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Abstract

Background: The word ‘pandemic’ conjures dystopian images of bodies stacked in the streets and societies on the
brink of collapse. Despite this frightening picture, denialism and noncompliance with public health measures are
common in the historical record, for example during the 1918 Influenza pandemic or the 2015 Ebola epidemic. The
unique characteristics of SARS-CoV-2—its high basic reproduction number (R0), time-limited natural immunity and
considerable potential for asymptomatic spread—exacerbate the public health repercussions of noncompliance
with interventions (such as vaccines and masks) to limit disease transmission. Our work explores the rationality and
impact of noncompliance with measures aimed at limiting the spread of SARS-CoV-2.

Methods: In this work, we used game theory to explore when noncompliance confers a perceived benefit to
individuals. We then used epidemiological modeling to predict the impact of noncompliance on control of SARS-
CoV-2, demonstrating that the presence of a noncompliant subpopulation prevents suppression of disease spread.

Results: Our modeling demonstrates that noncompliance is a Nash equilibrium under a broad set of conditions
and that the existence of a noncompliant population can result in extensive endemic disease in the long-term after
a return to pre-pandemic social and economic activity. Endemic disease poses a threat for both compliant and
noncompliant individuals; all community members are protected if complete suppression is achieved, which is only
possible with a high degree of compliance. For interventions that are highly effective at preventing disease spread,
however, the consequences of noncompliance are borne disproportionately by noncompliant individuals.

Conclusions: In sum, our work demonstrates the limits of free-market approaches to compliance with disease
control measures during a pandemic. The act of noncompliance with disease intervention measures creates a
negative externality, rendering suppression of SARS-CoV-2 spread ineffective. Our work underscores the importance
of developing effective strategies for prophylaxis through public health measures aimed at complete suppression
and the need to focus on compliance at a population level.
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Background
As we enter the unfamiliar territory of the worst global
pandemic in a century, the worldwide emergence of
noncompliance with public health measures aimed at
limiting the spread of SARS-CoV-2 is not as surprising
as it may seem at first blush [1, 2]. During the 1918
Influenza pandemic, for example, resistance to public
health measures aimed at reducing the spread of disease
manifested at the individual level, leading to violence [3]
and stiff punishments for “mask slackers” [4, 5]. Anti-
mask protesters led large demonstrations [6], and city
councils questioned the value of mask ordinances [7, 8]
with emotionally charged language: “under no circum-
stances will I be muzzled like a hydrophobic dog” [9].
The phrasing may be dated, but the sentiment echoes
precisely across a century [10].
For COVID-19, a number of features of the disease fa-

cilitate noncompliance with disease control measures
such as masking and vaccination. Hospitalization and
death happen away from the public eye, and our chan-
ging understanding of the mechanism of transmission,
the risk of mortality and the long-term consequences of
the disease have favored the spread of misinformation.
The spread of confusion and misinformation has been a
common feature for other novel pathogen-induced pan-
demics such as Ebola [1, 11, 12] and the 1918 Flu [13].
While the existence of pandemic denialism was easy to
anticipate [14], the unique characteristics of COVID-19
amplify its effect. Studies suggest that asymptomatic or
presymptomatic patients account for up to 40% of
SARS-CoV-2 transmission [15], severely limiting the
utility of more traditional and intuitive disease control
measures such as symptomatic isolation [16]. The high
reproductive number (R0) of SARS-CoV-2 (the average
number of individuals who contract a contagious disease
from one infected individual, which was reported to be
5.7 in the early days of the pandemic in Wuhan [17])
creates the potential for explosive growth in situations
where the virus has not been completely eradicated, as
has been demonstrated by a massive second wave in
many European countries [18, 19]. Making matters
worse, estimates for natural immunity as a consequence
of SARS-CoV-2 infection range from 6 to 24 months
[20–22], creating the potential for multiple waves of
disease in the short term.
Thus, the unique characteristics of COVID-19 raise

the possibility that noncompliance with public health
measures may create conditions that make disease con-
trol in the short term impossible or prevent any return
to pre-pandemic lifestyles in the long run. With this in
mind, we asked three questions: First, in the specific case
of COVID-19, are there circumstances that lead to a
perceived benefit to noncompliance with public health
measures for a substantial portion of the population?

Second, what is the impact of noncompliance on the at-
tainability of suppression of SARS-CoV-2 spread? Third,
what is the magnitude of the negative externality (a cost
incurred by them that is not of their choosing) created
for the compliant population as a result of noncompli-
ance of others?
We approached the first question from the perspective

of game theory, which has previously been applied to
decision-making around vaccine uptake [23]. Our
approach involved building a mathematical model of the
strategic interaction between compliers and non-
compliers for a given (nonpharmaceutical or biomedical)
intervention aimed at controlling SARS-CoV-2 spread.
The approach weighs the perceived cost of complying
with an intervention against the perceived benefit to
determine under what conditions individuals acting in
their own self-interest will choose to comply. A number
of studies have previously examined noncompliance with
measures to control SARS-CoV-2 spread through a
social-sciences lens, exploring social and psychological
risk factors associated with this behavior. These studies,
from a range of different countries, have linked noncom-
pliance to Dark Triad traits (i.e., Machiavellianism,
Psychopathy Factor 1, and narcissistic rivalry [24]),
antisocial behaviors [25], higher levels of impulsivity [26]
and a prior record of delinquent behaviors [27]. A
positive, rather than normative, framing of the question
involves exploring the set of conditions for which the
perceived benefit of noncompliance to the individual is
simply greater than the perceived benefit of compliance.
This allows us to examine the problem of compliance
from the limited perspective of individuals optimizing
for their own benefit without accounting for the
common good, particularly relevant in the context of
arguments based on personal liberty being used as a
justification for noncompliance [28].
For the next two questions, we used a Susceptible-Ex-

posed-Infected-Recovered-Susceptible (SEIRS) epidemio-
logical modeling framework with a duration of immunity
ranging from 6 to 24 months to explore the range of levels
of compliance and intervention efficacy required for disease
suppression. Our intent in this study was to explore a
possible link between the free optimization of individuals’
outcomes as a result of noncompliance, the externalities
generated by those choices, and the implications for
epidemic control in the short and long term.

Methods
Game theory modeling of compliance with interventions
aimed at limiting SARS-CoV-2 spread
For the purposes of this work, we defined an “interven-
tion” as being a public health measure that reduces the
transmission of SARS-CoV-2. This may be a nonphar-
maceutical intervention, such as masks, or a biomedical
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intervention, such as a vaccine. Compliance with an
intervention is defined as a binary choice. An individual
can choose whether or not to comply with an interven-
tion based on the perceived costs and benefits of the
intervention. We modeled this choice using a game
theoretic framework, which compares the perceived cost
of compliance (reduction of quality of life resulting from
the intervention) in relation to perceived cost of infection
(risk-weighted morbidity/mortality burden) to the individ-
ual. Individuals derive a benefit or cost (i.e., a payoff) from
interactions with other individuals in the population, who
can also either be compliers or noncompliers.
We sought to determine the conditions under which

noncompliance is the Nash equilibrium, or optimal be-
havior strategy for individuals seeking to maximize their
own payoff. In a Nash equilibrium, the expected payoff
to noncompliers is higher than the payoff to compliers
when interacting with any other individual in the popu-
lation [29].
For this two-strategy “game”, the payoffs to compliers

and noncompliers are given in Table 1, where q is the
cost of the intervention, αi is the fraction of infected
individuals of type i, and mi is the perceived cost of in-
fection for type i individuals, where i can either be u
(noncompliers) or v (compliers). The cost mi is the per-
ceived risk of a negative health outcome given exposure
to an infected individual. Other parameter definitions
are given in Table 2. As in the SEIRS model, the efficacy
of the intervention in protecting the individual from get-
ting infected (b) is assumed equal to the efficacy in pre-
venting transmission (c) (i.e. b = c).
Noncompliance is a Nash equilibrium if and only if

both of the following conditions are met:

−αumu > −q−αumvb

−αvmuc > −q−αvmvb:

Or, equivalently

αu <
q

ðmu−mvbÞ

cαv <
q

ðmu−mvbÞ :

Since noncompliers are much more likely to be infected
than compliers, αu > cαv. Therefore, meeting the first con-
dition alone (noncompliers receive a greater payoff than
compliers when interacting with other noncompliers) is
sufficient for noncompliance to be a Nash equilibrium.

SEIRS model of SARS-CoV-2 spread
To support predictions of short- and long-term outcomes
for the COVID-19 pandemic, we built an SEIRS ordinary
differential equations (ODE) model to account for disease
spread, waning immunity in the recovered population,
and the acceptance of a vaccine or non-pharmaceutical
intervention (NPI) in a fraction of the population. The
model consists of two parallel sets of SEIR compartments
representing the vaccinated or NPI-compliant (“compli-
ant”) and unvaccinated or NPI-noncompliant (“noncom-
pliant”) populations. The compliant population has a
reduced risk of infection which is conferred by the vaccine
or NPI (“protective efficacy”). The compliant population
may also have a reduced risk of transmission to others
upon infection resulting from physiological or behavioral
changes (“transmission reduction.”) All compartments
were assumed to be well-mixed, meaning that compliant
and noncompliant individuals are in contact within and
between groups. Vaccination or NPI compliance-based
reductions in susceptibility, transmissibility, or contact
rate were assumed to be time-invariant, reflecting the
most optimistic case for disease control. Similarly, individ-
uals do not move between the compliant and noncompli-
ant compartments. Model equations are summarized
below:

dSv
dt

¼ −βbSv cIv þ Iuð Þ þ δRv þ fμ−λSv

dEv

dt
¼ −αEv þ βbSv cIv þ Iuð Þ−λEv

Table 1 Payoff matrix for compliers/noncompliers

Noncompliant
interaction partner

Compliant
interaction partner

Noncomplier payoff -αumu -αvmuc

Complier payoff -q - αumvb -q - αvmvbc

αi: fraction of infected individuals of type i, mi: the perceived risk of a negative
health outcome given exposure to an infected individual, where i can either
be u (noncompliers) or v (compliers), q: the perceived cost of the intervention.
All other parameter definitions are given in Table 2

Table 2 Model parameters for SEIRS model

Parameter Symbol Value Source

Latency period 1/ α 3 days [30]

Reproductive number R0 5.7 individuals [17]

Infectious period 1/ γ 10 days [31]

Natural immunity duration 1/ δ 18months [32]

Infection fatality rate σ 0.68% [33]

Population birth rate μ 1% annually [34]

Population death rate λ 0.9% annually [35]

Fraction compliant f Variable

Protective efficacy 1-b Variable

Transmission reduction 1-c Variable

All parameters defining the ODE-based SEIRS model. In this analysis, the
fraction compliant, protective efficacy against infection, and reduction in
transmission are treated as independent variables
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dIv
dt

¼ −γIv þ αEv−λIv

dRv

dt
¼ γIv 1−σð Þ−δRv−λRv

dSu
dt

¼ −βSu cIv þ Iuð Þ þ δRu þ 1− fð Þμ−λSu

dEu

dt
¼ −αEu þ βSu cIv þ Iuð Þ−λEu

dIu
dt

¼ −γIu þ αEu−λIu

dRu

dt
¼ γIu 1−σð Þ−δRu−λRu

Where S represents the susceptible population, E
the exposed population, I the infectious population,
and R the recovered population. Subscript v repre-
sents the vaccinated or compliant sub-population,
while subscript u represents the unvaccinated or non-
compliant sub-population. Model parameters are summa-
rized in Table 2.
According to the CDC, the R0 for SARS-CoV-2 under

pre-pandemic social and economic conditions is esti-
mated to be approximately 5.7 [17]. For the purpose of
this study, an R0 of 5.7 is used to represent epidemio-
logical conditions under a theoretical full return to pre-
pandemic activity. The contact rate β is derived from the
relationship between R0 and the infectious period:

β ¼ γR0

In this “normal” scenario, disease reduction interven-
tions reduce the compliant population’s infection rate by
the factor b, which represents the intervention’s protect-
ive efficacy, and the compliant population’s transmission
rate by the factor c, representing the intervention’s re-
duction in transmissibility. For simplicity, the reduction
of transmission was assumed to be equivalent to the
protective efficacy (reduction of susceptibility) of each
intervention. This is an optimistic assumption; in some
cases, an intervention may provide little or no reduction
in transmission in compliant infected individuals.
The model’s initial conditions are set to approximate

current United States disease prevalence and seropreva-
lence (as of September 2020) [36]:

I t ¼ 0ð Þ ¼ 0:2%

R t ¼ 0ð Þ ¼ 8%

Our model lacks a seasonal component for SARS-CoV-
2 transmission, as such associations have been conjectured
[37] but not proven, and it also assumes a 18-month dur-
ation of natural immunity, as an optimistic estimate based
on the duration of antibody responses currently reported

[20–22]. The disease-preventing interventions and return
to normalcy (which would correspond to a return to the
pre-pandemic R0 of 5.7) are assumed to occur at the
beginning of the simulation interval.

Compliance sweeps
To gauge the impact of NPI or vaccine compliance on
population outcomes, we varied the compliant fraction
under a series of simulated vaccine or NPI deployment
schemes with varying degrees of protective efficacy. The
model allows tracking of outcomes for the population as
a whole and for the compliant and noncompliant sub-
populations.

Results
Structural incentives for noncompliance with
interventions aimed at controlling SARS-CoV-2 spread
In Fig. 1, we modeled the decision to comply with
public health measures in terms of its perceived
short-term impact to individuals. In game theory, a
Nash equilibrium is a strategy which has a higher
payoff for the individual than all other possible strat-
egies (“no regrets”) [29]. Individuals using a strategy
that is a Nash equilibrium are unable to improve
their outcome by switching strategies. Strikingly, for a
large region of parameter space in this model, non-
compliance is a Nash equilibrium. Even so, one can
make the case that, using realistic estimates for risk
of infection and risk of adverse outcomes given
infection, compliance would still be a rational choice
for the vast majority of the population. For example,
for an intervention that is 50% effective at reducing
the risk of infection, when 2% of individuals are in-
fected, compliance is a Nash equilibrium at a 1% rela-
tive cost (ratio of the loss of quality of life associated
with the intervention over the cost of infection in
terms of risk of mortality, morbidity, and disability).
While the decision to comply is determined by the
perceived cost of infection and the perceived cost of
intervention, the actual costs may be very different.
The cost of wearing a mask, for example, is likely to
be much less than the risk-weighted cost of death or
disability due to COVID-19 (see Tables S1, S2 for a
more detailed analysis).

Failure to suppress SARS-CoV-2 spread results in waves of
transmission
As shown in Fig. 2, insufficient reduction in SARS-CoV-
2 transmission allows the disease to persist upon a rapid
return to pre-pandemic activity and spread in multiple
waves over time. The model does not account for
changes in behavior or environmental factors over time,
so these oscillations in transmission are caused by a
predator-prey dynamic within the SEIRS system rather
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Fig. 1 Noncompliance is a Nash equilibrium when infection rates are low or prevention is costly or ineffective. Intervention efficacy and intervention
cost conditions for which noncompliance is a Nash equilibrium (red) or not a Nash equilibrium (blue) if the disease is present in 2% of individuals in
the population. Intervention cost relative to infection cost is defined as the ratio of intervention cost to risk-weighted infection cost

Fig. 2 Failure to eradicate SARS-CoV-2 results in waves of disease upon rapid return to pre-pandemic activity. Panels a and d represent the
fraction of the population, including both compliant and noncompliant individuals, that is susceptible, exposed, infectious, and recovered
populations over time after a return to pre-pandemic conditions under (a-c) 95% compliance or (d-f) 50% compliance with a 50% effective
intervention. Panels b and e demonstrate the fraction of compliant and noncompliant individuals who are infected over time. Panels c and f
demonstrate the cumulative hazard ratio for infection in noncompliant (NC) versus compliant (C) individuals
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than triggered by external factors. This dynamic is
driven by the time-variant availability of susceptible
hosts as immunity wanes in individuals who have
recovered from COVID-19. Panels 2a-c represent a
high compliance (95%) scenario with a 50% effective
intervention. The efficacy of an intervention describes
the fraction of possible transmission events it pre-
vents. In this case, the oscillations and variability in
risk for the compliant population are relatively small
because the intervention serves to dampen the oscilla-
tions in transmission rate. However, in panels 2d-f,
representing a low compliance (50%) scenario with a
50% effective intervention, the oscillatory pattern is
much more pronounced and risk to the compliant
population is variable over time (Fig. 2f). Additionally,
the cumulative risk to the compliant population rela-
tive to the noncompliant population is higher when
more of the population is noncompliant (Fig. 2c, f).

Near-term suppression of SARS-CoV-2 spread requires a
high degree of compliance
In the short term, to suppress SARS-CoV-2 transmission
while returning to pre-pandemic social and economic
activity, an intervention with a high degree of efficacy
and compliance is required (Fig. 3). Although effective
suppression can be achieved with an intervention with
as low as 65% efficacy, at least 80% compliance is
required for even the most effective interventions. The
predicted number of cases in the next year span three
orders of magnitude, from less than one million cases to
hundreds of millions of cases, depending on the effect-
iveness and the degree of compliance with transmission
reduction interventions.

If SARS-CoV-2 becomes endemic, steady-state yearly
spread depends on population compliance
If immunity to SARS-CoV-2 by natural infection is not
life-long, as suggested by many studies [20–22], and if
effective interventions are not undertaken at a large
scale, the virus will become endemic. As shown in Fig. 4,
this means that in the long term, SARS-CoV-2 will reach
a steady-state prevalence in the population. For a 50%
effective intervention, the disease will become endemic
even if the entire population complies with the interven-
tion. As expected, the benefit of compliance for an indi-
vidual is smaller for a 50% effective intervention (Fig. 4a)
relative to a 90% effective intervention (Fig. 4b). The full
compliance scenario for the 90% effective intervention is
an example of disease suppression.

Failure to suppress SARS-CoV-2 spread in the long-term
results in persistent high disease burden
If complete suppression of disease is not achieved, a high
annual disease burden persists indefinitely in most
scenarios (Fig. 5). The marginal cost in terms of yearly
cases for failures to suppress disease is highest for near-
success cases and is steeply dependent on the degree of
compliance (Fig. S1, see Supplementary Figures). This
suggests that the best strategic objective for a stable
return to pre-pandemic activity is complete suppression
of SARS-CoV-2 spread.

Complete suppression of SARS-CoV-2 spread requires
high compliance and at least 60% efficacy
In Fig. 5, the steady-state yearly caseload of COVID-19
is plotted against the fraction of the population complying
with a variety of theoretical interventions. For interventions
with greater than 60% efficacy, complete suppression can

Fig. 3 Short-term suppression of COVID-19 requires a high degree of compliance with a highly effective measure. Total US SARS-CoV-2 infections
in the next year under interventions with varying efficacy and compliance are shown in panel (a). Panel b shows the black box on panel (a)
expanded. Total US infections are displayed on a log scale in panel (b)
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be achieved if compliance is above a certain high threshold,
depending on the intervention’s efficacy. For example, with
an intervention with 70% efficacy, complete suppression can
be achieved with at least 92% compliance. Increasingly effect-
ive interventions reduce the compliance threshold for
complete suppression and reduce the yearly caseload in en-
demic scenarios. However, the impact of progressive im-
provements in efficacy shrinks as 100% efficacy is
approached. Even for a 99% effective vaccine, greater than
80% compliance is required to achieve complete suppression
of SARS-CoV-2. This suggests that a high degree of

intervention efficacy cannot compensate for the epidemio-
logical impact of a large noncompliant population.
Additionally, we note that the duration of immunity

does not impact these compliance thresholds for
achieving complete suppression (Fig. S3, see Supple-
mentary Figures). However, the duration of immunity
does impact the expected yearly disease burden. To
further demonstrate this point, Figs. 2, 3, 4, 5, and S2
were reimplemented in the additional materials as-
suming a shorter (6-month) or longer (36-month)
duration of immunity (Figs. S5-S14).

Fig. 4 Steady-state individual risk is impacted by individual and population compliance. Cumulative average number of times infected (including
reinfections) per individual under a 50% (a) or 90% (b) effective intervention. Three scenarios are simulated: full noncompliance, full compliance,
and 70% compliance (with outcomes for compliant and noncompliant individuals shown)

Fig. 5 Population-level impact of interventions is highly dependent on compliance. Yearly US cases at steady-state under interventions with
varying degrees of efficacy and compliance
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If complete suppression is not achieved, compliant
populations remain at risk without a highly effective
vaccine
Although improvements in vaccine or intervention effi-
cacy face diminishing returns on the population level and
cannot fully compensate for poor compliance, compliant
individuals stand to gain from even small improvements
in efficacy (Fig. 6). This means that although the compli-
ance threshold required for complete suppression may not
shift substantially as efficacy improves, the incentive for
individuals to comply or seek vaccination on a voluntary
basis will increase as the efficacy increases.

Discussion
Our work supports the case that noncompliance is
embedded in human nature, as individuals optimizing
their own self-interest can justify their actions in terms
of their own perceived cost-benefit.
Individuals may perceive noncompliance as favorable

for a number of reasons [38, 39]. They may view their
own risk of being infected as lower than average (the
optimism bias [40], which has been documented as a
risk factor in predicting noncompliance for SARS-CoV-2
spread mitigation measures [41]), or they may view their
own risk of adverse outcomes as a result of infection as
being lower than average [27]. Globally, the public
health messaging around noncompliance has focused on
the low risk of death for younger individuals [42–44]
and has invoked the imagery of “shielding” highly vul-
nerable populations from the disease [45] as an altruistic
motive [46]. To the extent that many countries in the
Americas and Western Europe at present are facing
uncontrolled disease spread, it is likely that invoking
altruism may not be the most effective means of disease
control. Underestimating the risk of infection may also

lead to individuals believing that noncompliance is the
better choice.
The interplay between risk perception and compliance

is complex, and fear may also play a paradoxical role in
noncompliance. A number of studies have demonstrated
a link between emotions and cognitive assessment of
risk. In particular, high levels of fear coupled with a low
sense of efficacy may create a defensive response in indi-
viduals who then proceed to dismiss the risk (“we’re all
going to die anyway”) [47]. Studies have also shown that
psychological affect plays a role in risk perception in in-
dividuals who are less comfortable and/or experienced
interpreting probability [48, 49].
Regardless of the underlying causes, a Nash equilibrium

of noncompliance creates a Tragedy of the Commons
situation, where individuals acting according to their own
self-interest create outcomes that are suboptimal for the
common good by spoiling the shared resource through
their collective actions. The term Tragedy of the Commons
dates back to an influential article written over 50 years
ago [50], which in turn was inspired by a nineteenth-
century essay describing grazing practices of farmers.
Tragedy of the Commons situations are indeed common
in the fields of economics, politics, environmental policy
and sociology. What makes Tragedy of the Commons situ-
ations particularly intractable is that it usually only takes a
small proportion of individuals optimizing for their own
self-interest to create devastating externalities for the rest
of the population. This behavior underscores the limita-
tions of the laissez-faire, individualistic approach to disease
control during a pandemic. A laissez-faire approach is
often said to lead to the best outcomes for the population
overall as part of utilitarian economic theory [51], as put
forward by John Stuart Mill. However such an approach
actually violates the standard originally laid out by Mill by

Fig. 6 More effective interventions provide greater benefit to compliant individuals if disease spread persists. Reduction in yearly likelihood of
infection for compliant individuals as a function of the overall fraction of the population in compliance and the efficacy of the intervention
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which a person’s liberty may be restricted: “The only
purpose for which power can rightfully be exercised over
any member of a civilized community, against his will, is to
prevent harm to others” [52].
Given the ubiquity of the problem, some public policy

solutions can be found that have close analogies to suc-
cessful interventions in other spheres of human activity.
First, public health messaging that seeks to alter the
Nash equilibrium at an individual level are worth explor-
ing. In individualistic societies, this may be accomplished
by de-emphasizing altruism and focusing on the individ-
ual cost-benefit. One way this may be achieved is by
emphasizing the long-term morbidity costs (such as
cryptic heart, lung, brain and kidney damage) as have
been documented to occur in even asymptomatic
COVID-19 patients in an age-independent manner
[53–55]. An additional approach is to provide an accur-
ate and current picture of the risk of contracting the
disease. Second, public health policy that creates costs
for noncompliers may serve to shift some of the exter-
nalities back on to the originator (as was the case with
mask ordinances during the 1918 Flu [4] and fines
imposed for noncompliance with measures aimed at
limiting SARS-CoV-2 spread in some countries [56,
57]). Third, public health interventions should engage
at the level of the community. Public health and com-
munications experts could test a number of different
messages that underscore the downside of negative
externality-creating behavior at a societal level. Some of
these approaches have been used previously in the con-
text of vaccine acceptance [58]. It is worth noting that
our analysis points out a potential mechanism for the
high levels of compliance observed in countries such as
South Korea [23], with strong societal norms and a
positive view of restrictions aimed at limiting SARS-
CoV-2 spread such as mask-wearing [59, 60]. In these
cultures, the prevailing cultural beliefs may serve to
lower the cost of the intervention. In this context, we
note that there is a modest association (Fig. S4, see
Supplementary Figures) between societies with strong
societal norms (“tight cultures” [61]) and the total case
count per million at this point in the pandemic (p =
0.04).
From the perspective of biomedical interventions, our

work points out that interventions with a high degree of
protective efficacy are required for complete suppression
of SARS-CoV-2, making this disease particularly challen-
ging to control. Highly effective interventions have the
dual effect of making the creation of negative externalities
less beneficial for the noncompliant population (Fig. 4),
and also increasing the benefit to the compliant popula-
tion (Fig. 6). Notably, highly effective interventions pro-
vide more wiggle room for public policy, as the threshold
level of compliance required for the complete suppression

of SARS-CoV-2 spread drops from approximately 95% for
a minimally effective intervention to approximately 80%
for highly effective interventions. Another path to disease
suppression lies in implementing passive interventions
that reduce the R0, such as improving ventilation. Such
passive interventions, not being subject to the problem of
individual noncompliance, can serve to lower the bar for
compliance for any given intervention to achieve complete
suppression (Fig. S2, see Supplementary Figures).
Our work has a number of key limitations. First, we

assume that the impact of biomedical and nonpharma-
ceutical interventions is not variable over time. In
practice, changes in SARS-CoV-2’s transmissibility or re-
sponse to interventions, such as seasonal fluctuations
and genewration of new viral variants, will affect the
long-term trajectory of the pandemic and are not
accounted for in our model. Additionally, many factors
may cause individuals to change their compliance behav-
ior over time, which we also did not incorporate into
our model. For example, in some settings, “pandemic fa-
tigue” may drive increased noncompliance with non-
pharmaceutical interventions over time [62], and
relaxations of individual caution and public health
guidelines may follow improvements in regional trans-
mission, creating reactive variability in intervention ef-
fectiveness. Although biomedical interventions such as
vaccines are less susceptible to variability in day-to-day
decision-making, immunity to SARS-CoV-2 is expected to
wane over a period of months [20–22], which can be ex-
pected to impact the duration of vaccine protection. Chal-
lenges in vaccine distribution and compliance may
compound this waning immunity, reducing the apparent
effectiveness of vaccines at the individual and population
scale. Additionally, we assumed that compliant individuals
have a reduced risk of transmission upon infection, equal
to their reduction in risk of infection. This indirect benefit
is challenging to measure in clinical trials, and preclinical
studies show that some vaccine candidates are capable of
reducing nasal viral load (and by implication, risk of trans-
mission) in vaccinated animals [63, 64], while others are
not [65, 66]. As additional data becomes available on evo-
lution of SARS-CoV-2 and on the efficacy of interventions
aimed at preventing SARS-CoV-2 spread, further studies
on the impact of intervention noncompliance could pro-
vide more accurate predictions.
Taken together, our work demonstrates that noncompli-

ance with measures to control SARS-CoV-2 spread is at
once easy to justify on an individual level and leads to
devastating public health consequences. Even under
optimistic assumptions about the transmission benefit and
durability of preventive interventions, noncompliance pre-
sents a significant obstacle to SARS-CoV-2 suppression.
Three key messages are worth keeping in mind. First, the
importance of focusing on complete suppression as a
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desirable end goal for SARS-CoV-2 (Fig. 5) and as a
prerequisite for a return to a pre-pandemic lifestyle.
SARS-CoV-2 is highly transmissible and can be expected
to circulate at high rates if it becomes endemic. Second,
the need for public policy to focus on compliance as a key
prerequisite for both short-term suppression (Fig. 3) and
long-term complete suppression (Fig. 5) of SARS-CoV-2
spread, and to seek ways to alter the space where compli-
ance is the Nash equilibrium by increasing the cost of
noncompliance. Finally, the need to focus on highly effect-
ive interventions from a biomedical perspective and to
view partially effective prophylactics as contributors to the
solution rather than the solution in its entirety.
It is our hope that this work draws the attention of the

biomedical community to how high the bar is actually set
for us to return to normalcy, and to public policymakers
to highlight the need for concerted action that is focused
on complete suppression of SARS-CoV-2 spread.

Conclusions
In this study, we analyzed the public health impact of non-
compliance with nonpharmaceutical and biomedical
interventions (such as masks and vaccines) designed to
limit SARS-CoV-2 spread. Using a game-theoretic frame-
work, we demonstrated that noncompliance can be ratio-
nalized in terms of benefit to the individual. We further
demonstrated, using SEIRS model-based analyses that this
noncompliance is a significant impediment to suppression
of SARS-CoV-2 spread. The compliance threshold for
achieving complete suppression of SARS-CoV-2 spread is
a function of the intervention’s efficacy. Even for
completely effective interventions, complete suppression
requires a minimum of approximately 80% compliance.
These findings demonstrate that a successful SARS-CoV-
2 suppression strategy must involve highly effective
interventions for which broad compliance can be
achieved. Interventions that provide benefit to individuals
in compliance may inspire greater uptake by shifting the
externality onto noncompliant individuals.
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