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Abstract

Introduction: Although most COVID-19 infections are currently mild, poor prognoses and fatalities continue to 
occur, which remain a threat to the safety of people in China. The goal of this study was to create an efficient model 
that combines the clinical characteristics with computed tomography (CT) scores at the time of admission to predict 
the severity of COVID-19.

Methodology: A total of 346 COVID-19 patients in the current study, of whom 46 had severe infections and 300 had 
non-severe infections according to the clinal outcomes. Clinical, laboratory, CT findings, and CT scores at admission 
were collected. To identify the independent risk factors, univariable and multivariable logistic regression analyses 
were performed. A nomogram model was built with the extracted risk factors. The calibration curve and decision 
curve (DCA) operated to validate model performance.

Results: The receiver operating characteristic curve indicated that the severity CT score had an area under the curve 
of 0.933 (95% CI, 0.901-0.965) and a cut-off value of 6.5 (sensitivity, 95.70%; specificity, 78%). The CT score, age, lactic 
dehydrogenase and hydroxybutyrate dehydrogenase levels, and hypertension were exacted for the nomogram. The 
nomogram had good calibration (P = 0.539) and excellent clinical value based on the DCA.

Conclusions: The nomogram presented herein could be a valuable model to predict severe COVID-19 among patients 
in Chengdu, China.

Keywords: COVID-19, CT score, nomogram, clinical characteristics

1. INTRODUCTION

It has been 3 years since coronavirus disease 2019 
(COVID-19) was first reported. The impact of the 
emerging disease remains to be determined. China 
recently implemented a new policy for managing 
COVID-19. Indeed, termination of the quarantine pol-
icy brought new challenges to this developing coun-
try with a huge population. Currently, most COVID-19 
infections are mild, but there are still patients with a 
poor prognosis. According to a survey by the Chinese 
Center for Disease Control and Prevention, up to 
15.8% of confirmed cases are severe or critical [1]. 
The fatality rate of critical cases is up to 49.0% [2], 
which is of great medical concern. According to previ-
ous studies [3-5], older age combined with clinical and 
laboratory characteristics, such as dyspnea, fever, and 

elevated creatine kinase, are correlated with severe 
and critical illnesses. Thus, it is necessary to develop an 
easy-to-use prediction tool for COVID-19 to improve 
the prognosis.

A nomogram is a line chart that displays scales for the 
variables included in a formula so that the appropriate 
values for each variable lie in a line that intersects all the 
scales. Nomograms have been used as a prediction tool 
for the prognosis of multiple diseases [6-8]. The nomo-
gram is a better and easier risk-prediction tool in clinical 
practice compared to other prediction tools that require 
computer software [9].

Computed tomography (CT) is an essential technique 
for the diagnosis and management of COVID-19 [10]. 
Ground-glass opacities (GGOs) and consolidation distrib-
uted predominantly in the bilateral subpleural segments 
are considered the most common CT characteristics of 
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COVID-19 infections [11]; however, the CT characteristics 
are not quantifiable, which limits prediction of disease 
progression. The chest CT score is a quantitative method 
to demonstrate the extent and nature of pulmonary 
lesions, and has been used in studies of severe acute res-
piratory syndrome [SARS] [12] and pulmonary fibrosis 
[13]. Some studies have also applied CT scores to evalu-
ate COVID-19 severity, which showed that the CT score 
is correlated with clinical parameters indicating deterio-
ration [14, 15]. Thus, the CT score could be an excellent 
method for the management of patients > 65 years of 
age with COVID-19 infections [16]. 

Several nomograms have been developed for predict-
ing severe and critical COVID-19 cases, the majority have 
relied on clinical or laboratory characteristics [17, 18]. 
A few models with excellent performance based on CT 
radiomics have recently been built [19, 20]. Because CT 
radiomics is not available in the majority of hospitals in 
China, we developed a feasible and efficient nomogram 
using clinical and CT scores to predict COVID-19 severity 
and optimize the prognosis in a timely fashion.

2. METHODOLOGY

2.1. Patients
A total of 346 patients with confirmed COVID-19 infec-
tions were enrolled from the Public Health Clinical Center 
of Chengdu between August 2021 and December 2022. 
The patients were divided into non-severe (moderate 
and common) and severe groups based on clinical out-
comes [21]. The severe group was required to fulfill at 
least 1 of the following criteria: (1) shortness of breath 
(respiratory rate ≥  30 breaths/min); (2) arterial oxygen 
saturation at rest ≤93%; (3) the ratio of partial pressure 
of oxygen-to-fraction of inspired oxygen (PaO2:FiO2) 
≤300 mmHg; (4) respiratory distress; (5) onset of shock; 
(6) requirement for mechanical ventilation due to res-
piratory failure; and/or (7) organ failure necessitating 
intensive care unit (ICU) admission.

2.2. Clinical data
Demographic information (age and gender) and clini-
cal parameters (symptoms, comorbidities, and cigarette 
smoking history) at the time of admission were derived 
from medical records. Laboratory parameters included 
routine blood tests, arterial blood gas values, coagu-
lation testing, cardiac enzyme levels, and hepatic and 
renal function tests.

2.3. CT image characteristics and CT scores
All CT images were non-contrast. Images of the first CT 
examination were evaluated separately by two senior 
radiologists. In circumstances in which there were con-
flicts, the final judgment was reached by consensus. The 
Radiology Society of North America consensus state-
ment on reporting chest CT abnormalities related to 
COVID-19 was used to classify the CT signs [22]. Chest CT 
signs included GGOs, consolidation, nodules, the halo 

sign, reticular patterns, crazy-paving patterns, septal 
thickening, traction bronchiectasis, bronchial wall thick-
ening, air bronchograms, lymphadenopathy, pleural 
thickening, and pleural effusions.

We adopted the CT scoring system designed by Salaffi 
et al. [23]. Bilateral lobes were assessed at 3 levels with 
6 parts and divided by the carina and the inferior pul-
monary vein from top-to-bottom. Each part received 
two scores that indicated the extent and nature of the 
lung lesions. The extent of involvement was graded as 
follows: 0 for no involvement;1 for 1%–24%; 2 for 25%–
49%; 3 for 50%–74%; and 4 for ≥75%. The nature of 
lesions were graded as follows: 1 for normal lung with-
out abnormal changes; 2 for at least 75% GGOs or cra-
zy-paving pattern; 3 for the simultaneous appearance 
of GGOs/crazy-paving pattern and consolidation, and 
each contributed < 75% of the total; 4 for 75% or more 
consolidation. The above two scores (the extent and the 
nature) were multiplied and totaled to achieve a final 
score for all six parts.

2.4. Statistical analysis
Frequencies and percentages were used to describe cat-
egorical variables. Clinical, laboratory results, CT find-
ings, and CT scores were compared between the severe 
and non-severe types with a χ2 test or Fisher’s exact test. 
A two-sided α < 0.05 was considered a statistically sig-
nificant difference. The efficiency of the CT score pre-
dicting the risk of severity was assessed using receiver 
operator characteristic (ROC) curve analysis.

To identify the independent risk factors, univaria-
ble and multivariable logistic regression analyses were 
utilized. The initial selection of all data was performed 
using univariate logistic regression analysis. Variables 
with P-values < 0.05 were incorporated into the multi-
variable logistic regression analysis. The final features 
in the multivariable logistic regression analysis were 
selected as risk factors with a P < 0.05.

The collected risk factors were used to build a nomo-
gram model in R (version 3.6.3) along with the rms sta-
tistical tools. The model performance was then verified 
using a calibration curve and decision curve (DCA).

3. RESULTS

3.1. Clinical and laboratory findings
A total of 346 patients in all were included in our study. 
Table 1 displays the demographic and clinical factors. The 
non-severe and severe cohorts consisted of 300 patients 
with a median age of 35 years (age range, 4-78 years) 
and 46 patients with a median age of 58 years (age 
range, 34-89 years), respectively. Patients with a severe 
COVID-19 infection had a higher median age. The gen-
der and cigarette smoking histories of the two cohorts 
were comparable. Patients in the severe cohort were 
more likely to experience cough, fever, and dyspnea than 
patients in the non-severe cohort (78.26% vs. 16.33%, 
71.74% vs. 21.67, and 13.04% vs. 3.67%, respectively). 
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The severe cohort had a significantly higher incidence of 
co-morbidities (hypertension [34.78% vs. 6.0%], diabe-
tes [17.39% vs. 3.33%], coronary heart disease [17.39% 
vs. 0.67%], and surgical history [19.57% vs. 1.0%]) than 
the non-severe cohort.

The laboratory findings are shown in Table 2. 
Seventeen characteristics were evaluated with signifi-
cant differences between the two cohorts.

3.2. CT findings and CT scores
Table 3 lists the CT findings and CT scores. Patients with 
a severe COVID-19 infection had a higher incidence of 
GGOs (P<0.001), consolidation (P<0.001), reticular opaci-
ties (P<0.001), a crazy-paving pattern (P=0.012), interlob-
ular septal thickening (P<0.001), bronchial wall thickening 
(P=0.006), and air bronchograms (P<0.001). Furthermore, 
patients in the severe cohort had a higher incidence of 
lymphadenopathy and pleural effusions (P<0.001 for 
both) than patients in the non-severe cohort.

The median CT score was 21.67±11.58 in the severe 
cohort and 4.27±6.02 in the non-severe cohort (P<0.001). 
Analysis of the ROC curve yielded an area under the ROC 
curve (AUC) for the CT score of 0.933%. (95% CI, 0.901–
0.965; P<0.001), and a Youden index of 0.737, with 6.5 
serving as the ideal cut-off value for identifying a severe 
COVID-19 infection (sensitivity, 95.70%; specificity, 78%; 
Figure 1).

3.3. Nomogram construction and validation
The clinical and laboratory characteristics combined 
with CT scores were included in the univariable analysis, 
and a total of 26 features were included in the multivar-
iable logistic regression analysis. Five features, including 
CT score, age, lactic dehydrogenase (LDH) and hydroxy-
butyrate dehydrogenase (HBDH) levels, and hyperten-
sion were extracted as risk factors for severe COVID-19 
infections. Based on these 5 risk factors, a nomogram 
for predicting the severity of a COVID-19 infection was 
created (Figure 2).

Table 1  |  Clinical characteristics of patients with COVID-19.

Characteristic   Non-severe 
NO. (%)

  Severe
NO. (%)

  P

Age, Y   35 (4~78)   58 (34~89)  <0.01

Gender,       0.212

  Female   78 (26.0)   16 (34.78)  

  Male   222 (74.0)   30 (65.22)  

Smoking history       0.811

  Yes   67 (22.33)   11 (13.04)  

  No   233 (77.67)   35 (86.96)  

Fever       <0.01

  Yes   49 (16.33)   36 (78.26)  

  No   251 (83.67)   10 (21.74)  

Cough       <0.01

  Yes   65 (21.67)   33 (71.74)  

  No   235 (78.33)   13 (28.26)  

Dyspnea       0.006

  Yes   11 (3.67)   6 (13.04)  

  No   289 (96.33)   40 (86.96)  

Chest pain       0.656

  Yes   4 (1.33)   1 (2.17)  

  No   296 (98.67)   45 (97.83)  

Headache       0.947

  Yes   7 (2.33)   1 (2.17)  

  No   293 (97.67)   45 (97.83)  

Anorexia       0.165

  Yes   8 (2.67)   3 (6.52)  

  No   292 (97.33)   43 (93.48)  

Fatigue       0.395

  Yes   15 (5.0)   1 (2.17)  

  No   285 (95.0)   45 (97.83)  

Sore muscles       0.324

  Yes   6 (2.0)   2 (4.35)  

  No   294 (98.0)   44 (95.65)  

Hypertension       <0.001

  Yes   18 (6.0)   16 (34.78)  

  No   282 (94)   30 (65.22)  

Diabetes       <0.001

  Yes   10 (3.33)   8 (17.39)  

  No   290 (96.67)   38 (82.61)  

Characteristic   Non-severe 
NO. (%)

  Severe
NO. (%)

  P

Cardiovascular disease       <0.001

  Yes   2 (0.67)   8 (17.39)  

  No   298 (99.33)   38 (82.61)  

COPD      

  Yes   3 (1.0)   1 (2.17)   0.488

  No   297 (99.0)   45 (97.83)  

History of surgery       <0.001

  Yes   3 (1.0)   9 (19.57)  

  No   297 (99.0)   37 (80.43)  

Table 1  |  continued
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We verified the model performance using a calibra-
tion curve and DCA. As shown in Figure 3, the nomo-
gram demonstrated excellent performance.

4. DISCUSSION

COVID-19 is continuing to have an impact on a world-
wide scale. Severe and critical cases have created a huge 
medical burden to society, especially in countries with 

large populations or limited medical resources. An easy 
and feasible clinical model predicting the severity of 
COVID-19 infections in a timely fashion is vital for opti-
mal management of potentially severe cases and to 
achieve better clinical outcomes. Our study developed a 
nomogram derived from the baseline clinical and labo-
ratory findings, CT characteristics, and CT score. Five var-
iables were identified as risk factors for severe COVID-19 
infections, including the CT score, age, LDH and HBDH 

Table 2  |  Laboratory findings of patients with COVID-19.

Characteristic   Non-severe   Severe   P

LDH U/L   167.5 (95~374)   266 (145~671)   <0.001

CK   80 (16~614)   100.5 (27~1360)   0.038

CK-MB   10 (3~43)   13 (2~33)   <0.001

HBDH   129 (80~311)   189.5 (75~502)   <0.001

ALT   26 (6~407)   27.5 (4~153)   0.56

AST   21 (10~184)   33 (13~126)   <0.001

GGT   22 (7~213)   24.5 (12~148)   0.031

ALP   66 (15~278)   67 (30~175)   0.429

TBIL   9.65 (1.4~107)   7.75 (2~28.8)   0.182

DBIL   0.47 (0~86)   0.73 (0.06~9.6)   0.024

BUN   3.88 (1.09~7.79)   4.56 (2.05~25.69)   0.006

Creatinine   67 (27~390)   67.75 (32.8~969)   0.395

Glucose   5.19 (2.61~24.79)   7.23 (4.32~1057)   <0.001

WBC 109   6.31 (2.14~17.84)   5.47 (1.84~14.84)   0.125

Neutrophil count 109   3.68 (0.65~323)   3.8 (0.6~12.7)   0.262

Lymphocyte count 109   1.81 (0.44~6.24)   0.74 (0.2~4.21)   <0.001

Monocyte Count   0.46 (0.11~7.7)   0.41 (0.12~325)   0.150

PLT   225 (1.66~502)   148.5 (69.5~380)   <0.001

RBC   4.91 (1.52~2089)   4.6 (2.09~156)   0.003

Hb   147 (12.5~184)   129 (60~210.18)   <0.001

CRP   0.8 (0.5~129.55)   0.5 (174.17)   <0.001

PaO2   87.85 (30.2~211.5)  83.6 (36.5~178.6)   0.157

PCO2   44.5 (31.1~71.2)   40.1 (1.1~54.7)   <0.001

D-dimer ug/ml   0.64 (0.28~6.43)   1.07 (0.32~21.11)   <0.001

APTT   28.7 (19.8~50.2)   28.95 (20.6~74.4)   0.231

FDP   1.9 (0~19.5)   3.25 (1.6~42.8)   <0.001

PT   1.3 (13~18.7)   13 (11.6~99.3)   0.134

Abbreviations: LDH: lactate dehydrogenase; CK: creatine kinase; CK-MB: creatine kinase-MB; HBDH: hydroxybutyrate 
dehydrogenase; ALT: alanine aminotransferase; AST: aspartate aminotransferase; GGT: gamma-glutamyl transpeptidase; 
ALP: alkaline phosphatase; TBIL: total bilirubin; DBIL: direct bilirubin; BUN: blood urea nitrogen; PLT: platelets; 
Hb: hemoglobin; CRP: C-reactive protein; APTT: activated partial thromboplastin time; FDP: fibrinogen degradation products; 
PT: prothrombin time.
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levels, and hypertension. These factors can be assessed 
easily and in a timely fashion. In addition, the corre-
lation between the CT score and patients with severe 
COVID-19 infections was investigated. The nomogram 
described herein, which was based on a combination of 
clinical characteristics and the CT score, demonstrated 
good performance in the calibration curve and DCA. 
Indeed, the model showed better prognostic ability 
compared to the clinical characteristics or CT score 
model alone.

In the current study age was a significant risk factor 
for severe COVID-19. Previous studies [24-26] concluded 
that elderly patients were at increased risk to deterio-
rate during the course of a COVID-19 infection. A model 
created by age and laboratory findings showed that 
patients > 65 years of age had a substantially increased 
probability of developing a severe COVID-19 infection 
than patients < 65 years of age [27]. Earlier nomograms 

Table 3  |  CT findings and CT scores of patients with 
COVID-19.

Characteristic   Non-severe
NO. (%)

  Severe
NO. (%)

  P

Ground-glass opacity (GGO)       <0.001

  Yes   168 (56.00)   45 (97.83)  

  No   132 (44.00)   1 (2.17)  

Consolidation       <0.001

  Yes   15 (5.00)   17 (36.96)  

  No   285 (95.00)   29 (63.04)  

Reticular pattern       <0.001

  Yes   102 (34.00)   40 (86.96)  

  No   198 (66.00)   6 (13.04)  

Nodules       0.397

  Yes   76 (25.33)   9 (19.57)  

  No   224 (74.67)   37 (80.43)  

Crazy-paving pattern       0.012

  Yes   6 (2.00)   4 (8.70)  

  No   294 (98.00)   42 (91.30)  

Septal thickening       0.001

  Yes   16 (5.33)   9 (19.57)  

  No   284 (94.67)   37 (80.43)  

Halo sign       0.938

  Yes   6 (2.00)   1 (2.17)  

  No   294 (98.00)   45 (97.83)  

Bronchial wall thickening       0.006

  Yes   1 (0.33)   2 (4.35)  

  No   299 (99.67)   44 (95.65)  

Traction bronchiectasis       0.695

  Yes   1 (0.33)   0 (0)  

  No   299 (99.67)   46 (100)  

Air bronchogram       <0.001

  Yes   3 (1.00)   10 (21.74)  

  No   297 (99.00)   36 (78.26)  

Pleural thickening       <0.001

  Yes   24 (8.00)   13 (28.26)  

  No   276 (92.00)   33 (71.74)  

Pleural effusion       <0.001

  Yes   6 (2.00)   13 (28.26)  

  No   294 (98.00)   33 (71.74)  

Figure 1  |  The ROC curves of CT scores used in predicting 
severe COVID-19.
The AUC was 0.933. The cut-off value was 6.5 provided a sensitivity 
and specificity of 95.70% and 78%, respectively. AUC, area under 
the curve. 

Characteristic   Non-severe
NO. (%)

  Severe
NO. (%)

  P

Lymphadenopathy       0.695

  Yes   1 (0.33)   0 (0)  

  No   299 (99.67)   46 (100)  

CT score, median (range)   2 (0~34)   20 (2~51)   <0.001

Table 3  |  continued
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with clinical characteristics also demonstrated that age 
was a significant variable in severe cases [1, 17]. It was 
shown that age and COVID-19 mortality were associated 
[28, 29], and a research involving COVID-19 patients 
from various nations reported the average age of the 
majority of COVID-19 fatalities was > 60 years. [30]. 
Angiotensin-converting enzyme 2 (ACE2) receptor is the 
gateway to human cells for SARS-CoV-2, and in patients 
with a severe COVID-19 infection, ACE2 expression has 
been shown to increase with age [31]. This finding might 
explain why the elderly are at highest risk for a severe 
COVID-19 infection.

In the present study the CT score served as an inde-
pendent risk indicator for severe COVID-19 infections. 
Analysis of the ROC curve revealed an AUC for the CT 

score of 0.933% (95% CI, 0.901–0.965; P=0.000) with a 
6.5 cut-off value (sensitivity, 95.70%; specificity, 78%). 
The CT score was the most significant variable based on 
multivariable logistic regression analysis (P=0.009). The 
relationship between the CT score and a severe COVID-
19 infection has been supported by numerous inves-
tigators. Francone et  al. [32] used a semi-quantitative 
method based on CT scores (only assessing the extent of 
lung lesions) in a study involving 1274 patients, which 
indicated that the CT score was related to age, inflam-
matory features, and severity. Likewise, Yang et al. [33] 
and Hajiahmadi et al. [34] adopted a similar scoring sys-
tem and reported AUCs of 0.892 (95% CI, 0.814-0.944) 
and 0.764 (95% CI, 0.682-0.847), respectively. The cur-
rent study used a quantitative CT scoring system that 

Figure 2  |  The nomogram for predicting severe COVID-19.
Each of the variables can be located on the corresponding variable axis. The point of each variable was determined by vertically referring to the 
top point line. By summing up the total points of each corresponding variable, the total point was calculated, and the risk of severe COVID-19 
was determined by reading against the risk axis.

Figure 3  |  The calibration curves and DCA of the nomogram in predicting severe COVID-19.
The calibration curves of the nomogram (a), the model predicted severe COVID-19 was plotted on the x-axis, and the actual disease progression 
probability was plotted on the y-axis. DCA of the nomogram (b), compares the net benefits of three models in predicting severe COVID-19: 
The y-axis represents the net benefit. The x-axis denotes the threshold probability. The red line represents the model based on the CT score 
alone, the blue line represents the model based on the clinical characteristics alone, and the green line represents the model based on clinical 
characteristics and CT score. DCA, decision curves analysis.
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assessed the extent and nature of the lung lesions. The 
AUC reached 0.933 (95% CI, 0.901–0.965), demonstrat-
ing a superior power of predicting severity. Additional 
studies [35-37] reported nomograms that combined CT 
and clinical characteristics. The models outperformed 
the model based on clinical factors or CT features alone; 
however, most focused on CT radiomics and deep learn-
ing techniques. Artificial intelligence is not a widely 
used technique among the hospitals in China, while the 
CT scoring method can be easily adopted clinically.

Co-morbidities have been reported to be correlated 
with severe COVID-19 infections [2, 38]. Our study iden-
tified hypertension as a risk factor for poor prognosis. 
Previous studies [18, 39] extracted hypertension as an 
important variable in the development of clinical mod-
els, which is consistent with our study.

Laboratory parameters, including the LDH and HBDH 
levels, were shown to be independent risk factors for 
severe COVID-19 infections based on multivariate logistic 
regression analysis. The LDH level has an important role 
in predicting severe COVID-19 infections [4, 40, 41]. Our 
study also showed the HBDH level to be a risk factor. Most 
severe and critical patients had multiple organ dysfunc-
tion syndromes, which may be attributed to the wide-
spread distribution of ACE2 in multiple organs, including 
the heart [42]. This finding explains why there are COVID-
19 patients developing myocarditis in Chengdu city.

Our research has a few shortcomings and restrictions. 
First, there was a limited number of people in the sam-
ple. Second, this research only focused on a single site 
and used retrospective data. Finally, the study period 
was short. A larger sample and multi-centered study 
should be conducted to confirm our model in the future.

5. CONCLUSION

CT score, age, hypertension, and LDH and HBDH levels 
were shown to be risk factors to predict severe COVID-
19 infections. We constructed a straightforward nom-
ogram that has excellent predictive power to forecast 
poor prognosis in patients with severe COVID-19 infec-
tions, which could give early advice in medical manage-
ment and increase the likelihood of a positive outcome 
for patients in Chengdu, China.
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