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Introduction

The prevalence of hypertension has risen annu-
ally in China [1–4], thus increasing cardiovascular 
disease-associated morbidity and mortality [5–9], 

and posing a substantial financial and health bur-
den [2, 10–16]. Left ventricular hypertrophy is a 
marker of hypertensive target-organ damage and 
a principal pathological process in heart failure 
[17–20]. Reversing hypertensive left ventricular 
hypertrophy (HLVH) is a primary therapeutic goal 
to prevent heart failure, and an effective method to 
decrease the risk of cardiovascular disease [21–24]. 
However, the rate of reversal is generally low [25, 
26]. Human neutrophil peptide-1 (HNP-1, sequence: 
ACYCRIPACIAGERRYGYCIYQGRLWAFCC), 
also called alpha-defensin 1, is usually produced 
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by immune cells such as neutrophils, lymphocytes, 
monocytes, and eosinophils [27, 28]. By regulat-
ing nuclear factor-κB (NF-κB) signaling pathways, 
HNP-1 plays a critical role in autoimmune disorders, 
anti-infection, and peripheral nerve injury repair 
[29–40]. However, the role of HNP-1 in cardiovas-
cular disease is debated. On the one hand, HNP-1 
levels have been associated with the severity of coro-
nary atherosclerosis [41], and may increase the risk 
of thrombosis by altering fibrin shape, structure, and 
stability [42]. On the other hand, HNP-1 may prevent 
atherosclerosis progression and decrease plasma low-
density lipoprotein cholesterol levels [43], decrease 
atherosclerosis [44], and mitigate arterial thrombosis 
by inhibiting the aggregation of von Willebrand factor 
[45]. Whether HNP-1 plays a role in HLVH remains 
unclear. Thus, to potentially identify therapeutic tar-
gets for ameliorating HLVH, this study was aimed at 
exploring the association between HNP-1 and HLVH.

Materials and Methods

Study Participants

A total of 861 patients with hypertension were 
recruited from the Affiliated Hospital of Guizhou 
Medical University between May and December of 
2021 in Guiyang, China. All patients were at least 
18 years old and had been diagnosed with hyper-
tension according to the 2018 Chinese Guidelines 
for Prevention and Treatment of Hypertension [46]. 
After exclusion of patients with secondary hyper-
tension, infectious diseases, rheumatic immune 
diseases, tumors, diabetes, stroke, coronary athero-
sclerotic heart disease, heart failure, or chronic kid-
ney disease, 216 patients with hypertension were 
included in the study. Ethics approval for the study 
was obtained from the Ethics Committee of the 
Affiliated Hospital of Guizhou Medical University 
(No. 2021-167, March 2, 2021).

Exposure and Control Groups

The 216 study participants were divided into expo-
sure and control groups according to their left ven-
tricular mass index (LVMI). The exposure group 
comprised 100 patients with HLVH whose LVMI 
was >115 g/m2 in men and >95 g/m2 in women 
[26]. The control group comprised 116 patients 

with hypertension and without left ventricular 
hypertrophy, whose LVMI was ≤115 g/m2 in men 
and ≤95 g/m2 in women.

Rats

Forty male Wistar rats 5–6 weeks of age were 
obtained from the Guizhou Medical University 
Laboratory Animal Center. All rats were fed SPF-
rated feed and kept under 12-hour light-dark cycles 
at 25  ± 1 °C. After 1 week of adaptive feeding, 39 
healthy Wistar rats were selected for this study. The 
animal study protocol was approved by the Animal 
Care and Welfare Committee of Guizhou Medical 
University (No. 2201437, March 31, 2022).

Establishment of the HLVH Rat Model

To establish the norepinephrine (NE)-induced 
HLVH model in rats, we divided 39 healthy male 
rats into control, NE, and NE plus HNP-1 groups. 
Rats in the control group received intraperitoneal 
injections with 0.9% saline for 18 weeks. Rats in 
the NE group received intraperitoneal injections 
with NE (R030760, Rhawn, Shanghai, China) at 
1.5 mg/kg/day [47] for 10 weeks, then with 0.9% 
saline for 8 weeks. Rats in the NE plus HNP-1 
groups received intraperitoneal injections with NE 
at 1.5 mg/kg/day for 10 weeks, then with HNP-1 
(HSA10038, Hsynthbio, Hefei, China) at 10, 20, 
30, or 40 μg, once every 2 days for 8 weeks.

Blood Pressure Monitoring in Rats

Blood pressure (BP) was measured with a non-
invasive tail-cuff method (Non-Invasive Blood 
Pressure System, CODA, Kent Scientific Corp., 
Austin, TX, USA). BP was monitored weekly dur-
ing NE injection administration and once every 
2 weeks during HNP-1 injection administration. 
Before BP testing, rats were restrained on a warm-
ing table set to 35 °C and allowed to stabilize for 
10 minutes. Next, BP measurements were taken for 
15 cycles in conscious rats not under anesthesia, 
and the average value was used to calculate the BP.

Myocardial Tissue Staining in Rats

Before being embedded in paraffin and sectioned 
into 4–5 μm thick slices, cardiac ventricles were 
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fixed with 10% paraformaldehyde for 24–48 hours. 
Then hematoxylin-eosin and Masson’s trichrome 
staining were performed according to the manufac-
turers’ instructions. Left ventricular HNP-1 expres-
sion was identified through immunohistochemistry 
staining, which was performed with rabbit anti-rat 
alpha-defensin 1 mAb (NBP3-05562, Novus, 1:80, 
Colorado, USA). Finally, the sections were digi-
tized with a fully automatic digital slice scanner.

Establishment of the H9c2 Cell 
Hypertrophy Model

H9c2 cells (BNCC353655, BNCC, Beijing, China) 
were cultured in Dulbecco’s modified Eagle’s 
medium (HyClone, USA) at 37 °C in a 5% CO

2
 

incubator (BPN-80CW, Shanghai, China). After 
the cell density reached 50%, the H9c2 cells were 
randomly divided into control, Ang II, and Ang II 
plus HNP-1 groups. Cells in the control group were 
treated with 10% fetal bovine serum (10099-141, 
Gibco, California, USA) for 5 days. Cells in the 
Ang II group were treated with 1 μM Ang II (HY-
13948, MCE, New Jersey, USA) for 48 hours [24] 
and subsequently with 10% fetal bovine serum for 
72 hours. Cells in the Ang II plus HNP-1 groups 
were treated with 1 μM Ang II for 48 hours and 
subsequently with a different dose of HNP-1 for 72 
hours.

H9c2 Cell Viability Assays

A Cell Counting Kit-8 (CCK-8, KGA317, KeyGEN, 
Nanjing, China) was used to determine cell viabil-
ity. After stimulation of cells with HNP-1 at 0, 5, 
10, 15, or 20 μg/mL for 24, 48, or 72 hours, 10 μL 
CCK-8 reagent was added to each well at 37 °C and 
incubated for 2 hours. The absorbance was then 
measured at 450 nm.

H9c2 Cell Immunofluorescence Staining

After fixation in 4% paraformaldehyde for 15 min-
utes, the H9c2 cells were blocked with 5% bovine 
serum albumin for 30 minutes. Next, mouse anti-
rat F-actin mAb (OM252288, OmnimAbs, 1:100, 
Shanghai, China) was added to the H9c2 cells. 
Finally, the H9c2 cells were observed under a fluo-
rescence microscope (CKX53, OLYMPUS, Japan).

Western Blotting

HNP-1, BNP, and β-MHC levels were measured 
with rabbit anti-rat alpha-Defensin 1 mAb (NBP3-
05562, Novus, 1:2000, Colorado, USA), rabbit 
anti-rat BNP mAb (WL02126, Wanlei, 1:1000, 
Shenyang, China), and rabbit anti-rat β-MHC mAb 
(NBP2-74079, Novus, 1:2000, Colorado, USA), 
respectively. IKKβ, p-IKKβ, IκBα, p-IκBα, p65, 
p-p65, and GAPDH levels were measured with 
rabbit anti-rat IKKβ, p-IKKβ, IκBα, p-IκBα, p65, 
p-p65 mAb (all 1:500, Affinity, USA), and GAPDH 
mAb (1:10000, Affinity, USA), respectively.

Real-Time Quantitative Polymerase Chain 
Reaction

Total RNA was extracted from H9c2 cells with 
TRIzol reagent (CW0580S, CWBIO, Beijing, 
China). Subsequently, total RNA was reverse-
transcribed into first-strand cDNAs with HiScript 
II Q RT SuperMix (R223-01, Vazyme, Nanjing, 
China). Finally, real-time quantitative polymerase 
chain reaction (qPCR) was performed with ChamQ 
Universal SYBR qPCR Master Mix (Q711-02, 
Vazyme, Nanjing, China), and the fluorescence was 
captured by an iCycler IQ system (Chemi DocTM 
XRS+, Bio-Rad, CA, USA). The relative expres-
sion of mRNA was calculated according to Ct val-
ues. GAPDH was used as the reference gene. All 
primers are listed in Table 1.

Table 1  Sequences of Primers Used in qPCR.

Gene Sequences (5′-3′)

BNP Forward: TCCTGCTTTTCCTTAATCTGTC
Reverse: GCTTGAACTATGTGCCATCTTG

b-MHC Forward: AGGCTCATCCTTTCAGACCG
Reverse: TCACCCCTGGAGACTTCGT

IKKb Forward: CAGAAGAGCGAAGTGGACATT
Reverse: TGAGATTATTGGGGAAGGGT

IkBa Forward: TGTCTACACTTAGCCTCTATCC
Reverse: GGGCAACTCATCTTCCGT

p65 Forward: GCAAAAGGACCTACGAGACC
Reverse: CGGGAAGGCACAGCAATA

GAPDH Reverse: GACAACTTTGGCATCGTGGA
Reverse: ATGCAGGGATGATGTTCTGG

BNP, brain natriuretic peptide; β-MHC, β-myosin heavy 
chain.



X. Duan and Z. Yu, HNP-1 Reverses Hypertensive Left Ventricular Hypertrophy by Inhibiting the NF-кB Signaling Pathway4

Enzyme-Linked Immunosorbent Assays

An enzyme-linked immunosorbent assay (ELISA) 
kit (JL20063, JIANGLAI, Shanghai, China) was 
used to measure the concentration of serum HNP-1 
in patients, according to the manufacturer’s instruc-
tions. ELISA kits (MM-0193R1, MM-0193R1, and 
MM-0180R1, MEIMIAN, Shanghai, China) were 
also used to measure interleukin (IL)-1α, IL-6, and 
tumor necrosis factor α (TNF-α) levels, in accord-
ance with the manufacturer’s instructions.

Statistical Analysis

Statistical analyses were conducted in SPSS (21.0, 
IBM, USA) and GraphPad Prism 8.4 (CA, USA). 
The integrated density of images was calculated 
in ImageJ software (Media Cybernetics, USA). 
Student’s t-test, Wilcoxon signed rank test, and one-
way ANOVA were used to assess between-group 
differences. Pearson or Spearman correlation analy-
ses and regression analyses were used to compare 

associations among HNP-1, BP, and left ventricular 
hypertrophy indexes. P < 0.05 was considered to 
indicate statistical significance.

Results

Participants’ Descriptive Characteristics 
and HNP-1 Levels

No statistically significant differences were iden-
tified between the exposure and control groups in 
terms of age, sex, body mass index (BMI), and car-
diovascular risk factors, including smoking, TG, 
TC, L-DLC, H-DLC, glucose, Hcy, and history of 
hypertension (Table 2). In addition, no statistically 
significant differences were observed in the pro-
portion of patients taking anti-hypertensive drugs, 
including beta-blockers, CCBs, ACEI/ARB, and 
diuretics (Table 2). However, the BP and HLVH 
indexes were higher in the exposure than the control 
group (Figure 1, Table 3), whereas HNP-1 levels 

Table 2  Descriptive Characteristics of Participants in the Two Groups.

Variables Exposure group (n = 100) Control group (n = 116) P

Age (years) 51.66 (49.85–54.18) 48.20 (45.86–50.73) 0.076
Males† 42 (42%) 61 (52.59%) 0.132
Smoking† 39 (39%) 47 (40.52%) 0.889
Body weight (kg) 67.89 (65.23–70.27) 69.53 (66.78–72.00) 0.351
BMI (kg/m2)* 26.38 (3.87) 25.86 (3.17) 0.287
TG (mmol/L) 1.89 (1.69–2.10) 1.98 (1.77–2.16) 0.482
TC (mmol/L) 4.41 (4.26–4.59) 4.43 (4.28–4.58) 0.664
LDL-C (mmol/L) 2.70 (2.55–2.85) 2.79 (2.63–2.92) 0.308
HDL-C (mmol/L) 1.13 (1.08–1.19) 1.13 (1.07–1.09) 0.705
Hcy (μmol/L) 14.63 (12.99–16.81) 15.22 (13.40–17.66) 0.671
Glucose (mmol/L)* 7.80 (7.32–8.31) 7.17 (6.84–7.52) 0.151
Hypertension history (years) 8.42 (6.56–10.54) 5.78 (4.35–7.33) 0.304
CCB† 59 (59%) 60 (51.72%) 0.338
ACEI† 10 (10%) 11 (10.09%) 0.816
ARB† 22 (22%) 21 (15.60%) 0.500
β-blockers† 19 (19%) 19 (16.38%) 0.721
Diuretics† 9 (9%) 4 (2.75%) 0.149

*Results are given as mean (SD). †Results are given as number (%). All other results are given as median (95% CI).
BMI, body mass index; TG, triglyceride; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-
density lipoprotein cholesterol; Hcy, homocysteine; CCB, calcium-channel blocker; ACEI, angiotensin-converting enzyme 
inhibitors; ARB, angiotensin receptor blockers.
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Figure 1  Blood Pressure, Left Ventricular Hypertrophy Indexes, and HNP-1 Level in the Two Groups.
*P < 0.05, **P < 0.01, ***P < 0.001. SBP, systolic blood pressure; DBP, diastolic blood pressure; 24 h SBP, 24 h systolic blood 
pressure; 24 h DBP, 24 h diastolic blood pressure; D SBP, daytime systolic blood pressure; D DBP, daytime diastolic blood pres-
sure; N SBP, night systolic blood pressure; N DBP, night diastolic blood pressure; PP, pulse pressure; LEVDd, left ventricular 
end diastolic dimension; IVST, interventricular septal thickness; LVPWT, left ventricular posterior wall thickness; LVM, left 
ventricular mass; LVMI, left ventricular mass index; LVEF, left ventricle ejection fraction; HNP-1, human neutrophil peptide-1.

Table 3  Comparative Analysis of Blood Pressure and Left Ventricular Hypertrophy Indexes in the Two Groups.

Variables Exposure group (n = 100) Control group (n = 116) P

SBP† 152.53 (148.75–156.46) 137.82 (135.08–140.99) 0.001**
DBP 94.02 ± 14.12 84.37 ± 9.68 0.001**
24 h SBP 136.62 ± 13.95 127.64 ± 10.25 0.001**
24 h DBP 86.60 ± 10.96 82.91 ± 9.65 0.03*
D SBP 139.50 ± 14.34 130.47 ± 10.23 0.001**
D DBP 88.76 ± 11.13 85.29 ± 9.81 0.045*
N SBP 130.80 ± 15.87 121.30 ± 11.56 0.001**
N DBP 81.83 ± 11.15 77.75 ± 10.08 0.020*
PP† 50.02 (48.05–52.05) 44.72 (43.20–46.29) 0.001**
LVEDd (cm)† 4.73 (4.65–4.80) 4.40 (4.35–4.46) 0.000***
IVST (cm)† 1.20 (1.16–1.24) 0.97 (0.95–0.99) 0.000***
LVPWT (cm)† 1.11 (1.08–1.14) 0.93 (0.92–0.95) 0.000***
LVM (g)† 205.68 (196.73–215.15) 139.79 (134.76–144.77) 0.000***
LVMI (g/m2)† 120.97 (116.95–125.40) 80.48 (78.50–82.73) 0.000***
RWT† 0.47 (0.46–0.48) 0.42 (0.42–0.44) 0.000***
LVEF (%)† 65.88 (64.98–66.82) 67.21 (66.68–67.74) 0.061

†Results are given as median (95% CI). All other results are given as mean (SD).
*P < 0.05, **P < 0.01, ***P < 0.001.
SBP, systolic blood pressure; DBP, diastolic blood pressure; 24 h SBP, 24 h systolic blood pressure; 24 h DBP, 24 h diastolic 
blood pressure; D SBP, daytime systolic blood pressure; D DBP, daytime diastolic blood pressure; N SBP, night systolic blood 
pressure; N DBP, night diastolic blood pressure; PP, pulse pressure; LVEDd, left ventricular end diastolic dimension; IVST, 
interventricular septal thickness; LVPWT, left ventricular posterior wall thickness; LVM, left ventricular mass; LVMI, left 
ventricular mass index; RWT, relative wall thickness; LVEF, left ventricle ejection fraction.

were significantly lower in the exposure than the 
control group (M (95% CI), 48.83 (45.64–52.26) 
vs. 59.03 (55.62–62.54), P = 0.000; Figure  1). 

Furthermore, HNP-1 levels were significantly nega-
tively correlated with BP and left ventricular hyper-
trophy indexes (Table 4).
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Diminished HNP-1 is a Risk Factor for 
HLVH in Patients

Multiple linear regression analyses revealed that 
diminished HNP-1 was significantly correlated 
with LVMI after adjustment for age, sex, SBP, DBP, 
24 h SBP, 24 h DBP, D SBP, D DBP, N SBP, N 
DBP, and PP (Table 5). Binary logistic regression 
analyses indicated that diminished HNP-1 was sig-
nificantly correlated with HLVH after adjustment 
for the aforementioned variables (Table 6).

HNP-1 Treatment Decreases BP in  
NE-Induced HLVH Rats

After injection with NE, in the fifth week, the SBP 
and DBP began to be significantly higher in the NE 
group than the control group (Figure 2A and B). In 
the NE group, SBP increased by 22.43 mmHg, and 
DBP increased by 25.96 mmHg (from baseline BP) 
after injection with NE for 10 weeks (Figure 2E). 
However, after HNP-1 injection, SBP and DBP 
decreased over time (Figure 2C and D). Finally, 
SBP and DBP were considerably lower in each NE 
plus HNP-1 treatment group than in the NE group 
(Figure 2F).

HNP-1 Treatment Increases Left Ventricular 
HNP-1 Expression in NE-Induced HLVH Rats

Immunohistochemistry staining indicated that 
HNP-1 was expressed primarily on the cardio-
myocyte membranes in the left ventricle in rats. 

Table 4  Correlations of HNP-1 Levels with Blood 
Pressure and Left Ventricular Hypertrophy Indexes in 

Patients with Hypertension.

Variables HNP-1

r P value

SBP (mmHg)† −0.176 0.010*
DBP (mmHg)† −0.196 0.004**
24 h SBP (mmHg)† −0.073 0.287
24 h DBP (mmHg)† −0.010 0.890
D SBP (mmHg)† −0.082 0.233
D DBP (mmHg)† −0.024 0.727
N SBP (mmHg)† −0.052 0.447
N DBP (mmHg)† 0.021 0.758
PP (mmHg)‡ −0.161 0.018*
LVEDd (cm)† −0.218 0.001**
IVST (cm)‡ −0.083 0.225
LVPWT (cm)‡ −0.122 0.074
LVM (g)‡ −0.186 0.006**
LVMI (g/m2)‡ −0.259 0.000**
RWT† −0.019 0.780
LVEF (%)‡ 0.054 0.434

†Indicates Pearson correlation analysis. ‡Indicates Spearman 
correlation analysis.
*indicates significant correlation at the 0.05 level (two 
tailed); **indicates significant correlation at the 0.01 level 
(two tailed).
HNP-1, human neutrophil peptide-1; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; 24 h SBP, 24 h 
systolic blood pressure; 24 h DBP, 24 h diastolic blood 
pressure; D SBP, daytime systolic blood pressure; D DBP, 
daytime diastolic blood pressure; N SBP, night systolic 
blood pressure; N DBP, night diastolic blood pressure; PP, 
pulse pressure; LVEDd, left ventricular end diastolic dimen-
sion; IVST, interventricular septal thickness; LVPWT, left 
ventricular posterior wall thickness; LVM, left ventricular 
mass; LVMI, left ventricular mass index; RWT, relative wall 
thickness.

Table 5  Multiple Linear Regression Analysis of Multiple 
Factors Associated with LVMI and RWT in Patients with 

Hypertension.

Variables LVMI RWT

t P t P

Age (years) 0.100 0.921 0.158 0.874
Sex −1.342 0.181 −1.033 0.303
HNP-1 (ng/mL) −2.996 0.003* −0.237 0.813
SBP (mmHg) 0.781 0.436 0.675 0.500
DBP (mmHg) 0.509 0.611 −0.367 0.714
24 h SBP (mmHg) 1.325 0.187 0.672 0.502
24 h DBP (mmHg) −0.953 0.342 0.696 0.487
D SBP (mmHg) 1.437 0.152 0.203 0.840
D DBP (mmHg) −0.863 0.389 0.956 0.340
N SBP (mmHg) 1.160 0.247 −1.175 0.241
N DBP (mmHg) 0.892 0.373 0.987 0.325
PP (mmHg) 1.163 0.246 0.662 0.509

*Indicates significant correlation at the 0.05 level (two 
tailed).
HNP-1, human neutrophil peptide-1; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; 24 h SBP, 24 h 
systolic blood pressure; 24 h DBP, 24 h diastolic blood 
pressure; D SBP, daytime systolic blood pressure; D DBP, 
daytime diastolic blood pressure; N SBP, night systolic 
blood pressure; N DBP, night diastolic blood pressure; PP, 
pulse pressure.
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Furthermore, left ventricular HNP-1 expression 
decreased in the NE group than the control group. 
Left ventricular HNP-1 expression was greater in 
the NE plus HNP-1 groups than the NE group, and 
the effect was dose-dependent (Figure 3).

HNP-1 Treatment Ameliorates Ventricular 
Hypertrophy and Fibrosis in NE-Induced 
HLVH Rats

The HW/BW and HW/TL ratios were significantly 
higher in the NE group than the control group, 
and significantly lower in each NE plus HNP-1 
treatment group than the NE group (Figure 4A). 
Hematoxylin-eosin staining revealed that left ven-
tricular single cardiomyocyte surface area was 
greater in the NE group than the control group. 
Furthermore, the left ventricular single cardio-
myocyte surface area was smaller in each NE plus 
HNP-1 treatment group than the NE group (Figure 
4B). In addition, Masson’s trichrome staining indi-
cated that the left ventricular fibrosis area was 
greater in the NE group than the control group. 
However, compared with that in the NE group, the 
left ventricular fibrosis area was lower, to varying 
degrees, in each NE plus HNP-1 treatment group 
(Figure 4B).

HNP-1 Treatment Decreases the 
Expression of BNP, β-MHC, and NF-кB in 
NE-Induced HLVH Rats

Western blotting (WB) revealed that the left ventric-
ular expression of BNP, β-MHC, and NF-κB signal-
ing factors (including p-IKKβ/IKKβ, p-IκBα/IκBα, 
and p-p65/p65) was higher in the NE group than 
the control group. However, compared with that in 
the NE group, the expression of the aforementioned 
proteins was lower, to varying degrees, in the NE 
plus HNP-1 treatment groups (Figure 5).

HNP-1 Treatment Promotes H9c2 Cell 
Growth Activity and Reverses Ang II-
Induced H9c2 Cell Hypertrophy

CCK8 assays indicated that HNP-1 promoted H9c2 
cell growth viability. Indeed, H9c2 cell growth activ-
ity was higher after stimulation with HNP-1 at 10 and 
15 μg/mL for 72 hours than after stimulation with 
HNP-1 at 5 and 20 μg/mL for 24 and 48 hours, respec-
tively (Figure 6A). Immunofluorescence analysis 
revealed that the single-cell surface area was greater 
in the Ang II group than the control group. However, 
compared with that in the Ang II group, the single cell 
surface area was smaller, to varying degrees, in each 
Ang II plus HNP-1 group (Figure 6B).

Table 6  Binary Logistic Regression Analysis of Risk Factors for Left Ventricular Hypertrophy in Patients with 
Hypertension.

Variables   β   OR (95% CI)   P

Age (years)   −0.001   0.999 (0.965–1.033)   0.969
Sex   −0.881   0.952 (0.224–0.902)   0.077
HNP-1 (ng/mL)   −0.027   0.974 (0.956–0.995)   0.011*
SBP (mmHg)   0.046   1.047 (0.996–1.101)   0.072
DBP (mmHg)   0.006   1.006 (0.950–1.066)   0.839
24 h SBP (mmHg)   0.055   1.056 (0.823–1.356)   0.667
24 h DBP (mmHg)   −0.232   0.793 (0.535–1.175)   0.248
D SBP (mmHg)   0.203   1.225 (0.932–1.610)   0.146
D DBP (mmHg)   −0.109   0.896 (0.732–1.099)   0.292
N SBP (mmHg)   0.099   1.104 (0.957–1.274)   0.174
N DBP (mmHg)   −0.013   0.987 (0.858–1.136)   0.859
PP (mmHg)   −0.056   1.045 (0.730–1.113)   0.647

*Indicates significant correlation at the 0.05 level (two tailed).
HNP-1, human neutrophil peptide-1; SBP, systolic blood pressure; DBP, diastolic blood pressure; 24 h SBP, 24 h systolic blood 
pressure; 24 h DBP, 24 h diastolic blood pressure; D SBP, daytime systolic blood pressure; D DBP, daytime diastolic blood 
pressure; N SBP, night systolic blood pressure; N DBP, night diastolic blood pressure; PP, pulse pressure.
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Figure 2  Levels of SBP and DBP.
A and B, SBP and DBP levels during injection with NE; C and D, SBP and DBP levels during injection with HNP-1; E, SBP and 
DBP levels between baseline and the tenth week of NE injection; F, SBP and DBP levels between the tenth week of NE injection and 
eighth week of HNP-1 injection. *P < 0.05, **P < 0.01, ***P < 0.001. SBP, systolic blood pressure; DBP, diastolic blood pressure.

HNP-1 Treatment Decreases the 
Expression of BNP, β-MHC, NF-кB, and 
Inflammatory Factors in Ang II-Induced 
H9c2 Cell Hypertrophy

WB analysis indicated that HNP-1 levels decreased 
in the Ang II group compared with the control group, 
but it increased in the Ang II plus HNP-1 treatment 

groups compared with the Ang II group (Figure 7A). 
WB and qPCR also revealed that BNP, β-MHC, 
p65, and p-p65/p65 expression increased in the 
Ang II group compared with the control group, but 
those indexes decreased in each Ang II plus HNP-1 
group to varying degrees compared with the Ang II 
group (Figure 7A and B). Additionally, the IL-1α, 
IL-6, and TNF-α levels were lower in the Ang II 
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plus HNP-1 groups than the Ang II group, particu-
larly after treatment with HNP-1 at 15 μg/mL and 
20 μg/mL (Figure 7C).

Discussion

This study demonstrated that HNP-1 levels were 
diminished in patients with HLVH and were a risk 
factor for HLVH. In the experimental HLVH model, 
HNP-1 treatment decreased NF-κB and other heart 
hypertrophy markers. These findings indicated that 
HNP-1 reverses HLVH and may be a potential ther-
apeutic target for cardiovascular disease. HNP-1 is 
the first cell-synthesized peptide demonstrated to 
directly enter a target cell, and subsequently affect 
translation and regulate protein expression [48]. 
Furthermore, HNP-1 is widely found in various tis-
sues and organs but is expressed primarily in human 
neutrophil lineage cells [29, 49–54]. The HNP-1 
gene is located on chromosome 8p23.1 [54–57]. In 
neutrophil lineage cells, HNP-1 is translated into a 

94-amino-acid precursor form in promyelocytes and 
is sequentially cleaved into a 30-amino-acid mature 
HNP-1 in the Golgi apparatus [58, 59]. The mature 
HNP-1 is stored in the blue granules, and can be 
released by cell degranulation or secretion [54].

Previous studies have reported diminished HNP-1 
levels in older people, smokers, people who are 
toothless or have tooth decay, and people with lipid 
metabolism disorders or vasodilation responses 
[60–62]. Decreased HNP-1 is associated with aging, 
decreased immune resistance, lipid metabolism dis-
orders, and a diminished vasodilation response [63, 
64]. Similarly to previous studies, this study indi-
cated that HNP-1 levels were diminished in patients 
with HLVH and were a risk factor for HLVH.

This current study also demonstrated that HNP-1 
treatment may decrease BP in HLVH rats, although 
the BP did not change in a dose-dependent manner. 
This finding has three possible explanations. First, 
HNP-1’s BP-lowering effect might potentially be 
associated with baseline BP levels. Second, HNP-1 
may have a “bipolar effect,” such that inflammatory 

Figure 3  HNP-1 Protein Relative Expression.
Representative images were the quantitative analysis of IF and WB for the HNP-1 expression in left ventricle. *P < 0.05,  
***P < 0.001, ****P < 0.0001.



X. Duan and Z. Yu, HNP-1 Reverses Hypertensive Left Ventricular Hypertrophy by Inhibiting the NF-кB Signaling Pathway10

Figure 4  Left Ventricular Myocardial Cell Surface Area and Fibrosis Area.
A, Quantitative analysis of HW/BW and HW/TL; B, left ventricle single cell surface area and fibrosis area. *P < 0.05, 
**P < 0.01, ***P<0.001, ****P < 0.0001. HW/BW, heart weight to body weight ratios; HW/TL, heart weight to tibia length 
ratios.
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factor expression may be enhanced by a high dose 
of HNP-1 (100 μg/day) and inhibited by a healthy 
dose of HNP-1 (5 μg/day or 10 μg/mL) [65]. Third, 
studies have reported that regulation of the inflam-
matory response effectively controls BP and ame-
liorates HLVH [65–71]. However, NF-κB is a key 
regulatory signaling pathway in inflammatory 

immune responses [72–75], and NF-κB inhibition 
may ameliorate hypertension and HLVH [76–86]. 
We determined that HNP-1 may inhibit NF-κB 
activation, but this inhibitory effect may not be 
dose-dependent.

According to our study, HNP-1 treatment increased 
HNP-1 expression in a HLVH rat model. In contrast, 

Figure 5  Protein Levels of BNP, β-MHC, and NF-κB Signaling Factors in the Left Ventricle.
Representative Images of WB and Quantitative Analysis for the Protein Expression of BNP, β-MHC, and NF-κB in the Left 
Ventricle. *P < 0.05, **P < 0.01, ***P < 0.001. BNP, brain natriuretic peptide, β-MHC, beta-myosin heavy chain.
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Kou et al. [34] have reported that HNP-1 treatment 
does not increase HNP-1 expression in RSC 96 cells. 
Two possible explanations may be responsible for this 
difference in findings. The first is associated with dif-
ferences between experimental models. Specifically, 
Kou et al. [34] studied RSC 96 cells in the nervous 
system, whereas our study focused on rat left ventric-
ular tissue and H9c2 cells. Second, the HNP-1 treat-
ment dose and duration differed between studies. Kou 
et al. [34] treated RSC 96 cells with HNP-1 at 4 or 8 
μg/mL for 36 hours. In contrast, we treated HLVH 
rats with HNP-1 at 10, 20, 30, or 40 μg for 8 weeks, 
and H9c2 cells with HNP-1 at 10, 15, or 20 μg/mL 
for 72 hours. Furthermore, HNP-1 expression was 
notably associated with the treatment dose of HNP-
1. HNP-1 expression was weak when the HNP-1 
treatment dose was 10 μg in rats and 10 μg/mL in 
H9c2 cells, and was enhanced as the treatment dose 
of HNP-1 increased. Future studies are warranted to 
explore whether this effect might be due to increased 
endogenous HNP-1 or exogenous HNP-1.

This current study indicated that HNP-1 treat-
ment inhibited the activation of NF-κB in an HLVH 
model. However, other studies have reported 

differing effects of HNP-1 on NF-κB signaling 
pathways. For example, Kou et al. and Wang et al. 
[29, 34] have found that p65 expression increases 
in Schwann cells and CAL-1 cells after treatment 
with HNP-1. However, mRNA expression of AKT 
in Schwann cells shows lower activity when treated 
with 8 rather than 4 μg/mL of HNP-1. Other studies 
have reported that A549 cells and CD4 lymphocytes 
show no differences in p65 expression after treat-
ment with HNP-1 [33, 43]. Finally, studies have 
indicated that HNP-1 may enhance [87] or inhibit 
[88] the activation of complement classical path-
ways. Therefore, we speculate that HNP-1 might 
have different regulatory effects on NF-κB signaling 
pathways in various tissues and cells under different 
experimental conditions. This study identified HNP-
1’s protective role in HLVH; however, the specific 
underlying mechanisms warrant further study.

Conclusion

HNP-1 decline is a risk factor for HLVH in patients. 
HNP-1 treatment may reverse HLVH and H9c2 

Figure 7  Expression of HNP-1, BNP, β-MHC, p65, and Inflammatory Factors in H9c2 cells.
A, WB and quantitative analysis of the protein expression of HNP-1, BNP, β-MHC, and p-p65/p65 in H9c2 cells. B, qPCR and 
quantitative analysis of the mRNA expression of BNP, β-MHC, and p65 in H9c2 cells. C, ELISA and quantitative analysis of 
IL-1α, IL-6, and TNF-α levels in H9c2 cells. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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cell hypertrophy by inhibiting NF-κB signaling 
pathways.
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