
Plant-Made Trastuzumab (Herceptin) Inhibits HER2/Neu+
Cell Proliferation and Retards Tumor Growth
Tatiana V. Komarova1, Vyacheslav S. Kosorukov2, Olga Y. Frolova3, Igor V. Petrunia3, Ksenia A.

Skrypnik2, Yuri Y. Gleba4, Yuri L. Dorokhov1,3*

1 A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia, 2 N.N. Blokhin National Cancer Research Center, Russian Academy of

Medical Sciences, Moscow, Russia, 3 N.I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia, 4 Nomad Bioscience GmbH, Biozentrum Halle,

Halle (Saale), Germany

Abstract

Background: Plant biotechnology provides a valuable contribution to global health, in part because it can decrease the cost
of pharmaceutical products. Breast cancer can now be successfully treated by a humanized monoclonal antibody (mAb),
trastuzumab (Herceptin). A course of treatment, however, is expensive and requires repeated administrations of the mAb.
Here we used an Agrobacterium-mediated transient expression system to produce trastuzumab in plant cells.

Methodology/Principal Findings: We describe the cloning and expression of gene constructs in Nicotiana benthamiana
plants using intron-optimized Tobacco mosaic virus- and Potato virus X-based vectors encoding, respectively, the heavy and
light chains of trastuzumab. Full-size antibodies extracted and purified from plant tissues were tested for functionality and
specificity by (i) binding to HER2/neu on the surface of a human mammary gland adenocarcinoma cell line, SK-BR-3, in
fluorescence-activated cell sorting assay and (ii) testing the in vitro and in vivo inhibition of HER-2-expressing cancer cell
proliferation. We show that plant-made trastuzumab (PMT) bound to the Her2/neu oncoprotein of SK-BR-3 cells and
efficiently inhibited SK-BR-3 cell proliferation. Furthermore, mouse intraperitoneal PMT administration retarded the growth
of xenografted tumors derived from human ovarian cancer SKOV3 Her2+ cells.

Conclusions/Significance: We conclude that PMT is active in suppression of cell proliferation and tumor growth.
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Introduction

There was a time when most medicinal compounds were simply

extracted from plants, but now, plant molecular biology produces

valuable recombinant pharmaceutical molecules, including en-

zymes, vaccines, and antibodies [1–9]. Such ‘‘molecular farming’’

has many economic and qualitative benefits, including reduced

health risks from human and animal pathogen contamination and

comparatively high yields. It has been estimated that the cost of

pharmaceutical protein production in plants could be 10- to 50-

fold lower than production of the same protein in mammals

[10,11]. Plants rapidly accumulate single-chain [12–15] and full-

size antibodies [16–20] and may produce personalised patient-

specific anticancer vaccines [21]. Plants may be a source of

biosimilars, new versions of known pharmaceuticals, including

anticancer antibodies [22].

Human epidermal growth factor receptor 2 (HER2/neu) is an

oncogene involved in abnormal cell growth in breast cancer and is a

target for the humanised monoclonal antibody (mAb) trastuzumab

(Herceptin) [23], which was approved by the US Food and Drug

Administration for the treatment of HER2/neu-overexpressing

breast tumours. HER2/neu is overexpressed in 20–30% of

metastatic breast cancer patients where its overexpression results

in the disruption of normal signaling pathways, causing the loss of

cell growth regulation and the development of resistance to

apoptosis. Trastuzumab induces antibody-dependent cellular cyto-

toxicity (ADCC), inhibits HER2-mediated signaling, and prevents

cleavage of the extracellular domain of HER2 [24]. In HER2-

positive breast cancer, trastuzumab has shown a survival advantage

in early and metastatic disease and is now the standard of care [25–

27]. Trastuzumab is produced by recombinant DNA technology in

a mammalian cell (Chinese Hamster Ovary) culture. Recently, the

production of plant-made trastuzumab [PMT] was shown in plant

using the magnICON viral-based transient expression system [19].

Functional assays revealed that plant-produced trastuzumab and

Herceptin have similar antiproliferative effects in vitro on HER2+
breast cancer cells.

Here, we used also genes encoding both heavy and light chains

of trastuzumab, cloned into 35S- and virus-based vectors and

expressed in Nicotiana benthamiana leaves. We show that both vector

systems result in high yield of full-size antibodies, PMT, which

recognizes HER2/neu on the surface of a human mammary gland
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adenocarcinoma cell line, SK-BR-3, and active in suppression of

cell proliferation in vitro. Moreover, mouse PMT administration

retarded efficiently the growth of xenografted Her2+ human

ovarian tumors.

Results

Accumulation and purification of assembled PMT in N.
benthamiana leaves

To prove the applicability of our plant transient system for the

production of anticancer mAb, we synthesized genes encoding the

heavy and light chains of the trastuzumab protein using the amino

acid sequence published in DrugBank (accession number

DB00072) and constructed 35S-based vectors (35S-LC and 35S-

HC) (Figure 1A). N. benthamiana leaves co-agroinjected with PT-

LC, PT-HC and the silencing suppressor Tomato Bushy Stunt Virus

(TBSV) p19 [28] produced a high yield of PMT, as revealed in a

gel stained with Coomassie blue. Assembled antibodies were

extracted from plant tissue, purified on protein A affinity columns,

and analyzed either by sodium dodecyl sulfate polyacrylamide gel

electrophoresis (SDS-PAGE) under reducing conditions followed

by Coomassie blue staining (Figure 1B) or by western blotting

probed with gamma-HC- and kappa-LC-specific antibodies

(Figure 1C,D). Bands corresponding to the heavy chain

(,55 kDa) and the light chain (,25 kDa) are clearly visible on

the Coomassie-stained gel (Figure 1B) and on western blots

(Figure 1C, D). Expression of 35S-based constructs was maximal

at 3 dpi, and the yield was between 100 and 150 mg/g of fresh

weight (FW), depending on the experiment.

Next, PMT light and heavy chain genes were cloned into PVX-

based and TMV-based vectors, respectively (Figure 2A), as these

vectors are able to replicate within the same cell with high

efficiency and do not compete with each other for replication

binding sites [17]. Fully assembled PMT was extracted from N.

benthamiana leaves co-injected with HC-TMV and LC-PVX

vectors at 7 dpi when the maximal level of antibody production

was detected (data not shown). Antibodies were purified on protein

A sepharose columns and analyzed via SDS-PAGE under non-

reducing (Figure S1A) or reducing (Figure S1B) conditions.

MALDI-TOF analysis showed an identical peptide composition

of PMT and trastuzumab light and heavy chains (data not shown).

Assembled PMT is detected on gels stained with Coomassie blue.

Western blot analysis was performed to determine the composition

of the other bands on the gel. Probing with anti-gamma-chain

antibodies revealed two high molecular weight bands, also

detected with anti-kappa-chain antibodies (Figure 2B,C), that

likely represent fully assembled IgG molecules and heterotrimers

[(HC)2+LC]. The band that corresponds to the monomeric heavy

chain is also visible in Figure 2B. Of these forms, the

heterotetramer [(HC)2+(LC)2] is the most intense band visible

after Coomassie blue staining (Figure S1B). Another band

(,95 kDa) detected on both 2B and 2C western blots appears to

be a heterodimer of heavy and light chains. In addition, a strong

band most likely corresponding to the dimeric form of the light

chain (,43 kDa) was produced with anti-kappa-chain antibodies.

After treatment with 2-mercaptoethanol, all additional bands

disappeared, with only heavy (Figure 2D) and light chains

(Figure 2E) present. The yield of PMT expressed from viral

vectors was between 200 and 300 mg/g FW depending on the

experiment.

Further PMT purification on an AKTApurifier (GE Health-

care) was used to obtain assembled PMT that was free of

additional complexes between heavy and light chains (Figure S2).

Figure 2F shows capillary electrophoresis of PMT performed on

an Agilent 2100 Bioanalyzer under reducing conditions, where

peak 12 corresponds to HC and peak 8 corresponds to LC. It is

likely that peaks 2 and 3 are low molecular products of PMT

degradation.

Direct comparison of PMT and trastuzumab revealed a similar

protein profile on gels stained with Coomassie blue (Figure 2G, H)

and the absence of visible contaminations on HPLC trace analysis

(Figure 2I).

PMT recognises a HER2/neu peptide mimotope
Trastuzumab binds amino acids 579 to 625 at the C-terminal

end of domain IV of the extracellular region of HER2 [29].

Recently, the conformational epitope 563 to 598 of engineered

trastuzumab demonstrated antitumour activity against HER-2/

neu [30]. To examine whether PMT may bind the trastuzumab

conformational epitope 563 to 598 we synthesised a cyclic

synthetic peptide, 563CYC [29,30] and compared PMT and

trastuzumab binding by ELISA. Polystyrene plates were coated

overnight with the 563CYC peptide and probed with PMT and

trastuzumab the following day. Figure 3 shows that both mAbs,

PMT and trastuzumab, bind the synthetic peptide 563CYC in a

dose-dependent manner.

PMT binds efficiently to HER2/neu-expressing SK-BR-3
cells

For quantitative estimation of the binding affinity of PMT to

Her2/neu antigen displayed on cells, FACS analysis was

performed. Figure 4 (D–F) shows a high percentage (75.7% to

98.3%) of PMT binding to surface HER2/neu independently of

antibody concentration. This result is similar to the data obtained

using trastuzumab (Figure 4A–C).

Figure 1. Production of assembled PMT in N. benthamiana
leaves co-injected with 35S-based light- and heavy-chain-
expressing vectors. A – Schematic representation of 35S-based
light- (LC) and heavy-(HC) chain- expressing vectors 35S-LC and 35S-HC,
respectively. 35S – Cauliflower mosaic virus 35S promoter, T –
terminator of transcription, RB and LB – right and left borders from
Ti-plasmid. B – Coomassie blue-stained SDS-PAGE proteins before
purification (lane 1) and eluted fractions (3–11) obtained after protein A
affinity chromatography, lane 2 – flow through after the first loading on
the protein A column. M, molecular weight markers. C, D - Western blot
analysis of PMT under reducing conditions, developed with anti-gamma
(C) and -kappa (D)-chain-specific antibodies.
doi:10.1371/journal.pone.0017541.g001
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Next, immunocytochemical staining of a human mammary

gland adenocarcinoma cell line that overexpresses HER2/neu,

SK-BR-3, was performed to test the functional activity of the

plant-made mAb. PMT bound to Her2/neu oncoprotein on the

surface of these cells as effectively as the diagnostic antibody

A0485 (Dako, Denmark) (data not shown). The same result was

obtained on tissue samples from a patient with Her2/neu-positive

cancer (data not shown).

We conclude that PMT and trastuzumab exhibit no difference

in binding capacity for HER2/neu.

PMT inhibits SK-BR-3 cell growth in vitro
The SK-BR-3 cell line was used to compare the antiproliferative

properties of PMT and trastuzumab. Varying concentrations of

PMT (0.1–1.0 mg/ml) were added to cell cultures, and their

effects on cell growth were assessed in triplicate MTT assays. The

data presented in Figure 5 show similar inhibitory effects of PMT

and trastuzumab on SK-BR-3 cell proliferation. We conclude that

PMT possesses the anticancer properties of trastuzumab.

PMT retards SKOV3-derived tumor growth in a xenograft
mouse model of human ovarian cancer

Having shown that PMT suppresses tumor cell growth, we

investigated its antitumor effects in SKOV3 Her2+ cells implanted

into mice. Although it is known that SKOV3-derived tumors are

less sensitive to trastuzumab than are SK-BR-3-derived tumors

[31], this model reveals the antitumor activity of PMT.

As shown in Figure 6, PMT treatment caused a delay in tumor

growth. After 8 consecutive injections (10 mg/kg, see Material and

Methods), the reduction in tumor growth was 70% compared to control

mice treated with saline solution. Ten days after the last administration

of PMT, there was an overall 80% reduction in tumor growth.

Trastuzumab injections demonstrated a low effect on tumor growth.

We conclude that PMT possesses the major antitumor activity.

Figure 2. Accumulation and purification of assembled PMT in N. benthamiana leaves co-injected with light-chain-encoding PVX-
based and heavy-chain-encoding TMV-based vectors. A – Schematic representation of PVX- and crTMV-based vectors. LB and RB, binary
vector left and right borders, respectively; 35S, 35S promoter; Act 2, Arabidopsis actin 2 promoter; T, nos terminator; RdRp, RNA-dependent RNA
polymerase; Bars 1–8, introns; MP, TMV movement protein; 25K, 12K, 8K, PVX movement protein genes. B–E - Western blot analysis of purified PMT.
Purification of mAbs on protein A sepharose. Proteins were separated in a 10% polyacrylamide gel under non-reducing conditions (B, C) and in a 12%
gel under reducing conditions (D, E) and transferred to a PVDF membrane. Western blots: B and D were probed with gamma-chain-specific
antibodies; membranes C and E were incubated with kappa-chain-specific antibodies. 1–2, fractions from the protein A sepharose column; M, protein
molecular weight markers; S, standard - 20 ng hIgG. F - Capillary electrophoresis analysis of PMT in reducing conditions on Agilent 2100 Bioanalyzer.
Peak 12 corresponds to HC; peak 8 corresponds to LC. G, H – Comparison of PMT and trastuzumab. Proteins were separated in a 7.5% polyacrylamide
gel under non-reducing conditions (G) and in a 12% gel under reducing conditions (H) and stained with Coomassie blue. I - RP-HPLC trace analysis of
PMT and trastuzumab. The linear gradient was 0–60% acetonitrile for 20 min and then 60–100% acetonitrile for 5 min; the flow rate was 80 mL?min21.
The buffer blank was 10 mM Na-phosphate (pH 7.0). Absorbance at 214 nm and 280 nm is shown.
doi:10.1371/journal.pone.0017541.g002
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Discussion

There are two strategies of antibody engineering for plant

production [32]. First, one can employ antibody in miniaturized

format based on the observation that H chains retain some antigen-

binding capacity even in the absence of L chains. The smallest

format found to keep full binding activity is the so-called single-chain

fragment (scFv), in which the two variable regions, VH and VL, are

artificially linked by a flexible polypeptide [12–15]. The other

miniaturized type is the H-chain antibody derived from camelids

(camels and llamas) where the L chain is missing [33]. These

miniaturized antibodies do not require glycosylation and can be

assembled in both plant and prokaryotic systems such as Escherichia

coli. For example, scFv-based antibodies against HER2/neu have

been produced in E. coli and in plants using both stable and transient

systems in tobacco and Nicotiana benthamiana [12–15].

The second strategy is the creation of full-sized antibodies

because of their widespread use as anti-tumor agents [16–19] and

the fact that plants exhibit a similar endomembrane system and

secretory pathway compared to human cells [34]. Although

protein glycosylation in plant cells is slightly different from that of

animal cells [35], ‘‘humanized’’ N. benthamiana, Arabidopsis

thaliana, and Lemna minor plant lines have been generated [36–

38]. Many different forms of full-sized antibodies have been

produced in plant systems using either transient expression systems

or stable transgenic plants [16–20]. The latter strategy suffers from

generally low protein yields. In contrast, plant viral vectors

demonstrate a high potential to rapidly produce full-size

antibodies. In 2006, Giritch et al. [17] developed virus-based

Figure 3. Binding of PMT to a HER2/neu peptide mimotope.
Comparative binding of trastuzumab and PMT to the HER2/neu-specific
cyclic synthetic peptide 563CYC (CHPECQPQNGSVTCFGPEADQCVACA-
HYKDPPFCVA) [30]. Microtiter wells were coated overnight with 2 mg/ml
peptide and then blocked with 1% BSA for 1 h. The mAbs were then
added to plates at a concentration of 250 mg/ml and serially diluted 1:1
with phosphate buffered saline (PBS). Bound mAb was detected with
HRP-conjugated anti-human IgG and then with substrate.
doi:10.1371/journal.pone.0017541.g003

Figure 4. Examination of PMT binding to HER2/neu. Flow cytometry analysis of SK-BR-3 cells expressing HER2/neu incubated with
trastuzumab (A–C) and PMT (D–F) in the following concentrations: 10 mg/ml (A,D), 1 mg/ml (B,E), and 0.1 mg/ml (C,F). Cells incubated only with
secondary reagents were included as a control (open peak). Shadowed areas show specific binding. The percentage of cell surface expression of
HER2/neu in SK-BR-3 cells is shown. These data represent three separate experiments.
doi:10.1371/journal.pone.0017541.g004
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transient expression approaches (magnICON system) [39–42] for

scalable production of full-size anticancer mAbs, creating an

opportunity for plant-made pharmaceuticals [22]. The above

system exploits pro-viral vectors and intron optimization of the

TMV vector in which putative cryptic splice sites were removed

and multiple plant introns were inserted [43,44]. Full mAb

production requires simultaneous expression of light- and heavy-

chain-encoding genes in the same plant cell infected with two

different non-competing viruses, such as TMV and PVX [17].

Here, we used 35S-based vectors and an assembled viral vector

system in which intron-optimized TMV and PVX vectors encoded the

heavy and light chains of PMT, respectively. Both viral and non-viral

systems directed production of PMT in N. benthamiana leaves; however,

high antibody production (100 to 150 mg/g FW) from non-replicating

vectors can be achieved only after TBSV p19 co-injection (Figure 1).

Joint injection of TMV and PVX vectors provided a yield of purified

antibody up to 300 mg/g FW and excluded the requirement of adding

an anti-silencing gene into the inoculation mixture.

Herceptin (trastuzumab) is a humanized mouse monoclonal

antibody 4D5 and binds to the domain IV of HER2 [29]. The precise

mechanisms underlying its action and acquired resistance are still

poorly understood. Recent studies have shown that Herceptin does not

decrease HER2 phosphorylation [45,46]. This failure to abolish HER2

phosphorylation may explain why acquired resistance inevitably occurs

for all patients if Herceptin is given as monotherapy [47].

Recently, Grohs et al. [19] used the magnICON system and

demonstrated that PMT produced in N. benthamiana inhibited the

growth of HER2-positive cancer cells. Functional assays revealed

that PMT and Herceptin have similar in vitro antiproliferative

effects on breast cancer cells that overexpress HER2. Here in line

with results of Grohs et al. [19], our experiments showed that

PMT efficiently suppressed SK-BR-3 cell growth in vitro.

Moreover, our purified PMT was as robust as trastuzumab in

recognizing the HER2/neu peptide mimotope (Figure 3) and

HER2/neu oncoprotein on the surface SK-BR-3 cells (Figure 4).

Surface plasmon resonance (SPR) spectroscopy is a potential

technique for the affinity profile identification of the molecules.

Although first SPR studies for trastuzumab were inconclusive [48],

further experimentation is needed to compare binding of these

antibodies to both the HER2/neu antigen and Fcc receptor.

Our direct testing of antitumor activity showed that PMT

efficiently retarded the growth of xenografted tumors derived from

human ovarian cancer SKOV3 Her2+ cells (Figure 6). Addition-

ally, PMT turned out to be more effective than trastuzumab in

suppression of tumor growth. The cause of this phenomenon is

unclear. SPR study may reveal differences in the affinity of

trastuzumab and PMT to the antigen and/or Fcc receptor, which

may help explain the enhanced tumour-restricting properties of

PMT in vivo. We suggest that it is too early to claim that PMT is

biosimilar to trastuzumab. Additional experiments are required to

prove that trastuzumab and PMT share full identity in their amino

acid sequence, glycosylation profile and ADCC.

Materials and Methods

Gene and vector engineering
The trastuzumab amino acid sequence (DrugBank accession

number DB00072) was used to synthesise the PMT light (LC) and

heavy (HC) chain genes. The Enthelechon backtranslation tool

(Markus Fischer, Backtranslation Tool, http://www.entelechon.

com/backtranslation, Entelechon GmbH, Regensburg, Germany)

was used for codon sequence determination.

35S-based vectors (35S-LC and 35S-HC) were made by

replacing the GFP-RFP cassette with LC or HC genes in a 35S-

GFP-RFP vector [49] using NcoI-XhoI sites.

The TMV-based vector was made in several cloning steps with

intermediate construct (IC) formation. A single, 1283 nucleotide EcoRI-

BamHI fragment from pICH4351 [43] was inserted into pGEM3Z to

create IC-1. To produce IC-2, two oligonucleotides (‘‘pl+’’ TCGA-

CAGCTAGCTCCATGGACTCGAGT and ‘‘pl2’’ GTACACTC-

GAGTCCATGGAGCTAGCTG) were annealed and inserted into

IC-1 using XhoI-BsrGI sites. Next, the HC gene was cloned into the

IC-2 digested with NcoI-XhoI, resulting in IC-3. In the final cloning

step, crucifer infected TMV (crTMV)-based vector with coat protein

(CP) fused with GFP gene (crTMV-CP-GFP) [50] was digested with

KpnI-BHI and used as a vector; the first fragment contained the

Figure 6. PMT inhibits tumor growth in a xenograft model of
human Her2+ ovarian cancer. The treatment groups received their
first doses (20 mg/kg) of PMT (n = 7) and trastuzumab (n = 10) in saline
solution i.p. 6 days after SKOV3 implantation, and then for 16 days, they
received 8 consecutive injections (10 mg/kg). The control group (n = 34)
received saline solution. Tumor volumes were recorded in intervals 10–
14, 18–22 and 23–27 days after SKOV3 implantation using a caliper.
Data are the mean 6 standard deviations from two independent
experiments. Asterisk shows P,0.05 by the unpaired two tailed
Student’s t-test for statistical significance of difference between the
PMT and trastuzumab treatment and control.
doi:10.1371/journal.pone.0017541.g006

Figure 5. Effects of PMT on growth of the breast cancer cell line
SK-BR-3 in MTT assays. Growth inhibition effect of PMT compared to
trastuzumab (Herceptin, Hoffmann-La Roche) and rituximab (Hoffmann-
La Roche) as a negative control. This assay was repeated at least three
times.
doi:10.1371/journal.pone.0017541.g005
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Arabidopsis actin 2 promoter. The TMV RNA-dependent RNA

polymerase (RdRp) with eight introns and a part of the TMV

movement protein gene were obtained from pICH17388 (courtesy of

Icon Genetics GmbH, and described in Giritch et al., 2006) [17] and

flanked with KpnI and EcoRI sites. IC-3 was digested with EcoRI and

BamHI, resulting in the second fragment. The TMV-HC vector was

achieved by ligation of these fragments.

Vector PVX-LC was made by modifying PVX-BIN19 [51]; the

CP gene was replaced with the LC coding sequence.

Agroinfiltration
Agrobacterium tumefaciens strain GV3101 was transformed with

individual binary constructs and grown at 28uC in LB medium

supplemented with rifampicin 50 mg/L, gentamycin 25 mg/L

and either carbencillin 50 mg/L or kanamycin 50 mg/L. An

aliquot of Agrobacterium cell suspension from an overnight culture

(2 ml) was diluted in 10 mM MES buffer (pH 5.5) supplemented

with 10 mM MgSO4 to a final OD600 of 0.3. Agroinfiltration was

performed on almost-fully-expanded N. benthamiana leaves still

attached to the intact plant. A bacterial suspension was infiltrated

into the leaf tissue using a 2-ml syringe, after which the plants were

grown under greenhouse conditions at 22uC with 16 hours of

light.

PMT extraction and purification
Total soluble protein was extracted from agroinoculated N.

benthamiana leaves with 10 mM sodium phosphate buffer. PMT

isolation from crude plant extract was performed with either

Protein A SepharoseTM 4 Fast Flow (GE Healthcare) or 1 ml

HiTrap Protein A HP columns (GE Healthcare) according to

manufacturer’s protocol. A ‘‘Sartobind Q nano’’ membrane

(Sartorius Stedim Biotech) was used for further purification to

remove viruses, DNA and endotoxins.

HPLC equipment and conditions
HPLC analyses were performed on a narrow-bore column

(Milichrom A-02; EnviroChrom LC, Chromatography Institute

ECONOVA, Novosibirsk, Russia; 7562 mm) packed with 5-

lmparticles of Nucleosil C18, pore size 120 Å (Macherey-Nagel,

Duren, Germany). Separations were performed at 25uC, and a

dual wavelength (214 nm and 280 nm) detector was used. The

elution gradient profile was as follows. The elution solvents were A

(0.1% trifluoroacetic acid in water, pH 2.2) and B (acetonitrile

with 0.1% trifluoroacetic acid). The linear gradient was 0–60% B

in 20 min and then 60–100% B in 5 min; the flow rate was

80 mL?min21. Fractions were collected for subsequent analysis

using a Gilson 201 fraction collector.

SDS-PAGE, western blot analysis and ELISA
Samples (15 mg) of agroinfiltrated N. benthamiana leaves were

ground in the presence of celite in 50 ml of PBS. Crude leaf extracts

were resolved on 7.5 to 10% (non-reducing conditions) or 12%

(reducing conditions) polyacrylamide gels using Laemmli’s buffer

system [52] followed by Coomassie brilliant blue G-250 staining. For

western blot analysis, fractionated proteins were transferred to a

Hybond-P PVDF membrane (GE Healthcare), blocked with 5%

skim milk (Fluka) in TBS and probed with goat human-kappa-chain-

specific HRP-conjugated antibodies (Sigma) or goat human-gamma-

chain-specific HRP-conjugated antibodies (Sigma) diluted 1:15,000

in TBS with 0.1% Tween 20. The western blot was developed with

an ECL detection reagent (GE Healthcare). The ELISA procedure

was described earlier [53].

Cell Proliferation Assay
The effect of anti-HER-2/neu mAbs on proliferation of the

human mammary adenocarcinoma cell line SK-BR-3 was

investigated by the MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-iphe-

nyltetrazolium bromide] assay as described [54], using saturating

mAb concentrations. Cells (16104 cells per well) were seeded in

96-well plates. After exposure to the different drugs for 48 h,

20 mL of MTT solution (5 mg/mL in PBS) was added to each

well, and the plates were incubated for an additional 4 h at 37uC.

The MTT solution in the medium was removed by aspiration. To

achieve solubilization of the formazan crystal formed in viable

cells, 150 mL of dimethylsulfoxide (DMSO) was added to each

well before absorbances (A) at 570 nm were measured. Cell

survival was calculated as the ratio of A570 nm in wells containing

a PMT compared to that in control wells with no PMT.

Nude mouse xenograft model of HER2+ SKOV3-derived
human ovarian cancer

This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the N. N. Blokhin National Cancer

Research Center, Moscow, Russia. The protocol was approved by

the Committee on the Ethics of Animal Experiments of the N. N.

Blokhin National Cancer Research Center, Moscow, Russia

(Permit Number: 22, May 18, 2009). All surgery was performed

under sodium pentobarbital anesthesia, and all efforts were made

to minimize suffering.

Five million SKOV3 cells were s.c. injected into 4- to 6-wk-old

female BALB/athymic nude mice (Animal Center of N. N.

Blokhin National Cancer Research Center, Moscow, Russia). Six

days after SKOV3 implantation, when the average tumor volume

was 41615.5 mm3, the treatment groups received their first dose

of PMT (20 mg/kg). Then for 16 days, the mice received 8

consecutive injections (10 mg/kg). The control group received

normal saline solution. Tumor volumes were recorded using a

caliper 10, 14, 18, 22, 23 and 27 days after SKOV3 implantation.

Supporting Information

Figure S1 Purification of PMT using protein A sephar-
ose. Proteins were separated in an 8% polyacrylamide gel under

non-reducing conditions (A) and in a 10% gel under reducing

conditions (B) and stained with Coomassie blue. Lanes 1–7,

fractions from the protein A sepharose column; lane 8, flow

through from the column; lane M, protein molecular weight

markers; lane S, standard - 1 mg hIgG.

(TIF)

Figure S2 Further PMT purification. H - PMT was purified

on an AKTApurifier (GE Healthcare) using 1 ml HiTrap Protein

A columns. Lanes 1–10, fractions from the protein A sepharose

column; lane 11, Sartobind Q nano purified protein. Protein

eluted from Sartobind with 1 M NaCl – lane 12.

(TIF)
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