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The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

caused a pandemic named coronavirus disease 2019 (COVID-19) that has become

the greatest worldwide public health threat of this century. Recent studies have

unraveled numerous mysteries of SARS-CoV-2 pathogenesis and thus largely

improved the studies of COVID-19 vaccines and therapeutic strategies.

However, important questions remain regarding its therapy. In this review, the

recent research advances on COVID-19 mechanism are quickly summarized. We

mainly discuss current therapy strategies for COVID-19, with an emphasis on

antiviral agents, neutralizing antibody therapies, Janus kinase inhibitors, and

steroids. When necessary, specific mechanisms and the history of therapy are

present, and representative strategies are described in detail. Finally, we discuss key

outstanding questions regarding future directions of the development of COVID-

19 treatment.
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Introduction

At the end of 2019, a new coronavirus that quickly causes severe respiratory syndrome and

lethal pneumonia emerged in Wuhan, China, and, 3 months later, the World Health

Organization characterized the outbreak as a severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2)–induced pandemic that is coronavirus disease 2019 (COVID-19) (1). The

pandemic has led to a profound strike on medical care systems, economic progress, and social

cohesion around the world. The magnificent research work on developing an effective COVID-

19 vaccine has resulted in several safe and effective options (2–4). However, there is still a need

to focus on developing potential drug candidates for treating patients with severe clinical

symptoms. During the COVID-19 public health emergency, the Food and Drug

Administration (FDA) issued Emergency Use Authorization (EUA) for various new drugs

and medical products without full FDA approval. Currently, the primary treatments for the

disease are antiviral drugs, immunomodulators, neutralizing antibody, and cell and gene

therapies (5, 6). Our understanding about the effect of different categories of potential

treatments due to their diversity has significantly improved. This study summarized the
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current therapeutic approaches (Figure 1) for COVID-19 with a simple

review of SARS-CoV-2 infection pathogenesis, aiming to help

researchers and doctors involved in the epidemic to improve their

further work.
Mechanism of COVID-19

Coronaviruses have ignited big-scale pandemics for three times

over the past 20 years: SARS from 2002 to 2003, Middle Eastern

Respiratory Syndrome in 2012, and COVID-19 emerged at the end of

2019. The COVID-19, caused by SARS-CoV-2, led to an outbreak of

unusual viral pneumonia that has spread worldwide and becomes the

greatest global public health crisis of this century (7, 8). As of August

2022, there have been over 59 million confirmed COVID-19 cases,

and more than 6 million COVID-19–related deaths worldwide.

Although a total of 1.2 billion vaccine doses have been

administered, COVID-19 is still a huge threat to life due to the lack

of effective medical treatment (1).

SARS-CoV-2 characteristics

CoVs, including SARS-CoV-2, are enveloped viruses with

positive-sense single-stranded RNA that possess the largest

genomes (~30 kb) among the known RNA viruses, which belong to

the Betacoronavirus genus of the family Coroaviridae (9). The

genome of SARS-CoV-2 comprises 14 open reading frames

encoding nine accessory proteins; four structural proteins of spike

(S), envelope (E), membrane (M), and nucleocapsid (N); and 16

nonstructural proteins (nsp1–16). In all these viral proteins, protein S

mediates host cell entry of SARS-CoV-2 by direct contact with its

cellular receptor–angiotensin-converting enzyme 2 (ACE2).

Moreover, the transmembrane protease serine 2 and cathepsin L

can also facilitate SARS-CoV-2 cellular entry using a different manner

at the plasma membrane surface and endosomal compartments (7,

10, 11). Once enter the host cell, cytosol release of RNA genome of

SARS-CoV-2 is activated and starts to replicate. New virions are then

assembled and secreted to the intercellular space for infection of

neighbor cells (12). SARS-CoV-2 infections often lead to “flu-like”

symptoms such as headache, fever, sore throat, backache, cough, and

loss of taste or smell. Although plenty of infection cases are

asymptomatic or mild, there are certain cases that show severe
Frontiers in Immunology 02
outcomes and are associated with systemic inflammation, acute

respiratory distress syndrome, tissue damage, and cardiac injury.

The severe COVID-19 disease with multiorgan damage can be fatal,

and its risk largely depends on comorbidities including diabetes,

obesity, hypertension, and others (8, 13, 14).
Host innate immune responses and
cytokine storm

Once SARS-CoV-2 invasion happens, the host innate immune

response will be rapidly activated followed by the involvement of

adaptive immune system (15). As the frontline defense of host, innate

immune system employs different strategies for virus detection and

elimination to fight against SARS-CoV-2. During the virus infection,

the innate immune cells, including natural killer cells, macrophages,

monocytes, dendritic cells, and neutrophils, are rapidly recruited and

activated first to produce inflammatory cytokines efficiently, such as

type I interferons (IFNs) for antiviral activities. Later, B and T

lymphocytes are activated for the engagement of immunological

memory (16). Host innate immune system primarily relies on

pattern recognition receptors (PRRs) to sense virus, bacteria, and

other pathogen-associated molecular patterns and/or damage-

associated molecular patterns to trigger inflammatory responses

that limit viral lifecycle, promote viral clearance, and accelerate the

establishment of adaptive immunity (17). The PRRs, expressed by

epithelial cells and innate immune cells, are classified into several

families: retinoic acid–inducible gene I (RIG-I)–like receptors (RLRs)

[including RIG-I and melanoma differentiation-associated protein 5

(MDA5)], Toll-like receptors (TLRs), nucleotide-binding

oligomerization domain (NOD)–like receptors (NLRs), the cyclic

GMP-AMP synthase (cGAS), absent in melanoma 2–like receptors,

and C-type lectin receptors (18). In all the PRRs, intracellular RLR

pathways are essential for sensing RNA virus invasion to trigger

innate antiviral immune response. Following activation by viral RNA,

RIG-I and MDA5 translocate and bind to mitochondria to activate

the adaptor protein mitochondrial antiviral signaling (MAVS) that

subsequently induces TANK-binding kinase activation and IFN

regulatory factor 3 (IRF3) phosphorylation, which, in turn,

promotes production of IFNs to prevent virus infection (19, 20).

SARS-CoV-2, belonging to single-stranded RNA viruses, can also be

detected by MDA5 and RIG-I. However, their roles in regulating
FIGURE 1

Category of COVID-19 treatments. On the basis of their targets, the treatments can be divided into two big categories: antiviral agents and therapies
targeting host.
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SARS-CoV-2 infection seem different (21–24). By screening RNA

sensors for SARS-CoV-2 infection in a model of human lung

epithelial cells (Calu-3), Yin and colleagues identified MDA5 and

LGP2 as the dominant sensors to trigger IFN production in response

to SARS-CoV-2 infection (21). Another two independent research

groups found that knocking out genes encoding MDA5 or MAVS in

human lung epithelial cells leads to impairment of SARS-CoV-2–

induced type I IFN production (22, 23). These studies demonstrate

the indispensable role of MDA5 in mediating type I IFN expression in

response to SARS-CoV-2 infection. However, RIG-I seems to

function in a MAVS-IFN–independent way. RIG-I deletion either

by small interfering RNA or CRISPR-Cas9 in Calu-3 failed to reduce

IFN-b production but still enhanced viral replication (21–23). RIG-I

likely restrains full-length ACE2 expression or binds the 3′
untranslated region of the viral RNA genome via its helicase

domains and consequently restricts cellular entry or replication of

virus independently of IFNs (22, 25).TLRs and NLRs also are reported

to play roles in anti–SARS-CoV-2 responses. As a classic innate

immune signaling, TLRs express widely from tissue cells to innate

immune cells, which generally trigger MyD88 or TRIF to transduce

signals via nuclear factor–kB, mitogen-activated protein kinases, and

IRFs to mediate transcriptional activation of pro-inflammatory

cytokines (26). Upon SARS-CoV-2 infection, TLR2 senses E protein

to enhance inflammatory responses and TLR4 can be activated by S

protein to contribute to the release of cytokines (27, 28). In patients

with COVID-19, NLRP3 inflammasome activation and its dependent

caspase-1 and GSDMD cleavage as well as subsequently IL-1b
secretion have been demonstrated, suggesting that NLRs and

inflammasome sensors are involved in SARS-CoV-2 infection as

well (29–31). In addition, the cGAS–STING signaling pathway,

triggered by cytosolic DNA, is also involved in the campaign of

fighting against SARS-CoV-2 invasion (32–34). In the case of severe

COVID-19, PRRs and cGAS–STING signaling engaged by SARS-

CoV-2 induce the expression of both IFNs and numerous pro-

inflammatory cytokines, including TNF, IL-6, IL-1b, IL-12, and IL-

17 (35, 36). These cytokines act as a two-edged sword, not only aiding

in clearing virus infections but also contributing to life-threatening

condition caused by cytokine storm. A recent study shows the

combination of TNF-a and IFN-g promotes inflammatory

programmed cell death-PANoptosis by activating the Janus kinase

(JAK)/signal transducer and activator of transcription (STAT1)/IRF1

axis and caspase-8/FADD signaling (36). The lethal shock phenotype

observed in mice administrated with TNF-a and IFN-g combination

mirrors the cytokine storm syndrome in patients with severe COVID-

19, emphasizing the link between the dysregulated release of cytokines

and the multiorgan damage in patients with SARS-CoV-2 infection

(37–39). In addition, the identification of elevated IL-6 levels in serum

as a strong predictor of respiratory failure in patients with COVID-19

makes IL-6 one of the critical cytokines in the COVID-19–related

hyperinflammatory syndrome (40, 41).
Adaptive immunity and vaccines

Adaptative immune response, established by activation of T and B

cells, sent us a powerful weapon to fight against SARS-CoV-2

pandemic: the vaccine. The activation of innate immune cells
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efficiently to secrete specific antibodies and to kill infected cells,

which accelerates the development of acquired immunological

memory. The adaptive immunity produced by B and T cells in

response to SARS-CoV-2 infection and the vaccines have been

discussed in other reviews (42, 43).

Treatments

All the treatments can be subcategorized into two big groups on

the basis of their targets: antiviral agents and therapies targeting host.

Antiviral agents

Antiviral agents against COVID-19 reported mainly include

polymerase inhibitors, protease inhibitors, inhibitors of nucleoside

and nucleotide reverse transcriptase, entry and uncoating inhibitors,

and other antivirals.

Polymerase inhibitors

Remdesivir is a nucleotide prodrug, and its active metabolite can

inhibit the activity of RNA polymerases, which is a key enzyme for the

replication of many viruses, including coronaviridae. Remdesivir

showed antiviral effect on SARS-CoV-2 (44, 45), and it was approved

by FDA for treating COVID-19. However, the clinical antiviral effect of

remdesivir against SARS-CoV-2 remains controversial. One study

reported a clinical trial of non-hospitalized patients with COVID-19.

Among the enrolled patients, the safety was acceptable following 3 days

of treatment with remdesivir, and the risk of hospitalization or death

was reduced by 87% compared with the placebo (46). Another clinical

trial demonstrated that remdesivir outperforms placebo. The recovery

time of adults hospitalized with COVID-19 and lower respiratory tract

infection is shortened after receiving remdesivir treatment (47).

Whereas, other studies including a multicenter trial conducted in 10

hospitals in Hubei, China, showed that there was no statistically

significant difference in the clinical status of patients with COVID-19

receiving remdesivir compared with standard care (48–52). In addition,

the researchers also evaluated the effect of baricitinib combined with

remdesivir in hospitalized adults with COVID-19. In terms of

shortening the recovery time of patients with COVID-19 and

speeding up the improvement of their clinical symptoms, remdesivir

combined with baricitinib was more effective than remdesivir alone (53).

Favipiravir, an antiviral drug, selectively inhibits the RNA

polymerase of viral and has antiviral effects on a variety of RNA

viruses (54, 55). A clinical study demonstrated that standard

supportive care plus early oral favipiravir monotherapy significantly

decreased the recovery time of patients with mild-to-moderate

COVID-19 compared with the standard supportive care alone (56).
Protease inhibitors

Protease is one of the key enzymes in the processing of

coronavirus polyproteins. Many studies have been carried out on

protease inhibitors for treating COVID-19 in recent years. Lopinavir
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is a viral protease inhibitor and is primarily used to treat human

immunodeficiency virus (HIV). Ritonavir can increase the serum

concentration of lopinavir in vivo by inhibiting CYP3A-mediated

metabolism of lopinavir (57). Therefore, lopinavir/ritonavir is

marketed as a combination product. Cao et al. conducted a clinical

trial involving 199 hospitalized adult patients with COVID-19. The

results showed that lopinavir-ritonavir treatment had no effect on

adult patients with severe COVID-19 (58). Moreover, another clinical

trial with more participants enrolled at 176 hospitals in the UK was

reported subsequently. In this study, 1,616 patients were assigned to

lopinavir/ritonavir group and 3,424 patients to the usual care group.

Similarly, no efficacy was observed in hospitalized patients with

COVID-19 treated with lopinavir/ritonavir (59).

Lopinavir/ritonavir might be more effective if combined with

other antiviral regimens. In one study, four patients with COVID-19

were given antiviral treatment, including lopinavir/ritonavir, arbidol,

and Shufeng Jiedu Capsule (a traditional Chinese medicine). The

pneumonia-related symptoms of three patients were significantly

improved; however, the efficacy of the combinational treatment still

needs further studies to confirm (60). Moreover, the results of a phase

2 trial showed that early triple antiviral therapy (combined IFN-b1b,
lopinavir/ritonavir, and ribavirin) was safe and had a better effect in

patients with mild-to-moderate COVID-19 for alleviating symptoms,

shortening the time of viral shedding and hospital stay than lopinavir/

ritonavir alone (61). Nirmatrelvir is an inhibitor of the SARS-CoV-2

main protease (Mpro) enzyme (62). A phase 2–3 clinical trial was

performed in symptomatic, unvaccinated, nonhospitalized adults at

high risk for progression to severe COVID-19. In this study, 1,120

patients received nirmatrelvir plus ritonavir therapy and 1,126

patients received placebo. Symptomatic patients with COVID-19

treated with nirmatrelvir plus ritonavir had an 89% lower risk of

developing severe COVID-19 than placebo (63).
Inhibitors of nucleoside and nucleotide
reverse transcriptase

Azvudine (FNC), a nucleoside reverse transcriptase inhibitor, has

broad-spectrum antivirus activity including HIV-1. FNC had been

approved by the national medical products administration (NMPA,

China) for AIDS treatment on 21 July 2021. One clinical trial of FNC

confirmed that oral FNC (5 mg, qd) could cure patients with COVID-

19, and the viral RNA turned negative in about 3.29 ± 2.22 days. The

results demonstrated that FNC could be used against SARS-CoV-2

(64). Another clinical trial was performed in China to investigate the

anti–COVID-19 effect of FNC. The results of this study showed that

FNC could shorten the time of nucleic acid turning negative

compared with the standard antiviral drugs for patients with mild

and common COVID-19. This work also suggests that FNC is

effective for COVID-19, and larger–sample size clinical trials of

FNC for treating COVID-19 are needed (65, 66). Recently, NMPA

conditionally approved FNC to treat common COVID-19 in adults

on 25 July 2022.

Molnupiravir is a small-molecule ribonucleoside prodrug of N-

hydroxycytidine and has activity against coronaviruses including

SARS-CoV-2 (67). Molnupiravir reduced the risk of hospital
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with mild-to-moderate COVID-19 who were at risk for poor

outcomes (68). To evaluate the efficacy and safety of treatment with

molnupiravir in nonhospitalized, unvaccinated adults with mild-to-

moderate COVID-19, a phase 3 clinical trial was conducted. Study

results suggested that the risk of hospitalization or death of

unvaccinated adults with COVID-19 could be reduced by early

treatment with molnupiravir (69). Another study showed that

molnupiravir was active against the three predominant circulating

variants (delta, gamma, and mu) of SARS-CoV-2 and showed a

modest antiviral effect (70, 71). Moreover, the UK’s Medicines

regulator and the US FDA have authorized the emergency use of

molnupiravir for treating mild-to-moderate COVID-19 in adults.
Entry and uncoating inhibitors

Amantadine can block the early stage of viral replication, which

has been used to treat influenza A (72). Amantadine, because of its

lipophilic and alkaline physicochemical properties, could cross the

lysosome membrane and prevents the release of viral RNA into the

cells (73). One study has shown that adamantane may have protective

effects against COVID-19. This study has limitations such as a small

sample size, and further research is needed to confirm it (74).

Enfuvirtide, an HIV-1 fusion inhibitor peptide, could be used as a

potent SARS-CoV-2 fusion inhibitor (75). Clinical trials need to be

performed to confirm the effect of enfuvirtide against COVID-19.
Other antivirals

Azithromycin is a synthetic macrolide antibiotic with a broad

range of antibacterial, anti-inflammatory, and antiviral properties

(76). A prospective, randomized superiority trial done at 19 hospitals

in the UK reported that adding azithromycin to standard care

treatment did not reduce the risk of subsequent hospital admission

or death in patients with mild-to-moderate COVID-19 (77).

Moreover, another study also showed that the routine use of

azithromycin did not reduce the recovery time or risk of

hospitalization for people who were suspected with COVID-19 (78).

Hydroxychloroquine and chloroquine, used to treat malaria and

rheumatologic conditions, have been suggested as potential

treatments for COVID-19. Currently, at least 80 trials of

chloroquine, hydroxychloroquine, or both, sometimes in

combination with other drugs, are registered worldwide (79). In

one study of 1,561 patients with COVID-19 treated with

hydroxychloroquine and 3,155 in usual care, hydroxychloroquine

did not lower patient mortality compared with usual care (80).

Moreover, hydroxychloroquine did not provide significant

improvement in symptom severity for early, mild COVID-19

outpatients (81), and could not prevent symptomatic infection after

SARS-CoV-2 exposure (82, 83). In addition, studies had shown that

comparing standard care, hydroxychloroquine, alone or with

azithromycin did not improve clinical outcomes for patients with

COVID-19 (84, 85). Therefore, there is no need to combine

azithromycin with hydroxychloroquine in patients with COVID-19.
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IFNs, as one of many inflammatory mediators induced by SARS-

CoV-2 infection, have been noticed since the beginning of the

pandemic, but the effect of IFNs of type I (IFN-I) or type III (IFN-

III) families remains controversial (86). Research reported that, unlike

other infectious or noninfectious lung pathologies, the expression of

INFs was increased in the lower respiratory tract of patients with

severe COVID-19. The results indicated that IFNs played opposing

roles at distinct anatomical sites of patients with SARS-CoV-2 (86).

The hyperinflammation makes the patients succumb rapidly to

COVID-19 without the help of IFN. Therefore, IFN improves the

prognosis of patients with COVID-19 (87). Kalil et al. found that IFN-

b1a plus remdesivir was not superior to remdesivir alone in

hospitalized patients with COVID-19 pneumonia (88). Another

study showed that IFN-a decreased the mean days of virus

clearance and the average days of hospitalization. This study

suggests that early administration of IFN-a could be a promising

treatment for COVID-19 (89).
Targeting host

The treatments targeting host include neutralizing antibody

therapy, Janus kinase inhibitors, and steroids.
Neutralizing antibody therapy

The history of antibody therapy can date back to the early 1890s,

and, at that time, Dr. Behring and Dr. Kitasato found that the serum

from an animal recovered from diphtheria infection could protect

diphtheria- and tetanus-infected patients and developed the first

serum therapy. Forty years later, serum therapy was widely applied

in the treatment of various infectious diseases. However, it had been

abandoned with the development of the first antibiotics by the late

1940s. In 1959, a big discovery about the molecular formula of

antibodies was made by Gerald Edelman and Rodney Porter (90,

91). Thirty years later, the first antibody “muromonab” was approved

in clinics around the world (92). However, the application of the

therapeutic antibody was still limited because of the restricted

resource at that time. In the 1990s, with the development of

antibody engineering technologies (93), the restriction of the

antibody resource was broken, which made it possible to check the

effectiveness of antibody treatment on a large scale. Since then,

antibody treatment has been quickly developed. So far, over 80

therapeutic monoclonal or polyclonal antibodies have been

endorsed in the world, which have been mainly adopted in passive

immunotherapy. However, with the outburst of COVID-19 and

following severe and emergent world health situations, the interest

in plasma therapy has been renewed.
Convalescent plasma

Convalescent plasma from patients who recovered from infection

was adopted to treat severe patients. In 2019, the first peer-reviewed

study about the effect of convalescent plasma was carried out in China

(94). Compared with patients who received standard treatment, 103
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after transfusion of convalescent plasma. Unfortunately, the trial was

halted because of slow and limited enrollment. However, similar

studies were carried out in other countries on a smaller scale in 2020.

A phase 1 clinical trial study was carried out to inspect the potential of

convalescent plasma in Switzerland. Thirty inpatients with COVID-

19 were transfused 3 units of 200 ml plasma in 3 consecutive days,

followed by comprehensive longitudinal monitoring for over 70 days.

The safety of convalescent plasma therapy was confirmed with the

absence of transfusion-related adverse events throughout the whole

process as a consequence of smaller plasma volumes being adopted in

the treatment. Furthermore, faster virus clearance and fewer

comorbidities were confirmed in the following monitoring (95).

However, this trial was less persuasive by virtue of the small sample

size and shortage of control. In later 2020, Spanish scientists did

another a higher-scale trial that is multicenter, double-blind, and

randomized placebo-controlled. A total of 376 patients with mild-to-

moderate COVID-19 with were recruited to receive 250–300 ml of

convalescent plasma with high anti–SARS-CoV-2 IgG titers or 250-

ml sterile 0.9% saline solution as the control group. The authors did

not see a significant viral load decrease and the prevention of

progression of the illness at the end of the trial. In addition, one

patient showed a serious adverse event after infusion for 7 days (96).

At the same time, another trial with 1,181 patients across 23 sites in

the US was carried out with the opposite conclusion. This study found

that 37 COVID-19–related hospitalization occurred in 589 patients

who received control plasma, whereas only 17 of the 592 patients who

were infused with convalescent plasma showed disease progression,

leading to hospitalization, which means convalescent plasma greatly

reduced the hospitalization risk. However, 149 participants among

these 1,181 patients were fully vaccinated, and participants older than

65 years only account for 6.8%, all of which made the effectiveness of

the treatment controversial (97). Another large convalescent plasma

conducted in the UK involving 11,558 patients confirmed that high-

titer convalescent plasma treatment failed to improve the survival of

hospitalized patients with COVID-19 (98). Estcourt et al. discussed

that the reason for the discrepancy between different trials was the

standard of patients’ enrollment (99). Moreover, they mentioned

another two ongoing trials: the COVID-19 trial and the REMAP-

CAP trial, which may bring additional clarity to the effectiveness of

convalescent plasma.
Neutralizing monoclonal and
polyclonal antibody therapies

Although convalescent plasma showed partial effectiveness in

selected patients, its potential is still controversial. In addition, only

part of plasma antibodies will be neutralizing, and those non-

neutralizing antibodies will bind to non-spike protein viral antigens,

which will sabotage antibody reactions to further cause tissue damage.

Indeed, in some convalescent plasma trials, allergic responses and

lung damage occurred. Furthermore, the antibody titer in

convalescent plasma is low and the resource of the blood is

constrained. All these disadvantages restricted the application of

convalescent plasma therapy in clinics. In contrast, monoclonal/

polyclonal antibodies therapy, as another type of passive
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immunotherapy, can precisely target the neutralizing sites, and they

can be massively produced and easily scalable, which conquers all the

disadvantages of convalescent plasma. All these advantages attract

medical scientists to put more effort into monoclonal or polyclonal

antibodies to develop more potent therapies. As above mentioned, the

S protein can bind to receptors for ACE2 to enter host cells. For the

early stage, many monoclonal antibody trials targeting S protein were

conducted since the routes of the virus entering host cells have

been uncovered.

The first monoclonal antibody that was found effective for

COVID-19 infection was LY-CoV555. The effect of LY-CoV555 in

anti–SARS-CoV-2 infection in nonhuman primates was first reported

by Jones et al. (100, 101). In this study, LY-CoV555 (Bamlanivimab)

showed strong binding to ACE2 and neutralizing activity. It could

reduce viral load in respiratory tract samples even at a low dose. Later,

the effectiveness of LY-CoV555 was tested on outpatients and

hospitalized patients (102, 103). For the outpatients’ trials, 309

patients were injected with 700, 2,800, or 7,000 mg of LY-CoV555.

The viral load of the patients was checked on day 11. Compared with

placebo patients, viral RNA showed a significant decrease in the

2,800-mg group patients. In addition, LY-CoV555 decreased the ratio

of hospitalization or visiting emergency (102, 104). Two months later,

another trial was conducted for the efficacy of LY-CoV555 on

hospitalized patients. A total of 163 hospitalized patients were

infused with LY-CoV555 and Remdesivir. However, the status of

patients was not improved by LY-CoV555 (103, 105). Monoclonal

antibodies are restricted only to the same or single epitope due to their

monovalent affinity, which may be ineffective against the virus

variance. To solve this problem, researchers combined two

monoclonal antibodies. Etesevimab, as another monoclonal

antibody, was always used jointly with bamlanivimab. A

randomized phase 2/3 trial with 613 participants enrolled was

carried out at 49 US centers to compare the efficacy of

Bamlanivimab as monotherapy or together with etesevimab (106,

107). Bamlanivimab/Etesevimab showed stronger efficacy than

bamlanivimab monotherapy in decreasing viral amount in

outpatients with mild-to-moderate symptoms. The same conclusion

was drawn by another larger trial that bamlanivimab plus etesevimab

could decrease the potential of COVID-19–related hospitalization

and death (108, 109). Because of their strong efficacy in patients with

mild-to-moderate COVID-19, they were issued together for

emergency use on 9 February 2021. However, because of the high

frequency of the Omicron variant, FDA already retracted this

monoclonal antibody for the post-exposure prevention or treatment

under the EUA. Later, the study published by VanBlargan et al. also

confirmed the futility of LY-CoV555 to Omicron variance (109, 110).

So far, the only neutralizing monoclonal antibody issued by FDA for

emergency use is bebtelovimab. Iketani et al. confirmed three

sublineages of Omicron showed resistance to 17 neutralizing

antibodies except for bebtelovimab (111, 112). Westendorf et al.

were able to isolate bebtelovimab through a high-throughput B cell

screening pipeline. The authors uncovered the LY-CoV1404 epitope

is highly conserved in contact residues, which is why they still show

neutralizing activity against omicron variance (113, 114). The efficacy

of bebtelovimab was also confirmed by another study conducted by

Wang et al. and published 1 month ago (115, 116). In this study, they
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also identified that the Omicron variance showed more transmissible

and more evasive to antibodies.
Janus kinase inhibitors

Serum concentrations of proinflammatory cytokines and

chemokines—including IFN-g, TNF-a, IP-10, G-CSF, IL-2, IL-6,
IL-8, IL-9, IL-10, and IL-17—were increased in patients with severe

COVID-19 and strongly correlated with disease outcome (117). The

JAK/STAT pathway regulates a number of inflammatory cytokines

and growth factors by transferring signals from receptors in the cell

membrane to the nucleus, leading to hematopoiesis, lactation, and the

immune system and mammary gland development (118, 119). JAKs

are tyrosine kinases that bind to the cytoplasmic domains of type I

and type II cytokine receptors. When ligands bind to their receptors,

the intracellular portion of JAKs will be activated, which recruits and

phosphorylates STATs. Activated STATs translocate into the nucleus

and bind to the promoters of related genes, inducing the expression of

specific genes (120–123). These cytokines are highly important in

initiating and orchestrating innate and adaptive immune responses

but may also be a source of excessive or uncontrolled inflammation

and tissue damage in patients with COVID-19. The importance of

JAK/STAT pathway in malignancies and autoimmune diseases has

been reported (124–131); therefore, inhibition of the JAK/STAT

pathway is a promising approach for the treatment of

various diseases.

JAK inhibitors can competitively bind to the adenosine

triphosphate-binding site of JAKs and interfere with the

phosphorylation of STATs proteins, thereby inhibiting the

expression of downstream inflammatory genes and growth factors

(132, 133). Currently, JAK inhibitors have achieved efficacy in a wide

range of immune-mediated inflammatory diseases, such as

rheumatoid arthritis (RA) (134), myelofibrosis, and polycythemia

vera (135–137). The severity of COVID-19 is strongly associated with

SARS-CoV-2–induced hypercytokinemia and inflammation (138,

139). Up to now, some JAKi (such as Baricitinib, Ruxolitinib,

Tofacitinib, and Nerizutinib) have had significant clinical impacts

on improving clinical outcomes of hospitalized patients with COVID-

19. These kinase inhibitors are used as treatments for COVID-19

because they inhibit virus-induced immune activation and signaling

of inflammation (140).
Baricitinib

Baricitinib is a JAK1/JAK2 inhibitor that blocks cytokine and

growth factor receptor stimulation, thereby reducing downstream

immune cell function (117). Baricitinib is used for the treatment of

RA and has shown success in clinical studies in RA. Baricitinib is

reliably absorbed when administered orally and is therefore highly

bioavailable and well tolerated in patients with RA (141, 142).

COVID-19 infection–induced cytokine signaling pathways—

including IL-6, IL-2, IL-10, IFN-g, and GM-CSF—are elevated in

hyperinflammatory conditions but are disrupted by baricitinib (53,

117). Furthermore, baricitinib may also have direct anti–SARS-CoV-2
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activity by interfering with viral endocytosis, thus hindering SARS-

CoV-2 entry and infection of susceptible cells (143).

Numerous studies have established the potency of baricitinib in

hospitalized participants with COVID-19. Improved oxygenation and

reduced levels of systemic inflammatory cytokines have been reported

in patients with COVID-19 treated with baricitinib (144–146). A meta-

analysis of randomized controlled trials shows that treatment with JAK

inhibitors (including baricitinib) in hospitalized patients with COVID-

19 can significantly reduce the risk for COVID-19 death by 43%,

whereas it led to a significant decrease in the risk for mechanical

ventilation or ECMO (extracorporeal membrane oxygenation)

initiation by 36% (147). A study demonstrated that baricitinib plus

standard of care including corticosteroids predominantly reduced

mortality at 28 days and 60 days in patients who were receiving

National Institute of Allergy and Infectious Disease (NIAID) ordinal

scale score 7 population (NIAID-OS 7; hospitalized and on IMV or

ECMO). Overall, 28-day all-cause mortality among patients on IMV or

ECMO at baseline was 58% among those receiving placebo and 39%

among participants receiving baricitinib. Sixty-day mortality was

significantly lower in the baricitinib group compared with that in the

placebo (45% vs. 62%, respectively) (148). In addition, another two

studies showed that baricitinib absolutely reduced mortality in patients

with moderate-to-severe or severe COVID-19 (149, 150). Another

meta-analysis of randomized controlled trials evaluated the safety

and efficacy of baricitinib in hospitalized patients with COVID-19

and showed that baricitinib could lead to better clinical outcomes for

hospitalized patients with COVID-19 (151).

Since baricitinib’s continued success in COVID-19 clinical studies,

FDA issues the first EUA for baricitinib in combination with remdesivir

for the treatment of hospitalized adults with COVID-19 and pediatric

patients 2 years or older requiring assisted invasive mechanical

ventilation or ECMO. The EUA, revised on 28 July 2021, to address

safety concerns and protect public health, authorizes baricitinib as a

stand-alone therapy. In May 2022, baricitinib was approved by the US

FDA for the treating hospitalized adults with COVID-19 requiring

supplemental oxygen, mechanical ventilation, or ECMO.
Tofacitinib

Tofacitinib, an orally available JAK inhibitor, can inhibit

inflammatory cytokines such as IL-2, IL-4, IL-6, and IL-7 through

inhibiting JAK3 and JAK1, which is approved for treating

autoimmune diseases and RA (152–155). Many studies suggest that

tofacitinib therapy can be continued in patients with COVID-19.

A double-blind, interventional phase 3 trial (NCT04469114)

including 289 patients evaluated the safety and efficacy of

tofacitinib in hospitalized patients with COVID-19 with pneumonia

(156). The cumulative incidence of death or respiratory failure

through day 28 was 18.1% in the tofacitinib group and 29.0% in the

placebo group. Specifically, 28-day all-cause mortality was

significantly lower in the tofacitinib group than in the placebo

group (2.8% vs. 5.5%, respectively) (156). In another study by

Roman and colleagues on 62 patients with severe COVID-19, it has

shown that tofacitinib group showed lower mortality and the

incidence of admission to intensive care than the control group

(16.6% vs. 40.0% and 15.6% vs. 50.0%) (157). Furthermore, an
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study developed by Yale University evaluated the safety and efficacy

of tofacitinib in 60 hospitalized patients with COVID-19 (18–99 years

old) who require supplemental oxygen and have serologic markers of

inflammation but do not need mechanical vent i lat ion

(NCT04415151). Analysis of these RCT studies demonstrated the

promising efficacy of tofacitinib in mortality and the incidence of

invasive mechanical ventilation.
Ruxolitinib

Ruxolitinib, a JAK1 and JAK2 protein kinase inhibitor, can

suppress cytokine production associated with myelofibrosis,

polycythemia vera, and acute graft-versus-host disease (158–163),

which is similar to SARS-CO-V2 infection. The antiviral potency of

ruxolitinib has also been shown to be effective against HIV and

Epstein–Barr virus infection (164, 165). Since ruxolitinib has been

successfully used to treat the diseases associated with hyperimmune

syndrome, it has been employed in patients with COVID-19.

Several studies are being conducted with ruxolitinib in several

clinical settings. In a global, double-blind, placebo-controlled, 29-day,

multicenter phase 3 trial, 432 patients were randomly assigned to

receive ruxolitinib (n = 287) or placebo (n = 145) plus the standard of

care to assess the efficacy and safety of ruxolitinib in hospitalized

patients with COVID-19. In this study, the primary objective was

missing: the composite endpoint was 12% in both ruxolitinib-treated

patients and placebo-treated patients; the mortality rate by day 29 was

3% in patients receiving ruxolitinib, compared with 2% in the placebo

group. In addition, 8% ruxolitinib-treated patients had received

invasive ventilation compared with 7% of 145 placebo-treated

patients, and 11% ruxolitinib-treated patients had received ICU care

compared with 12% placebo-treated patients (166). Another phase 3

study was conducted to assess the efficacy and safety of ruxolitinib with

5 mg bidaily or 15 mg bidaily in patients with COVID-19–associated

ARDS who require mechanical ventilation. There was no statistically

significant improvement in mortality in ruxolitinib group at day 29

compared with that in the placebo. However, it is significant when US

study participants were analyzed separately, and when data from both

treatment arms were pooled, it could also be detected for the overall

population (167). In addition, a beneficial effect of ruxolitinib was

reported in COVID-19 pneumonia in a multicenter study with 43

participants. In this study, 90% of ruxolitinib-treated patients showed

computed tomography improvement at day 14 compared with 61.9%

of placebo-treated patients. Three patients in the control group died of

respiratory failure, with an overall mortality rate of 14.3% on day 28; no

patients in the ruxolitinib group died. This study demonstrates that

ruxolitinib tends to improve the clinical status of patients with COVID-

19 in a shorter time (168).
Nezulcitinib

Nezulcitinib, an inhaled, lung-selective, pan-JAK inhibitor, has

shown strong, broad inhibition of JAK/STAT signaling in the

respiratory tract in experimental mouse models, which is a

promising therapy for broad intervention in excessive immune
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response in the airways. Therefore, nezutinib, administered by

nebulization, may provide a new therapeutic modality to inhibit

cytokine release and decrease morbidity and mortality in patients

with COVID-19 with acute lung injury. A phase 2 clinical trial with

inhaled nezulcitinib 3 doses (1, 3, and 10 mg once daily for 7 days)

explored the safety and efficacy in 25 patients with severe COVID-19

and initially reported trends toward improving the clinical status and

decreasing mortality in patients requiring supplemental oxygen (169).

The lower mortality rate and earlier clinical recovery in patients

receiving nezulcitinib compared with that in patients receiving a

placebo suggest that it is a promising therapy for cytokine-driven

lung inflammation.

Steroids

The latest research shows that SARS-CoV-2 infection can

motivate the immune system and ignite inflammation, which

occasionally causes lethal cytokine storm. Corticosteroids have been

used to treat inflammation related diseases in the last decade, such as

RA and asthma. However, the trials of corticosteroids in patients with

COVID were not encouraged in the beginning considering their

function in suppressing the immune system. After several

randomized clinical trials, corticosteroids have been proved to be

able to improve survival in severe COVID-19 (170), which will be

discussed in the following part.

Dexamethasone

In 2020, a controlled and open-label trial, including around 6,425

hospitalized patients, that lasted for 28 days was started in the UK (171).

A total of 4,321 patients receiving usual care were taken as control,

whereas another 2,104 patients received dexamethasone treatment.

After 28 days, dexamethasone decreased the death rate of patients

rely on invasive mechanical ventilation or oxygen. Another clinical trial

stated that intravenous dexamethasone was able to increase ventilator-

free days in patients with COVID-19 with moderate or severe ARDS in

comparison with standard care alone (172). However, long-term

treatment with 12 or 6 mg of dexamethasone for 10 days in patients

with COVID-19 with severe hypoxemia did not show improvement in

mortality or health-related quality of life (173). Similarly, another

clinical trial study that lasted for 10 days showed that dexamethasone

at 12 mg/day compared with that at 6 mg/day did not decrease the

death rate of patients with COVID-19 and severe hypoxemia in the

absence of life support (174), whereas a 90-day follow-up of which

revealed the benefits of the high dose compared with that of the low

dose (175). Furthermore, an open-label and randomized clinical trial

demonstrated that high-dose dexamethasone, compared with low-dose,

improved clinical symptoms within 11 days in hospitalized patients

with COVID-19 who rely on oxygen therapy (176).

Budesonide

The study carried out in Spain and Argentina stated that inhaled

budesonide was safe and could reduce the incidence of severe

syndrome in inpatients with COVID-19 (177). Another similar

study was accomplished in the UK community, which showed that
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hospitalization or death in patients with COVID-19 (178). In

addition, a phase 2 randomized controlled trial indicated that

administration of inhaled budesonide in early COVID-19 could

reduce the chance of worsening, which may be due to its

inflammatory modulating effect through improving T-cell response

(179, 180).

Ciclesonide

CONTAIN phase 2 randomized controlled trial exhibited that

patients with inhalation and intranasal ciclesonide showed less severe

symptoms than the patients in placebo groups, which did not show in

young patients. However, further research is required due to

insufficient evidence (181). Another randomized clinical trial of the

efficacy of inhaled ciclesonide in outpatients showed that ciclesonide

did not reduce the recovery time in adolescents and adult patients

(182). Nevertheless, it is still early to get a conclusion about the effect

of ciclesonide.

Glucocorticoids

Hydrocortisone and methylprednisolone all showed positive

effects in patients with COVID-19 with severe symptoms revealed

by two clinical trials (183, 184). Prednisolone showed a protective

effect in patients with post–COVID-19 diffuse parenchymal

abnormalities, which did not show dose dependency (185).
Conclusions

COVID-19, as a worldwide spreading virus with high transfection

and lethal, caused millions of people to die, exposing the weakness of

the human healthcare system in coping with emergent and serious

health risks. All the above-illustrated treatments with different

advantages or disadvantages (Figure 2) have been developed,

targeting the virus or the host, which indeed saved lots of lives

before effective vaccines were produced. Although some trials failed,

they still played positive roles in the human healthcare development.

The effect of many treatments is compromised or controversial, such

as the antiviral agents and neutral antibody therapies, which may be

caused by viral variants, and combinational treatment can be

considered based on the results of some clinical trials. Many studies

reported combinational therapies showing better effects than single

treatment, such as molnupiravir/fluvoxamine/Paxlovid, IFN-b1b/
lopinavir/ritonavir/ribavirin, and lopinavir/ritonavir/arbidol/

Shufeng Jiedu Capsule. In general, combinational therapy showed

more advantages than single treatment. In addition, compared with

antiviral agents and neutral antibody treatments, JAK inhibitors show

more promising effects, which may be worthy to continue in future

studies. For the effect of steroids, it is still early to get a conclusion.

Although current vaccines restrain the development of the invisible

“war” ignited by COVID-19, humans should be getting ready anytime

for future pandemic threats that may jeopardize the whole world. It is

impossible for humans to predict the next pandemic, which makes it

impractical to prepare effective vaccines in advance. However,
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effective treatments targeting symptoms caused by infection are still

significant, with respect to being prepared for another potential

pandemic threat. Hence, more efforts are still needed to be put into

developing effective treatments for COVID-19.
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