
© Alabdulwahab et al. Published by BCS 
Learning and Development Ltd. 
Proceedings of BCS HCI 2023, UK 

http://dx.doi.org/10.14236/ewic/BCSHCI2023.14 

120 

A Systematic Lightweight Approach for 
Natural User Interfaces Prototyping 

Baraa Alabdulwahab     Effie Lai-Chong Law 
School of Computing and Mathematical Sciences,   Department of Computer Science, 

University of Leicester     Durham University 
University Road, LE1 7RH, Leicester, UK  Upper Mountjoy Campus, DH1 3LE Durham, UK 

ba184@leicester.ac.uk    lai-chong.law@durham.ac.uk 

The emergence of Natural User Interface (NUI) two decades ago brought a lot of potential by supporting 
intuitive and multimodal interaction and leveraging human sensorimotor skills. Systematic prototyping and 
development of NUI, however, received much less attention, and legacy methods of the previous Graphical 
User Interface (GUI) were applied to develop NUIs. This has led to usability issues in many cases. In this 
paper we introduce a systematic lightweight approach to aid designers and developers in prototyping NUIs 
based on the context of interaction. We demonstrate the application of this approach through the 
development of a pen-based NUI. 

Natural user interface. Graphical user interface. Smartpen. Pen-based interaction 

1. INTRODUCTION 

Natural user interface (NUI) emerged as part of the 
post-WIMP design trend in the early 21st century 
(Mann, 2007). It promised to support intuitive and 
multimodal interactions by tapping into human 
sensorimotor skills such as touching, speaking, and 
gazing. However, prototyping and development 
methods of NUI received much less attention 
regardless of the difference between NUI and GUI 
(graphical user interface) interaction mechanism. A 
typical GUI-based interaction employs a fixed set of 
hardware: a screen (possibly with touch feature), a 
mouse and a keyboard. Development for GUI, 
therefore, handles screen content in extensive 
detail (Galitz, 2007) while input and output devices 
are rarely discussed because they are treated as 
known pre-conditions to the interaction. This is not 
the case for the NUI which involves unspecified 
and growing set of devices (Kortum, 2008) that are 
designed to facilitate natural interaction for different 
scenarios. 

On the other hand, a number of studies in the NUI 
literature utilise novel commercial devices without 
justifying the selection of specific hardware used 
with regard to the context. For example, studies 
employing gestures (e.g., Jagodziński & Wolski, 
2015; Lai et al., 2018; Phamduy, DeBellis & Porfiri, 
2015; Zhao et al., 2014) considered the Microsoft 
Kinect1 sensor without rationalising this choice over 
alternatives such as Leap Motion controllers2. Both 

                                                           
1 https://en.wikipedia.org/wiki/Kinect 
2 https://en.wikipedia.org/wiki/Leap_Motion 

devices can recognise gestures, but they have 
different interaction mechanisms (Feng et al., 
2021). In some cases, this ‘off-the-shelf’ design 
approach led to usability issues (e.g., Jin, Ma & 
Zhu, 2022) who used Microsoft HoloLens3 for gaze 
and head posture tracking, and the choice resulted 
in discomfort because of the weight of the device. 
The phenomenon of adopting specific hardware is 
very common in the NUI literature (e.g., Cheng, 
Yang & Liu, 2016; Jensen & Konradsen, 2018) 
which seems a legacy from GUI where relatively 
any screen could fit for the purpose. While this 
could be attributed to technical advantages such as 
the availability of SDKs and tutorials (Jagodziński & 
Wolski, 2015), it supports the hypothesis that 
natural interaction design is being influenced and 
limited by hardware (Yu, Denham & Searight, 
2022).  This issue entails seeking a systematic and 
pragmatic approach that can aid designers and 
developers in prototyping NUIs based on the 
context of interaction. We have been motivated to 
tackle this challenge. 

In this paper, we introduce a systematic lightweight 
approach that is aimed to support NUI prototyping. 
We demonstrate the application of this approach 
through the development of a pen-based NUI.  The 
ultimate goal of our work is to disseminate the use 
of such a method. Our contribution is to provide an 
initial and demonstrable systematic solution, which 
may stimulate further work along this line of inquiry. 
For our future work, we plan to evaluate the 

                                                           
3 https://en.wikipedia.org/wiki/Microsoft_HoloLens 
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approach with a number of designers and 
developers across a range of application contexts.   

2. RELATED WORK 

2.1 Formal and Informal UI Prototyping 

Formal and informal approaches were applied for 
prototyping UIs. Palanque et al. (2009) used Petri 
nets for prototyping high fidelity safety-critical UIs. 
Formal prototyping, in general, aims to employ rigor 
and accurate methods to model and document the 
UI at functional level (e.g., events, iterations and 
conditions) as well as at physical level (e.g., 
bouncing button or sliding knob), hence the UI can 
be developed and assessed systematically (Dix, 
Ghazali, Gill, Hare, & Ramduny-Ellis, 2009). 
Examples of formal methods are State Transitions 
Networks (STN), Petri Nets, Z notation and XML-
based models in Davani, Shirehjini and Daraei 
(2018) and Tsalmpouris et al. (2021). Informal 
prototyping, on the other hand, uses quick and 
flexible ways to describe and illustrate the interface 
morphologically (how it looks) and functionally (how 
it works). Examples of informal methods are 
sketches, scenarios, snapshots, storyboards, and 
natural language in Trætteberg (2002) and Carter 
and Hundhausen (2010).  

Both formal and informal prototyping approaches 
have strengths and drawbacks which are 
summarised in Table 1. Bowen, Weyers, and Liu 
(2022) considered that informal prototyping is the 
step before the formal stage. However, we argue 
that applying this sequence might aggravate the 
workload on designers and that the necessity of 
such a two-step approach is contingent on the 
expertise of designers. Novices may need to sketch 
ideas or use pseudocodes in natural language 
before translating them with formal methods 
whereas experts can circumvent informal steps and 
proceed with formal ones.  

Table 1. Comparison between formal and informal UI 
prototyping approaches 

 Formal Informal 

S
tr

e
n

g
th

s
 

 Rigor 

 Machine 

understandable 

 Support design and 

verification 

 Quick and easy 

 Very expressive 

 Visual presentation 

 Rapid 

modifications 

 Do not impose 

constraints 

D
ra

w
b

a
c

k
s
 

 Limited to 

professionals 

 Very strict 

 Focus on details 

from the beginning 

 Consume time and 

effort. 

 Less accurate 

(fuzzy) 

 Do not support 

automatic 

verification. 

Because of these differences, a further semi-formal 
prototyping emerged as less strict than formal and 
more accurate than informal approaches in 
Chklovski, Ratnakar, and Gil (2005) and Law et al. 
(2023). Such a pragmatic balance considers using 
informal data such as sketches to produce quick 
and lightweight initial design and then to use formal 
methods to eliminate ambiguities and provide 
accurate description to the UI when necessary.  

2.2 Semi-formal UI Prototyping 

Semi-formal prototyping for natural interfaces in 
Vitzthum (2006), Shaer and Jacob (2009) and 
Bataille et al. (2022) modelled the NUI in two 
separate but interconnected layers: a real layer to 
accommodate physical entities (e.g., a joystick), 
and a virtual layer to accommodate digital entities 
(e.g., digital character). Entities and relations within 
the real layer were usually explained and 
documented informally using sketches and free 
text, while those within the virtual layer were 
modelled and documented formally using state 
machines, pseudocode and visual (UML-like) 
modelling languages. 

One shortcoming of such semi-formal approaches 
is that the produced models were more descriptive 
and less constructive; they aided in depicting and 
documenting the NUI model, but they did not 
demonstrate the incremental construction of the 
interface based on a list of requirements as 
suggested by De Haan (2015). Incremental 
prototyping is very beneficial for developing 
complex systems which involve both hardware and 
software components (Palanque, Ladry, Navarre, & 
Barboni, 2009; de Haan, 2015). 

Schmidt (2000) proposed a semi-formal and 
incremental algorithm for developing context-aware 
devices for ubiquitous computing environments. 
The algorithm, nevertheless, was meant for implicit 
interaction only, and could not be used in its 
original form to prototype NUIs, which involve both 
implicit and explicit interactions. Few modifications 
to the algorithm, however, could enhance its 
potential to achieve this objective as described in 
the next section (Section 3). 

Before presenting our proposed systematic 
approach for prototyping NUIs, it is relevant to 
differentiate the notion of implicit and explicit 
interaction in the field of HCI (Norman, 2010; 
Schmidt, 2000; Serim & Jacucci, 2019). One major 
difference pertains to user input and intention. 
Explicit interactions involve deliberate actions like 
clicking, typing, and choosing, with users fully 
aware and engaged whereas implicit interactions 
occur passively based on user behaviour and 
context, often without user awareness, causing 
privacy and ethical concerns. Another difference is 
that explicit interactions demand effort and 
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customisation while implicit interactions adapt 
based on observed patterns. Context in explicit 
interactions relies on user input, while implicit 
interactions infer context from behaviour and 
environment. A balance between the two is vital for 
positive user experience. 

3. PROTOTYPING APPROACH 

3.1 Schmidt’s Algorithm for Implicit Interaction 

Schmidt’s (2000) work involved researching 
methods to create prototypes for implicit 
interaction. He defined implicit interaction as 
actions performed by the user that are not meant to 
interact with a computer system, but the system 
could understand these actions as inputs (i.e., 
contextualisation).  

For example, leaving the office towards the garage 
at 5.30pm indicates the end of a working day, 
therefore some tasks such as logging out of the 
office computer system or locking the door can be 
performed automatically. A mobile screen that 
glows (turn on) when the mobile is left up towards 
the user’s face is another example.  

Schmidt also defined the notion ‘context’ as the 
environmental or surrounding conditions which 
can be used to trigger or guide the computer 
reaction. Examples of context are location, 
temperature, surrounding noise, identity of the user 
who is operating a system, and so on. Building on 
the notions of ‘implicit interaction’ and the ‘context’, 
Schmidt proposed the algorithm (Figure 1) to help 
develop devices for his vision of implicit interaction. 

 

Figure 1. Schmidt (2000) algorithm for implicit HCI (reproduced from original) 

 

The algorithm can be explained as follows: 

 On Step 1: C is the set of conditions that 
define the context and carries information 
that is useful for the application of interest. 
Each element Ci stands for one condition, 
e.g., location, temperature, etc. The set is 
created by analysing the context (e.g., 
during requirement gathering). 

 On Step 2: D is initialised. It represents the 
aimed hardware system. At the beginning, 
the set is empty and has no sensing 
devices identified yet. 

 On Step 3: For each condition Ci, the 
accuracy Ai and the update rate Ui that are 
needed to make the measurements useful 
are defined. Then a sensor Si that matches 
these requirements is identified. If the 
sensor’s cost is acceptable, then a vector 
matching the condition and the sensor is 
added to the set D. 

 On Step 4: If set D is not empty (there are 
conditions that are feasible to measure) 
then for each one of the set’s condition-
sensor vectors (Ci, Si, Ai, Ui), application 
reaction Rij is defined based on a specific 
interaction range (or trigger) identified as Iij. 
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This algorithm provides a systematic and 
incremental method for prototyping implicit 
interaction devices. The outcome can be seen in 
set D which represents the resulting hardware, and 
in set {Ri} which represents the software. 
Nevertheless, the algorithm cannot be applied 
directly for developing NUIs because it only serves 
implicit interaction (i.e., it is sensor-based without 
output), and because it allows a partial 
implementation: in Step 3, sensors might be 
skipped if too costly while in Step 4 verification 
tests only whether set D is empty or not, but the 
capability of the resulted hardware (set D) to cover 
the original requirements (set C) is not checked or 
evaluated. Therefore, modifications in the next 
section were suggested to overcome these gaps. 

3.2 Revised Version of Schmidt’s Algorithm for 
NUI Prototyping 

As mentioned in Section 2.2, there were gaps in 
the original Schmidt’s (2000) algorithm. In this 

subsection, we list two requirements that should be 
added to the algorithm: 

Requirement 1. It should handle both implicit 
and explicit interactions. 

Requirement 2. It should not allow a partial 
implementation. 

Explicit interaction of the first requirement implies 
that a user will be aware of the existence of the 
interface and may engage with it physically through 
direct manipulation or by wearing the interface. 
This adds a further dimension to the interaction 
where ergonomics and aesthetics should be cared 
of. For example, an effective but very heavy or 
clumsy hardware (e.g., head mounted devices for 
virtual reality) should be avoided or assessed if the 
intended interface is wearable. By considering this 
third physical dimension, along with the two initial 
requirements above, the algorithm can be as 
follows: 

 

 

Figure 2. Revised version of Schmidt’s algorithm for NUI prototyping 
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The new algorithm in Figure 2 is different from the 
original version (Figure 1) in the following points:  

 On Step 2: We defined three auxiliary sets, 
Din and Dout to hold input and output de-
vices in order, and R to hold all application 
reactions. At the beginning these sets are 
empty as no devices or interactions are 
identified yet. 

 On Step 3: After identifying a sensor Si that 
matches the condition Ci, we check sen-
sor’s adequacy against a criterion that 
involves three items: technical require-
ment, physical requirement and cost. 
Technical requirement (tech_req) covers 
the accuracy and update rate of the original 
version (Figure 1) as well as any other 
relevant technical specification such as 
power consumption. Physical requirement 
(phys_req) was added to represent 
ergonomics and aesthetics which the 
device should meet, such as weight or 
dimensions limits. Cost is same as in 
original version. If the sensor satisfies the 
criterion, the pair (Ci, Si) will be added to 
the input devices set Din. 

 On Step 4: All prospective application 
reactions Ri which belong to each 
condition-sensor pair (Ci, Si) were grouped 
in the set R. 

 On Step 5: We iterate over all possible 
application reactions Rij within the set R in 
order to identify required output devices. 
For each output device identified Oj, we 
check its adequacy against a criterion in 
comparable assessment to the one applied 
on input devices (sensors) in Step 3. If the 
output device satisfies the criterion, the pair 
(Rij, Oj) will be added to the output devices 
set Dout. 

 On Step 6: We assemble all collected input 
and output devices in a single system D. 

 On Step 7: To avoid a partial 
implementation, we assess the capability of 
the final system D to sense original 
conditions (C) and provide required 
reactions (R). If assessment’s result was 
accepted, D is then representing the aimed 
NUI system. 

In the following section, we demonstrate the 
application of the revised algorithm through building 
a pen-based NUI. 

4. DEVELOPING A SMARTPEN SYSTEM 
PROTOTYPE (SSP) 

4.1 Context Analysis for SSP 

According to some researchers (Hauger, 
Paramythis & Weibelzahl, 2011; Lam & Baudisch, 
2005), a typical digital reading activity using a PC 
covers the following interactions: scrolling, 
navigation through links, text lookup, text input, and 
zooming (in small screens). Building analogous 
capabilities for pen-based NUI implies that the SSP 
should provide affordances in Table 2. 

Table 2. Context analysis for SSP 

PC system Smart Pen System 

Scrolling Paper flipping 

Links 

navigation 

Changing books, flipping paper, or 

through tapping with the pen on 

printed elements to display animated 

content, e.g., playing video on a 

screen 

Text lookup 

Paper flipping, or tapping on printed 

text to perform a search, results to be 

shown on a screen 

Text input Handwriting 

Zooming 

Moving paper closer to eyes, or 

tapping on printed elements, e.g., 

images and graphs, to display a 

higher resolution version  

 

SSP affordances in Table 2 could be translated into 
the following input and output actions: 

 Input actions (user actions): Changing 
books, flipping paper, tapping with pen, 
moving the pen on paper for writing or 
tapping. 

 Output actions (system reactions): 
Displaying content and playing sounds. 
NB: Content output could either be static 
(directly printed on paper) or digital which 
require a correspondent digital display 
system. 

Having the interaction context analysed as above 
allows SSP prototyping to be performed as follows:
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Figure 3. The assembly of SSP 

 

4.2 Implementation  

Step 1: Creating Set C 
Set C involves conditions of context that a system 
should sense. It can be written as:  

C = {book id, page id, tapping location, 
tapping status} 

In this set book id identifies the current book being 
used, page id identifies the current page that is 
being read, tapping location identifies the location 
of pen tip and tapping status tells if the smart pen is 
on or off paper. 

Step 2:  Defining auxiliary sets  
D = { }, Din = { }, Dout = { }, R = { } 

Step 3: Identifying sensors 
For detecting book id we found a QR code scanner 
(model: GROW GM60-S), which has low response 
time (< 1s), compact size (~20 x 20 x 7 mm) and 
low cost. Therefore, the sensor passed the 
‘adequate’ checking in the development algorithm. 
Printing QR codes, which encode the book id on 
the external cover of books and fixing the sensor so 
that it can scan the code, will enable to identify the 
current book being used. It is worth noting that 
using the sensor required and additional 
microcontroller to perform readings. Therefore, we 
used a microcontroller (model: ESP32 Wemos D1 
mini) for this purpose and put both components into 
a single enclosure. We will label this structure as 
‘GM60S’ for simplicity (Figure 3). 

For detecting page id, the same GM60S sensor 
can be used if QR codes are printed on pages. 
Practically, adding QR codes to pages will 

eliminate the need to use a dedicated code for 
book id, as both identifiers book id and page id can 
be embedded in codes printed on each paper. 
Therefore, no additional sensors were added at this 
step. 

For detecting tapping location, we found a 
specialised digitiser pad (model: CDS600G) which 
involves a smartpen and a sensing pad. The pad 
can precisely identify the location of the smartpen 
and transfer location data using Bluetooth Low 
Energy (BLE) connection to a host system. The 
pad’s response time (< 50ms), size (~ 400 x 250 
mm), weight (< 500g), and cost made it pass the 
‘adequate’ checking of the development algorithm. 
Putting paper on the sensing pad allows a natural 
writing through the smartpen, while tracking pen’s 
location digitises what is being written. 

For detecting tapping status, the same digitiser pad 
(CDS600G) could detect the pressure on the pen 

tip (pressure  [0, 100]). Defining two pressure 

ranges (pen off paper: pressure  5; pen on paper: 
pressure > 5) enables to determine tapping status. 
Therefore, no additional sensor is required for 
detecting the tapping status. 

Putting both sensors (GM60S + CDS600G) 
together resulted in an input system that can detect 
the four conditions of the set C. The system can be 
modelled as:  

Din = {(book id, GM60S), (page id, GM60S), 
(tapping location, CDS600G), (tapping 
status, CDS600G)} 
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Step 4: Defining system reactions. 
We define system reactions for each (condition, 
sensor) pair as follows: 
 
(book id, GM60S)   
Rbook_id = { (ISBNn, notifyNewBook(ISBNn)) } 
 
(page id, GM60S)   
Rpage_id = { (n, notifyNewPage(n)) } 
 
(tapping location, CDS600G)    
Rtapping_location = { (loc(x,y), notifyLocation(x,y)) } 
 
(tapping status, CDS600G)    
Rtapping_status = { (down, notifyTapping(down)),  
(down, multimedia()),  (up, notifyTapping(up)) } 
 

Rbook_id is the system reaction that occurs when 

book id condition is changed (i.e., when user 

replaces a book with another). When the condition 

is changed, the system reacts by throwing a 

notification ‘notifyNewBook’, which indicates the 

new book id value. The similar mechanism applies 

for the other reactions Rpage_id, Rtapping_location, 

Rtapping_status. 

Rtapping_status has the special reaction ‘multimedia’ 

which is a request to provide digital content that is 

relevant to the tapping action. For example, if the 

user taps over a link to video, then the video should 

play through a screen and a speaker.  

Eventually, the complete list of system reactions is 

provided in set R as:  

R = { Rbook_id , Rpage_id, Rtapping_location, Rtapping_status }. 

Step 5: Identifying output devices. 

As stated above, Rtapping_status comprises the method 
‘multimedia’ which is a request to provide digital 
content through a screen/speaker. Hence, we 
utilise a smartphone (model: Nokia 2.4) that has a 
6.5” screen to provide multimedia output. The 
technical, physical, and cost specifications of this 
phone make it pass the ‘adequate’ checking in the 
development algorithm. The phone also acts as a 
host system to receive and process data provided 
by input sensors GM60S and CDS600G over a 
BLE connection.  

Hence, the output devices set Dout can be simply 
defined as:   

Dout = { (multimedia, Nokia 2.4) }. 

Step 6: Assembling input/output devices.  
We assemble devices in Din and Dout together to 
produce the final system (Fig. 3) represented as: 

D = { (book id, GM60S), (page id, GM60S), 
(tapping location, CDS600G), (tapping 
status, CDS600G), (multimedia, Nokia 2.4) }. 

Step 7: Confirming capability of System D.  
As all conditions in the set C are matched with 
adequate sensors, and all output reactions included 
within the set R are matched with adequate output 
devices, therefore we can conclude that capability 
checking of the System D to satisfy interaction 
requirements is accepted. The overall formal model 
for the SSP prototype is presented in Figure 4. 

 

 

 

Figure 4. Formal model for SPP 
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5. TECHNICAL ASSESSMENT 

The assessment of the SSP involved testing 
tapping and paper-flipping actions using a 5-page 
sample article printed on A5 paper. QR codes were 
generated using a free online service (The QR 
Code Generator4), and they were placed at 0.5” 
from the top and left sides of pages. The text size 
was 9pt (double spaced) for paragraphs and 
captions, 12pt (bold) for headings and 14pt (bold) 
for the title. 

A total of 160 tapping points, and a total of 20 
paper flips were recorded during the technical 
assessment. The average response time was 0.9 
second for tapping, and 1.3 seconds for flipping. 
The maximum was 1.2 seconds for tapping and 1.9 
seconds for flipping, and the minimum was 0.7 for 
tapping and 0.9 for flipping. The accuracy of 
tapping was ~97%, and errors (the resulted action 
did not belong to the tapped word on paper) were 
linked to short tapping interval (<2 seconds 
between taps). The accuracy for paper-flipping was 
65% (7 out of 20 flips failed to generate a 
response) and errors were linked to the 
deformation (bending) of paper that made the QR 
code sensor unable to recognise codes on the 
page corner. 

Overall, the system performance was acceptable 
for such a proof-of-concept prototype. Further 
enhancement could be done by changing the 
location of QR code. 

6. DISCUSSION 

We could observe the potential of the development 
approach (Figure 2) in the following areas: 

Incremental development. The development of 
SSP was done incrementally. We built the input 
system (Din) using two input technologies, then we 
defined the reactions based on the input system, 
and later, we constructed the output system (Dout) 
based on reactions. We finally assembled the 
overall system (D) and verified its capability to 
match the requirements. This process which 
spanned over several weeks reduced the 
complexity of dealing with hardware. Also, we were 
able to assess alternatives using different factors 
(i.e., the method adequate), and to focus 
development efforts on a single interaction aspect 
as pieces of hardware were supplied. 

Lightweight formal modelling. The formal model 
of SSP (Figure 4) provides a precise and concise 
description to the structure and functionality of the 
system. It clarifies which part of a system is 
responsible for responding to a specific input and 

                                                           
4 https://www.the-qrcode-generator.com/ 

how the response is generated, and through which 
channel the response is delivered to user (if any). 
Producing such a model did not involve complex 
mathematical syntax, nor was it vague similar to 
plain text and sketches of informal models. 

Extension and replication. Through the formal 
model, it would be easy to extend the system either 
by adding more sensors (set D) or by improving the 
system’s reaction (set R). Practically, the 
incremental development of SSP is an example of 
extending functionalities, from recognising books 
and papers using a QR code scanner, to a full 
interaction with paper when another sensor (i.e., 
the digitiser pad) was added. Furthermore, 
replicating the prototype using other hardware 
(e.g., utilising a larger digitiser pad) is very 
straightforward as we only need to change the 
corresponding device(s) while the remaining parts 
of the formal model remain unaltered. 

Verification and maintenance. During the 
technical assessment, we performed dedicated 
tests (accuracy + response time) for SSP in relation 
to page flipping. The tests were performed because 
of our pre-knowledge that there is a specialised 
sensor that observes paper flipping. However, 
assuming the case where there are two different 
teams engaged in prototyping, one for development 
and the other for testing. The formal model could 
then inform the testing team about the internal 
structure and functionality of the system; hence 
they could perform such dedicated tests. In terms 
of maintenance, the formal model would help to 
replace, fix, and re-test the flawed functionality (the 
QR code recognition in our case) without affecting 
the other parts of the system. 

7. CONCLUSION 

The development approach as described in Figure 
2 facilitated the creation of the SSP prototype from 
scratch and the generation of a corresponding 
formal model. The formal model (Figure 4) provides 
a precise and concise description of a system’s 
structure and functionality. It clarifies which part of 
the system is responsible for responding to a 
specific input, and how the reaction will look. 
Producing this model does not involve complex 
mathematical syntax. Nor is the model vaguely 
similar to plain text of informal approaches applied 
in many previous studies.  

Through the model, it would be easy to extend the 
system either by adding more sensors or by 
improving system’s reaction. Maintenance-wise, it 
would be simple to change a sensor (e.g., replacing 
discontinued products) with new alternatives while 
the remaining parts of the formal model stay 
unaltered. 

https://www.the-qrcode-generator.com/
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While we are able to demonstrate the application of 
the proposed approach with the case of pen-based 
UI, we are aware that the scope of the application 
context needs to be much widened to establish the 
validity, reliability and applicability of the approach.  
Furthermore, designers and developers interested 
in NUIs should have been involved in evaluating 
the approach to provide feedback for its refinement.  
These limitations will be addressed in our future 
work.   

Overall, we have taken an initial but significant step 
for the creation of a systematic lightweight 
approach for prototyping NUIs based on context of 
interaction. More research along this line of inquiry 
is called for.  
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