul-
ti-source optimal transport (MSOT) approach for using 
data from multiple MRI facilities. Specifically, they first 
projected the data from several source domains to the 
target domain using optimal transport in an unsuper-
vised manner; the Wasserstein distance was then used 
to match each source domain to its target domain, and 
the similarity was used to calculate the source domain 



Review

Radiology 
Science

Radiology Science 2023, Volume 2, Issue 1, p. 10-21      17 
© 2023 The Authors. Attribution-NonCommercial-NoDerivatives 4.0 International

weight. An SVM classifier was subsequently trained 
using the projected data from each source domain, and 
to forecast the target sample labels, a weighted voting 
ensemble learning strategy was used.

The current DA approaches have demonstrated con-
siderable improvements in the diagnosis of AD disease 
using a variety of modalities. Nevertheless, there are still 
some general shortcomings to these methods, which 
will be discussed in Section 5.

5. DISCUSSION AND OUTLOOK

Neuroimaging is a useful method for AD detection; 
however, regardless of the advantages of modern 
imaging modalities, interpreting the high-dimensional, 
complex, and probably noisy data puts much pressure 
on the physicians who inspect the images. To this end, 
automated ML-based methods have been extensively 
investigated to help achieve fast and accurate image 
inspection, and the detection of AD from neuroimaging 
data has been successfully accomplished using classical 
ML and feed-forward neural networks. Because exist-
ing DL algorithms build deep structures from scratch, 
DL algorithms have various disadvantages, including 
the requirement for a large training dataset, there-
fore developing TL strategies is one major solution [37, 
64]. The idea behind TL is to utilize knowledge from a 
source domain to aid representation learning in a target 
domain; however, the following restrictions affect the 
feasibility of most current TL approaches: first, most TL 
approaches necessitate a significant amount of labeled 
target domain data to fine-tune the model, but there 
are generally limited labeled target domain data avail-
able; and second, most TL techniques concentrate on 
pretraining networks using massive natural image data-
bases (e.g., ImageNet), which have characteristics that 
are largely different from the databased found in med-
ical images. Additionally, fine-tuning models on the tar-
get data may lead to overfitting if there is a significant 
domain difference between the source and the target 
domains [49, 60].

DA is a type of TL that is particularly targeted at 
decreasing ML model performance gaps between 
domains with different data distribution patterns. 
Nevertheless, existing DA methods for AD detection 
has drawbacks. For example, the instance weighting 
method may produce very low weights for some sam-
ples. Most source samples are assigned lower weights 
when there is a significant cross-domain difference, 
which results in a smaller number of useful training 
instances [49, 58]. A variety of methods have attempted 
to align the source and target distributions [56], but 
require extremely precise data assumptions or the 
computational complexity is unmanageable for huge 
datasets. Some techniques rely on subspace-based rep-
resentations and are considerably less expensive, but 
the reliance on a basic linear assumption is too restric-
tive for situations in which there are severe domain 
differences [49, 65]. As a result, further investigation is 
needed to develop more effective DA methods for AD 
detection. Some recommendations are discussed in the 
remainder of this section.

5.1 Multi-modality images
Various neuroimaging tools are available for AD detec-
tion (Figure 2); however, recent research has concen-
trated on a single modality (Figure 3a), such as MRI, 
which is widely used in medical facilities for the diag-
nosis and prognosis of AD (Figure 3b). Multi-modal 
neuroimaging enables the discovery of complex neuro-
degenerative conditions that develop during the pro-
gression of AD [49]. Additional research that adopts 
multi-modal neuroimaging data is required to compre-
hensively understand the disease development pattern. 
A significant issue with using multi-modal data is that 
not every participant participates in all of the different 
imaging processes. For example, amyloid-PET imaging is 
expensive and not affordable by all participants. As a 
result, combining sparse or missing datasets is a critical 
challenge in multi-modal data analysis that needs to be 
investigated further [29, 66].

Figure 3  |  Percentages of reviewed studies utilizing single, cross, and multi-modal imaging data (a) and utilizing the respective 
imaging modalities (b).
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5.2 Unsupervised DA
DL has demonstrated an outstanding ability to detect 
AD by utilizing large quantities of labeled training 
images, but manually labeling medical images is diffi-
cult and demands professional skills and knowledge 
[67]. Utilization of TL, which transmits knowledge from 
the annotated source domain to the unlabeled target 
domain, reduces the requirement for numerous labeled 
images. Nevertheless, if the distribution of the anno-
tated samples varies from the distribution of the unlabe-
led samples, the model will perform poorly [65, 68]. This 
problem can be solved via UDA, the primary purpose of 
which is to reduce the gap in distribution among labe-
led source domains and unlabeled target domains [67, 
69]. Although UDA performs well on a variety of med-
ical image tasks [67-69], few studies have utilized UDA 
to identify AD [47, 60]. Therefore, additional research 
regarding the use of UDA to detect AD is anticipated.

5.3 Multi-source multi-target DA
Current DA techniques typically concentrate on sin-
gle-source domain adaptation, but in application sce-
narios there may be numerous source domains. For 
example, classification studies combine information 
from various imaging modalities [34, 65] or merge imag-
ing information with clinical or genomics data [30]. It 
is also beneficial to transfer a model to various target 
domains. Therefore, future research is necessary because 
multi-source/multi-target DA in AD detection has not 
been extensively researched [34, 70, 71]. Multi-site med-
ical data transmission is also challenging to manage 
from a legal perspective due to the many variations in 
the definition of patient confidentiality and the legal 
framework around its implementation across different 
areas [62, 72]. Federated learning (FL), an ML strategy, 
sends model updates rather than actual data to main-
tain data privacy. FL trains models by utilizing decen-
tralized clients under server management. Therefore, FL 
may be more suitable for this task. Due to the domain 
shift issue, models trained using FL may still have trou-
ble generalizing to a new domain. Therefore, it is crucial 
to create DA algorithms for FL [73, 74].

6. CONCLUSION

AD is among the leading causes of death, thus the 
accurate detection of early-stage AD is a primary con-
cern. Neuroimaging provides detailed information on 
changes in brain structures, but computer-based strat-
egies are needed to help neuroradiologists achieve fast 
and accurate neuroimaging-based AD detection. ML/
DL algorithms trained on one data source may perform 
badly when evaluated on data from a different source 
due to a domain shift. Model adaptation across data 
with different distributions is therefore essential. This 
paper reviewed the existing studies that have addressed 
ML-based, and specifically DA-based methods developed 
to detect AD using neuroimaging data. The purpose of 

this review was to provide new researchers in the rele-
vant fields with a conceptual description of the problem 
as well as information about recent advances. The lim-
itations of the existing studies were also discussed and 
possible research directions were provided.
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