
© Alabdulwahab et al. Published by BCS
Learning and Development Ltd.
Proceedings of BCS HCI 2023, UK

http://dx.doi.org/10.14236/ewic/BCSHCI2023.14

120

A Systematic Lightweight Approach for
Natural User Interfaces Prototyping

Baraa Alabdulwahab Effie Lai-Chong Law
School of Computing and Mathematical Sciences, Department of Computer Science,

University of Leicester Durham University
University Road, LE1 7RH, Leicester, UK Upper Mountjoy Campus, DH1 3LE Durham, UK

ba184@leicester.ac.uk lai-chong.law@durham.ac.uk

The emergence of Natural User Interface (NUI) two decades ago brought a lot of potential by supporting
intuitive and multimodal interaction and leveraging human sensorimotor skills. Systematic prototyping and
development of NUI, however, received much less attention, and legacy methods of the previous Graphical
User Interface (GUI) were applied to develop NUIs. This has led to usability issues in many cases. In this
paper we introduce a systematic lightweight approach to aid designers and developers in prototyping NUIs
based on the context of interaction. We demonstrate the application of this approach through the
development of a pen-based NUI.

Natural user interface. Graphical user interface. Smartpen. Pen-based interaction

1. INTRODUCTION

Natural user interface (NUI) emerged as part of the
post-WIMP design trend in the early 21st century
(Mann, 2007). It promised to support intuitive and
multimodal interactions by tapping into human
sensorimotor skills such as touching, speaking, and
gazing. However, prototyping and development
methods of NUI received much less attention
regardless of the difference between NUI and GUI
(graphical user interface) interaction mechanism. A
typical GUI-based interaction employs a fixed set of
hardware: a screen (possibly with touch feature), a
mouse and a keyboard. Development for GUI,
therefore, handles screen content in extensive
detail (Galitz, 2007) while input and output devices
are rarely discussed because they are treated as
known pre-conditions to the interaction. This is not
the case for the NUI which involves unspecified
and growing set of devices (Kortum, 2008) that are
designed to facilitate natural interaction for different
scenarios.

On the other hand, a number of studies in the NUI
literature utilise novel commercial devices without
justifying the selection of specific hardware used
with regard to the context. For example, studies
employing gestures (e.g., Jagodziński & Wolski,
2015; Lai et al., 2018; Phamduy, DeBellis & Porfiri,
2015; Zhao et al., 2014) considered the Microsoft
Kinect1 sensor without rationalising this choice over
alternatives such as Leap Motion controllers2. Both

1 https://en.wikipedia.org/wiki/Kinect
2 https://en.wikipedia.org/wiki/Leap_Motion

devices can recognise gestures, but they have
different interaction mechanisms (Feng et al.,
2021). In some cases, this ‘off-the-shelf’ design
approach led to usability issues (e.g., Jin, Ma &
Zhu, 2022) who used Microsoft HoloLens3 for gaze
and head posture tracking, and the choice resulted
in discomfort because of the weight of the device.
The phenomenon of adopting specific hardware is
very common in the NUI literature (e.g., Cheng,
Yang & Liu, 2016; Jensen & Konradsen, 2018)
which seems a legacy from GUI where relatively
any screen could fit for the purpose. While this
could be attributed to technical advantages such as
the availability of SDKs and tutorials (Jagodziński &
Wolski, 2015), it supports the hypothesis that
natural interaction design is being influenced and
limited by hardware (Yu, Denham & Searight,
2022). This issue entails seeking a systematic and
pragmatic approach that can aid designers and
developers in prototyping NUIs based on the
context of interaction. We have been motivated to
tackle this challenge.

In this paper, we introduce a systematic lightweight
approach that is aimed to support NUI prototyping.
We demonstrate the application of this approach
through the development of a pen-based NUI. The
ultimate goal of our work is to disseminate the use
of such a method. Our contribution is to provide an
initial and demonstrable systematic solution, which
may stimulate further work along this line of inquiry.
For our future work, we plan to evaluate the

3 https://en.wikipedia.org/wiki/Microsoft_HoloLens

A Systematic Lightweight Approach for Natural User Interfaces Prototyping
Alabdulwahab ● Law

121

approach with a number of designers and
developers across a range of application contexts.

2. RELATED WORK

2.1 Formal and Informal UI Prototyping

Formal and informal approaches were applied for
prototyping UIs. Palanque et al. (2009) used Petri
nets for prototyping high fidelity safety-critical UIs.
Formal prototyping, in general, aims to employ rigor
and accurate methods to model and document the
UI at functional level (e.g., events, iterations and
conditions) as well as at physical level (e.g.,
bouncing button or sliding knob), hence the UI can
be developed and assessed systematically (Dix,
Ghazali, Gill, Hare, & Ramduny-Ellis, 2009).
Examples of formal methods are State Transitions
Networks (STN), Petri Nets, Z notation and XML-
based models in Davani, Shirehjini and Daraei
(2018) and Tsalmpouris et al. (2021). Informal
prototyping, on the other hand, uses quick and
flexible ways to describe and illustrate the interface
morphologically (how it looks) and functionally (how
it works). Examples of informal methods are
sketches, scenarios, snapshots, storyboards, and
natural language in Trætteberg (2002) and Carter
and Hundhausen (2010).

Both formal and informal prototyping approaches
have strengths and drawbacks which are
summarised in Table 1. Bowen, Weyers, and Liu
(2022) considered that informal prototyping is the
step before the formal stage. However, we argue
that applying this sequence might aggravate the
workload on designers and that the necessity of
such a two-step approach is contingent on the
expertise of designers. Novices may need to sketch
ideas or use pseudocodes in natural language
before translating them with formal methods
whereas experts can circumvent informal steps and
proceed with formal ones.

Table 1. Comparison between formal and informal UI
prototyping approaches

 Formal Informal

S
tr

e
n

g
th

s

 Rigor

 Machine

understandable

 Support design and

verification

 Quick and easy

 Very expressive

 Visual presentation

 Rapid

modifications

 Do not impose

constraints

D
ra

w
b

a
c

k
s

 Limited to

professionals

 Very strict

 Focus on details

from the beginning

 Consume time and

effort.

 Less accurate

(fuzzy)

 Do not support

automatic

verification.

Because of these differences, a further semi-formal
prototyping emerged as less strict than formal and
more accurate than informal approaches in
Chklovski, Ratnakar, and Gil (2005) and Law et al.
(2023). Such a pragmatic balance considers using
informal data such as sketches to produce quick
and lightweight initial design and then to use formal
methods to eliminate ambiguities and provide
accurate description to the UI when necessary.

2.2 Semi-formal UI Prototyping

Semi-formal prototyping for natural interfaces in
Vitzthum (2006), Shaer and Jacob (2009) and
Bataille et al. (2022) modelled the NUI in two
separate but interconnected layers: a real layer to
accommodate physical entities (e.g., a joystick),
and a virtual layer to accommodate digital entities
(e.g., digital character). Entities and relations within
the real layer were usually explained and
documented informally using sketches and free
text, while those within the virtual layer were
modelled and documented formally using state
machines, pseudocode and visual (UML-like)
modelling languages.

One shortcoming of such semi-formal approaches
is that the produced models were more descriptive
and less constructive; they aided in depicting and
documenting the NUI model, but they did not
demonstrate the incremental construction of the
interface based on a list of requirements as
suggested by De Haan (2015). Incremental
prototyping is very beneficial for developing
complex systems which involve both hardware and
software components (Palanque, Ladry, Navarre, &
Barboni, 2009; de Haan, 2015).

Schmidt (2000) proposed a semi-formal and
incremental algorithm for developing context-aware
devices for ubiquitous computing environments.
The algorithm, nevertheless, was meant for implicit
interaction only, and could not be used in its
original form to prototype NUIs, which involve both
implicit and explicit interactions. Few modifications
to the algorithm, however, could enhance its
potential to achieve this objective as described in
the next section (Section 3).

Before presenting our proposed systematic
approach for prototyping NUIs, it is relevant to
differentiate the notion of implicit and explicit
interaction in the field of HCI (Norman, 2010;
Schmidt, 2000; Serim & Jacucci, 2019). One major
difference pertains to user input and intention.
Explicit interactions involve deliberate actions like
clicking, typing, and choosing, with users fully
aware and engaged whereas implicit interactions
occur passively based on user behaviour and
context, often without user awareness, causing
privacy and ethical concerns. Another difference is
that explicit interactions demand effort and

A Systematic Lightweight Approach for Natural User Interfaces Prototyping
Alabdulwahab ● Law

122

customisation while implicit interactions adapt
based on observed patterns. Context in explicit
interactions relies on user input, while implicit
interactions infer context from behaviour and
environment. A balance between the two is vital for
positive user experience.

3. PROTOTYPING APPROACH

3.1 Schmidt’s Algorithm for Implicit Interaction

Schmidt’s (2000) work involved researching
methods to create prototypes for implicit
interaction. He defined implicit interaction as
actions performed by the user that are not meant to
interact with a computer system, but the system
could understand these actions as inputs (i.e.,
contextualisation).

For example, leaving the office towards the garage
at 5.30pm indicates the end of a working day,
therefore some tasks such as logging out of the
office computer system or locking the door can be
performed automatically. A mobile screen that
glows (turn on) when the mobile is left up towards
the user’s face is another example.

Schmidt also defined the notion ‘context’ as the
environmental or surrounding conditions which
can be used to trigger or guide the computer
reaction. Examples of context are location,
temperature, surrounding noise, identity of the user
who is operating a system, and so on. Building on
the notions of ‘implicit interaction’ and the ‘context’,
Schmidt proposed the algorithm (Figure 1) to help
develop devices for his vision of implicit interaction.

Figure 1. Schmidt (2000) algorithm for implicit HCI (reproduced from original)

The algorithm can be explained as follows:

 On Step 1: C is the set of conditions that
define the context and carries information
that is useful for the application of interest.
Each element Ci stands for one condition,
e.g., location, temperature, etc. The set is
created by analysing the context (e.g.,
during requirement gathering).

 On Step 2: D is initialised. It represents the
aimed hardware system. At the beginning,
the set is empty and has no sensing
devices identified yet.

 On Step 3: For each condition Ci, the
accuracy Ai and the update rate Ui that are
needed to make the measurements useful
are defined. Then a sensor Si that matches
these requirements is identified. If the
sensor’s cost is acceptable, then a vector
matching the condition and the sensor is
added to the set D.

 On Step 4: If set D is not empty (there are
conditions that are feasible to measure)
then for each one of the set’s condition-
sensor vectors (Ci, Si, Ai, Ui), application
reaction Rij is defined based on a specific
interaction range (or trigger) identified as Iij.

A Systematic Lightweight Approach for Natural User Interfaces Prototyping
Alabdulwahab ● Law

123

This algorithm provides a systematic and
incremental method for prototyping implicit
interaction devices. The outcome can be seen in
set D which represents the resulting hardware, and
in set {Ri} which represents the software.
Nevertheless, the algorithm cannot be applied
directly for developing NUIs because it only serves
implicit interaction (i.e., it is sensor-based without
output), and because it allows a partial
implementation: in Step 3, sensors might be
skipped if too costly while in Step 4 verification
tests only whether set D is empty or not, but the
capability of the resulted hardware (set D) to cover
the original requirements (set C) is not checked or
evaluated. Therefore, modifications in the next
section were suggested to overcome these gaps.

3.2 Revised Version of Schmidt’s Algorithm for
NUI Prototyping

As mentioned in Section 2.2, there were gaps in
the original Schmidt’s (2000) algorithm. In this

subsection, we list two requirements that should be
added to the algorithm:

Requirement 1. It should handle both implicit
and explicit interactions.

Requirement 2. It should not allow a partial
implementation.

Explicit interaction of the first requirement implies
that a user will be aware of the existence of the
interface and may engage with it physically through
direct manipulation or by wearing the interface.
This adds a further dimension to the interaction
where ergonomics and aesthetics should be cared
of. For example, an effective but very heavy or
clumsy hardware (e.g., head mounted devices for
virtual reality) should be avoided or assessed if the
intended interface is wearable. By considering this
third physical dimension, along with the two initial
requirements above, the algorithm can be as
follows:

Figure 2. Revised version of Schmidt’s algorithm for NUI prototyping

A Systematic Lightweight Approach for Natural User Interfaces Prototyping
Alabdulwahab ● Law

124

The new algorithm in Figure 2 is different from the
original version (Figure 1) in the following points:

 On Step 2: We defined three auxiliary sets,
Din and Dout to hold input and output de-
vices in order, and R to hold all application
reactions. At the beginning these sets are
empty as no devices or interactions are
identified yet.

 On Step 3: After identifying a sensor Si that
matches the condition Ci, we check sen-
sor’s adequacy against a criterion that
involves three items: technical require-
ment, physical requirement and cost.
Technical requirement (tech_req) covers
the accuracy and update rate of the original
version (Figure 1) as well as any other
relevant technical specification such as
power consumption. Physical requirement
(phys_req) was added to represent
ergonomics and aesthetics which the
device should meet, such as weight or
dimensions limits. Cost is same as in
original version. If the sensor satisfies the
criterion, the pair (Ci, Si) will be added to
the input devices set Din.

 On Step 4: All prospective application
reactions Ri which belong to each
condition-sensor pair (Ci, Si) were grouped
in the set R.

 On Step 5: We iterate over all possible
application reactions Rij within the set R in
order to identify required output devices.
For each output device identified Oj, we
check its adequacy against a criterion in
comparable assessment to the one applied
on input devices (sensors) in Step 3. If the
output device satisfies the criterion, the pair
(Rij, Oj) will be added to the output devices
set Dout.

 On Step 6: We assemble all collected input
and output devices in a single system D.

 On Step 7: To avoid a partial
implementation, we assess the capability of
the final system D to sense original
conditions (C) and provide required
reactions (R). If assessment’s result was
accepted, D is then representing the aimed
NUI system.

In the following section, we demonstrate the
application of the revised algorithm through building
a pen-based NUI.

4. DEVELOPING A SMARTPEN SYSTEM
PROTOTYPE (SSP)

4.1 Context Analysis for SSP

According to some researchers (Hauger,
Paramythis & Weibelzahl, 2011; Lam & Baudisch,
2005), a typical digital reading activity using a PC
covers the following interactions: scrolling,
navigation through links, text lookup, text input, and
zooming (in small screens). Building analogous
capabilities for pen-based NUI implies that the SSP
should provide affordances in Table 2.

Table 2. Context analysis for SSP

PC system Smart Pen System

Scrolling Paper flipping

Links

navigation

Changing books, flipping paper, or

through tapping with the pen on

printed elements to display animated

content, e.g., playing video on a

screen

Text lookup

Paper flipping, or tapping on printed

text to perform a search, results to be

shown on a screen

Text input Handwriting

Zooming

Moving paper closer to eyes, or

tapping on printed elements, e.g.,

images and graphs, to display a

higher resolution version

SSP affordances in Table 2 could be translated into
the following input and output actions:

 Input actions (user actions): Changing
books, flipping paper, tapping with pen,
moving the pen on paper for writing or
tapping.

 Output actions (system reactions):
Displaying content and playing sounds.
NB: Content output could either be static
(directly printed on paper) or digital which
require a correspondent digital display
system.

Having the interaction context analysed as above
allows SSP prototyping to be performed as follows:

A Systematic Lightweight Approach for Natural User Interfaces Prototyping
Alabdulwahab ● Law

125

Figure 3. The assembly of SSP

4.2 Implementation

Step 1: Creating Set C
Set C involves conditions of context that a system
should sense. It can be written as:

C = {book id, page id, tapping location,
tapping status}

In this set book id identifies the current book being
used, page id identifies the current page that is
being read, tapping location identifies the location
of pen tip and tapping status tells if the smart pen is
on or off paper.

Step 2: Defining auxiliary sets
D = { }, Din = { }, Dout = { }, R = { }

Step 3: Identifying sensors
For detecting book id we found a QR code scanner
(model: GROW GM60-S), which has low response
time (< 1s), compact size (~20 x 20 x 7 mm) and
low cost. Therefore, the sensor passed the
‘adequate’ checking in the development algorithm.
Printing QR codes, which encode the book id on
the external cover of books and fixing the sensor so
that it can scan the code, will enable to identify the
current book being used. It is worth noting that
using the sensor required and additional
microcontroller to perform readings. Therefore, we
used a microcontroller (model: ESP32 Wemos D1
mini) for this purpose and put both components into
a single enclosure. We will label this structure as
‘GM60S’ for simplicity (Figure 3).

For detecting page id, the same GM60S sensor
can be used if QR codes are printed on pages.
Practically, adding QR codes to pages will

eliminate the need to use a dedicated code for
book id, as both identifiers book id and page id can
be embedded in codes printed on each paper.
Therefore, no additional sensors were added at this
step.

For detecting tapping location, we found a
specialised digitiser pad (model: CDS600G) which
involves a smartpen and a sensing pad. The pad
can precisely identify the location of the smartpen
and transfer location data using Bluetooth Low
Energy (BLE) connection to a host system. The
pad’s response time (< 50ms), size (~ 400 x 250
mm), weight (< 500g), and cost made it pass the
‘adequate’ checking of the development algorithm.
Putting paper on the sensing pad allows a natural
writing through the smartpen, while tracking pen’s
location digitises what is being written.

For detecting tapping status, the same digitiser pad
(CDS600G) could detect the pressure on the pen

tip (pressure  [0, 100]). Defining two pressure

ranges (pen off paper: pressure  5; pen on paper:
pressure > 5) enables to determine tapping status.
Therefore, no additional sensor is required for
detecting the tapping status.

Putting both sensors (GM60S + CDS600G)
together resulted in an input system that can detect
the four conditions of the set C. The system can be
modelled as:

Din = {(book id, GM60S), (page id, GM60S),
(tapping location, CDS600G), (tapping
status, CDS600G)}

A Systematic Lightweight Approach for Natural User Interfaces Prototyping
Alabdulwahab ● Law

126

Step 4: Defining system reactions.
We define system reactions for each (condition,
sensor) pair as follows:

(book id, GM60S) 
Rbook_id = { (ISBNn, notifyNewBook(ISBNn)) }

(page id, GM60S) 
Rpage_id = { (n, notifyNewPage(n)) }

(tapping location, CDS600G) 
Rtapping_location = { (loc(x,y), notifyLocation(x,y)) }

(tapping status, CDS600G) 
Rtapping_status = { (down, notifyTapping(down)),
(down, multimedia()), (up, notifyTapping(up)) }

Rbook_id is the system reaction that occurs when

book id condition is changed (i.e., when user

replaces a book with another). When the condition

is changed, the system reacts by throwing a

notification ‘notifyNewBook’, which indicates the

new book id value. The similar mechanism applies

for the other reactions Rpage_id, Rtapping_location,

Rtapping_status.

Rtapping_status has the special reaction ‘multimedia’

which is a request to provide digital content that is

relevant to the tapping action. For example, if the

user taps over a link to video, then the video should

play through a screen and a speaker.

Eventually, the complete list of system reactions is

provided in set R as:

R = { Rbook_id , Rpage_id, Rtapping_location, Rtapping_status }.

Step 5: Identifying output devices.

As stated above, Rtapping_status comprises the method
‘multimedia’ which is a request to provide digital
content through a screen/speaker. Hence, we
utilise a smartphone (model: Nokia 2.4) that has a
6.5” screen to provide multimedia output. The
technical, physical, and cost specifications of this
phone make it pass the ‘adequate’ checking in the
development algorithm. The phone also acts as a
host system to receive and process data provided
by input sensors GM60S and CDS600G over a
BLE connection.

Hence, the output devices set Dout can be simply
defined as:

Dout = { (multimedia, Nokia 2.4) }.

Step 6: Assembling input/output devices.
We assemble devices in Din and Dout together to
produce the final system (Fig. 3) represented as:

D = { (book id, GM60S), (page id, GM60S),
(tapping location, CDS600G), (tapping
status, CDS600G), (multimedia, Nokia 2.4) }.

Step 7: Confirming capability of System D.
As all conditions in the set C are matched with
adequate sensors, and all output reactions included
within the set R are matched with adequate output
devices, therefore we can conclude that capability
checking of the System D to satisfy interaction
requirements is accepted. The overall formal model
for the SSP prototype is presented in Figure 4.

Figure 4. Formal model for SPP

A Systematic Lightweight Approach for Natural User Interfaces Prototyping
Alabdulwahab ● Law

127

5. TECHNICAL ASSESSMENT

The assessment of the SSP involved testing
tapping and paper-flipping actions using a 5-page
sample article printed on A5 paper. QR codes were
generated using a free online service (The QR
Code Generator4), and they were placed at 0.5”
from the top and left sides of pages. The text size
was 9pt (double spaced) for paragraphs and
captions, 12pt (bold) for headings and 14pt (bold)
for the title.

A total of 160 tapping points, and a total of 20
paper flips were recorded during the technical
assessment. The average response time was 0.9
second for tapping, and 1.3 seconds for flipping.
The maximum was 1.2 seconds for tapping and 1.9
seconds for flipping, and the minimum was 0.7 for
tapping and 0.9 for flipping. The accuracy of
tapping was ~97%, and errors (the resulted action
did not belong to the tapped word on paper) were
linked to short tapping interval (<2 seconds
between taps). The accuracy for paper-flipping was
65% (7 out of 20 flips failed to generate a
response) and errors were linked to the
deformation (bending) of paper that made the QR
code sensor unable to recognise codes on the
page corner.

Overall, the system performance was acceptable
for such a proof-of-concept prototype. Further
enhancement could be done by changing the
location of QR code.

6. DISCUSSION

We could observe the potential of the development
approach (Figure 2) in the following areas:

Incremental development. The development of
SSP was done incrementally. We built the input
system (Din) using two input technologies, then we
defined the reactions based on the input system,
and later, we constructed the output system (Dout)
based on reactions. We finally assembled the
overall system (D) and verified its capability to
match the requirements. This process which
spanned over several weeks reduced the
complexity of dealing with hardware. Also, we were
able to assess alternatives using different factors
(i.e., the method adequate), and to focus
development efforts on a single interaction aspect
as pieces of hardware were supplied.

Lightweight formal modelling. The formal model
of SSP (Figure 4) provides a precise and concise
description to the structure and functionality of the
system. It clarifies which part of a system is
responsible for responding to a specific input and

4 https://www.the-qrcode-generator.com/

how the response is generated, and through which
channel the response is delivered to user (if any).
Producing such a model did not involve complex
mathematical syntax, nor was it vague similar to
plain text and sketches of informal models.

Extension and replication. Through the formal
model, it would be easy to extend the system either
by adding more sensors (set D) or by improving the
system’s reaction (set R). Practically, the
incremental development of SSP is an example of
extending functionalities, from recognising books
and papers using a QR code scanner, to a full
interaction with paper when another sensor (i.e.,
the digitiser pad) was added. Furthermore,
replicating the prototype using other hardware
(e.g., utilising a larger digitiser pad) is very
straightforward as we only need to change the
corresponding device(s) while the remaining parts
of the formal model remain unaltered.

Verification and maintenance. During the
technical assessment, we performed dedicated
tests (accuracy + response time) for SSP in relation
to page flipping. The tests were performed because
of our pre-knowledge that there is a specialised
sensor that observes paper flipping. However,
assuming the case where there are two different
teams engaged in prototyping, one for development
and the other for testing. The formal model could
then inform the testing team about the internal
structure and functionality of the system; hence
they could perform such dedicated tests. In terms
of maintenance, the formal model would help to
replace, fix, and re-test the flawed functionality (the
QR code recognition in our case) without affecting
the other parts of the system.

7. CONCLUSION

The development approach as described in Figure
2 facilitated the creation of the SSP prototype from
scratch and the generation of a corresponding
formal model. The formal model (Figure 4) provides
a precise and concise description of a system’s
structure and functionality. It clarifies which part of
the system is responsible for responding to a
specific input, and how the reaction will look.
Producing this model does not involve complex
mathematical syntax. Nor is the model vaguely
similar to plain text of informal approaches applied
in many previous studies.

Through the model, it would be easy to extend the
system either by adding more sensors or by
improving system’s reaction. Maintenance-wise, it
would be simple to change a sensor (e.g., replacing
discontinued products) with new alternatives while
the remaining parts of the formal model stay
unaltered.

https://www.the-qrcode-generator.com/

A Systematic Lightweight Approach for Natural User Interfaces Prototyping
Alabdulwahab ● Law

128

While we are able to demonstrate the application of
the proposed approach with the case of pen-based
UI, we are aware that the scope of the application
context needs to be much widened to establish the
validity, reliability and applicability of the approach.
Furthermore, designers and developers interested
in NUIs should have been involved in evaluating
the approach to provide feedback for its refinement.
These limitations will be addressed in our future
work.

Overall, we have taken an initial but significant step
for the creation of a systematic lightweight
approach for prototyping NUIs based on context of
interaction. More research along this line of inquiry
is called for.

ACKNOWLEDGEMENTS

The first author would like to acknowledge and
thank the Council for Academics At Risk (CARA)
for their generous support to complete this study as
a part of his PhD research.

REFERENCES

Bataille, G., Gouranton, V., Lacoche, J., Pelé, D., &
Arnaldi, B. (2022). Unified Model and Framework
for Interactive Mixed Entity Systems. Computer
Vision, Imaging and Computer Graphics Theory
and Applications. VISIGRAPP 2020 (pp. 3-25).
Valletta Malta: Springer, Cham.

Bowen, J., Weyers, B., & Liu, B. (2022). Creating
Formal Models from Informal Design Artefacts.
International Journal of Human–Computer
Interaction.
doi:10.1080/10447318.2022.2095833.

Carter, A. S., & Hundhausen, C. D. (2010). How is
User Interface Prototyping Really Done in
Practice? A Survey of User Interface Designers.
IEEE Symposium on Visual Languages and
Human-Centric Computing (pp. 207-211).
Leganes Spain: IEEE.

Cheng, H., Yang, L. and Liu, Z., 2015. Survey on
3D hand gesture recognition. IEEE transactions
on circuits and systems for video
technology, 26(9), pp.1659-1673.

Chklovski, T., Ratnakar, V., & Gil, Y. (2005). User
interfaces with semi-formal representations: a
study of designing argumentation structures. IUI
'05: Proceedings of the 10th international
conference on Intelligent user interfaces (pp.
130-136). San Diego California: ACM.

Davani, A. M., Shirehjini, A. A., & Daraei, S. (2018).
Towards interacting with smarter systems.
Journal of Ambient Intelligence and Humanized
Computing, 187-209.

de Haan, G. (2015). HCI Design Methods: where
next? from user-centred to creative design and
beyond. ECCE '15: Proceedings of the European
Conference on Cognitive Ergonomics 2015 (pp.
1-8). Warsaw Poland: ACM.

Dix, A., Ghazali, M., Gill, S., Hare, J., & Ramduny-
Ellis, D. (2009). Physigrams: modelling devices
for natural interaction. Formal Aspects of
Computing, 613-641.

Feng, Y., Uchidiuno, U.A., Zahiri, H.R., George, I.,
Park, A.E. and Mentis, H., 2021. Comparison of
Kinect and leap motion for intraoperative image
interaction. Surgical Innovation, 28(1), pp.33-40.

Galitz, W.O., 2007. The essential guide to user
interface design: an introduction to GUI design
principles and techniques. John Wiley & Sons.

Hauger, D., Paramythis, A. and Weibelzahl, S.,
2011. Using browser interaction data to
determine page reading behavior. In User
Modeling, Adaption and Personalization: 19th
International Conference, UMAP 2011, Girona,
Spain, July 11-15, 2011. Proceedings 19 (pp.
147-158). Springer Berlin Heidelberg.

Jagodziński, P. and Wolski, R., 2015. Assessment
of application technology of natural user
interfaces in the creation of a virtual chemical
laboratory. Journal of Science Education and
Technology, 24, pp.16-28.

Jensen, L. and Konradsen, F., 2018. A review of
the use of virtual reality head-mounted displays
in education and training. Education and
Information Technologies, 23, pp.1515-1529.

Jin, Y., Ma, M. and Zhu, Y., 2022. A comparison of
natural user interface and graphical user
interface for narrative in HMD-based augmented
reality. Multimedia tools and applications, 81(4),
pp.5795-5826.

Kortum, P., 2008. HCI beyond the GUI: Design for
haptic, speech, olfactory, and other
nontraditional interfaces. Elsevier.

Lai, N.K., Ang, T.F., Por, L.Y. and Liew, C.S., 2018.
Learning through intuitive interface: A case study
on preschool learning. Computers &
Education, 126, pp.443-458.

Lam, H. and Baudisch, P., 2005, April. Summary
thumbnails: readable overviews for small screen
web browsers. In Proceedings of the SIGCHI
conference on Human factors in computing
systems (pp. 681-690).

Law, Y. C., Wehrt, W., Sonnentag, S., & Weyers,
B. (2023). Obtaining Semi-Formal Models from
Qualitative Data: From Interviews Into BPMN
Models in User-Centered Design Processes.
International Journal of Human–Computer
Interaction, 476-493.

A Systematic Lightweight Approach for Natural User Interfaces Prototyping
Alabdulwahab ● Law

129

Mann, S., 2007, June. Natural Interfaces for
Musical Expression: Physiphones and a physics-
based organology. In Proceedings of the 7th
international conference on New interfaces for
musical expression (pp. 118-123).

Norman, D. A. (2010). Natural user interfaces are
not natural. interactions, 17(3), 6-10.

Palanque, P., Ladry, J.-F., Navarre, D., & Barboni,
E. (2009). High-Fidelity Prototyping of Interactive
Systems Can Be Formal Too. HCI 2009:
Human-Computer Interaction. New Trends (pp.
667-676). San Diego CA: Springer.

Phamduy, P., DeBellis, M. and Porfiri, M., 2015.
Controlling a robotic fish via a natural user
interface for informal science education. IEEE
Transactions on Multimedia, 17(12), pp.2328-
2337.

Serim, B., & Jacucci, G. (2019). Explicating"
Implicit Interaction" An examination of the
concept and challenges for research. In
Proceedings of Conference on Human Factors in
Computing Systems (CHI’19) (pp. 1-16).

Shaer, O., & Jacob, R. J. (2009). A specification
paradigm for the design and implementation of
tangible user interfaces. ACM Transactions on
Computer-Human Interaction, 1-39.

Schmidt, A., 2000. Implicit human computer
interaction through context. Personal
technologies, 4, pp.191-199.

Trætteberg, H. (2002). Model-based User Interface
Design. Norwegian University of Science and
Technology.

Tsalmpouris, G., Tsinarakis, G., Gertsakis, N.,
Chatzichristofis, S. A., & Doitsidis, L. (2021).
HYDRA: Introducing a Low-Cost Framework for
STEM Education Using Open Tools. Electronics,
3056.

Vitzthum, A. (2006). SSIML/AR: A Visual Language
for the Abstract Specification of Augmented
Reality User Interfaces. 3D User Interfaces
(3DUI'06) (pp. 135-143). Alexandria Virginia:
IEEE.

Yu, J., Denham, A.R. and Searight, E., 2022. A
systematic review of augmented reality game-
based Learning in STEM education. Educational
technology research and development, 70(4),
pp.1169-1194.

Zhao, Y., Qin, Y., Liu, Y., Liu, S., Zhang, T. and
Shi, Y., 2014, February. QOOK: enhancing
information revisitation for active reading with a
paper book. In Proceedings of the 8th
International Conference on Tangible,
Embedded and Embodied Interaction (pp. 125-
132).

