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Abstract

Computer simulation techniques for cardiac beating motions potentially have many applications and a broad audience.
However, most existing methods require enormous computational costs and often show unstable behavior for extreme
parameter sets, which interrupts smooth simulation study and make it difficult to apply them to interactive applications. To
address this issue, we present an efficient and robust framework for simulating the cardiac beating motion. The global
cardiac motion is generated by the accumulation of local myocardial fiber contractions. We compute such local-to-global
deformations using a kinematic approach; we divide a heart mesh model into overlapping local regions, contract them
independently according to fiber orientation, and compute a global shape that satisfies contracted shapes of all local
regions as much as possible. A comparison between our method and a physics-based method showed that our method can
generate motion very close to that of a physics-based simulation. Our kinematic method has high controllability; the
simulated ventricle-wall-contraction speed can be easily adjusted to that of a real heart by controlling local contraction
timing. We demonstrate that our method achieves a highly realistic beating motion of a whole heart in real time on a
consumer-level computer. Our method provides an important step to bridge a gap between cardiac simulations and
interactive applications.
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Introduction

The heart is a muscular organ, in which the myocardial fibers

are helically aligned [1–3]. When the heart is beating, myocardial

fibers receive an electrical signal and contract in the longitudinal

direction. The accumulation of these local contractions results in a

global pumping motion. Computer simulation of such motions has

many potential applications, including off-line tools for identifying

cardiac functions and interactive tools for supporting communi-

cations between physicians and patients, designing digital contents,

or assisting education.

Many studies have been published on simulating heart motion

[4–8]. Most of the existing cardiac-muscle models are based on

Hill-type model [9–11]. Lin and Yin presented a multiaxial

constitutive law for computing actively contracting myocardium

[4]. These mechanical models were integrated with electrophys-

iological simulations of excitation propagation and blood flow

simulation to emulate total heart behavior [5–8]. However,

applying these methods to interactive applications is very difficult,

as they usually require specific hardware (e.g., supercomputers)

and off-line computational time. The main target of these models

is to study cardiac mechanisms; thus, they emphasize physically

precise modeling rather than computational efficiency. In contrast,

our goal is to provide a simulation framework for interactive

applications. Our focus is on computational efficiency and

robustness.

The key idea is to employ a kinematic approach rather than

physics-based approach. We compute cardiac beating motion by

dividing a heart model into overlapping local regions, contracting

the shapes of the local regions, and estimating a global

deformation that satisfies all contracted local shapes as much as

possible. When estimating the global deformation from local

contractions, we apply shape-matching dynamics (SMD) method

[12,13]. SMD is a geometry-based elastic body representation

used in the computer graphics field. It replaces mechanical

equilibrium equations of physics-based simulation with geometric

constraints and achieves high computational efficiency and

unconditional robustness. As we compute organ-level beating

deformation from fiber-level contractions, we call our simulation

kinematic approach. We have previously presented a similar

method for designing motions of soft objects such as mollusks and

muscles [14]. In the present study, we extend the previous study to

assess whole-heart motion. We introduce fiber direction-depen-

dent weights to emulate anisotropic stiffness of the myocardium

[15,16] and provide tools to specify local contraction timing and

myocardial fiber directions.
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To evaluate the reproduction performance of our proposed

method, we provide detailed comparison between our method and

a physics-based method using a simplified situation. This indicated

that our method achieves contracted shapes that closely resemble

those of the physics-based method. Our kinematic approach has

high controllability; since our method generates global motion

from the accumulation of local contractions, we can easily adjust

macroscopic motions of simulation results to that of observations

by modifying local contraction timing. Such controllability is

particularly important to reproduce observed motions. We found

that the left ventricle ejection fraction (LVEF) of the simulated

whole heart was very close to the average LVEF of a real heart.

Since our method never requires solving equilibrium equations, it

achieves high computational efficiency and robustness. With

carefully tuned parameters, our method can generate realistic

cardiac beating motions in real-time. To illustrate the feasibility of

our real-time framework, we provide three interactive tools.

We would like to emphasize that our method does not replace

existing physics-based approaches but provides an alternative. As

our method is a purely kinematic simulation, it is limited to

producing motions. In other words, it is difficult to obtain physical

values, such as stress distributions or ventricular wall pressures,

from simulation results. However, we believe our method is useful

for estimating LVEF, predicting kinematic changes in response to

altered fiber orientations, or generating interactive animations.

Hopefully our method will expand the audience for interactive

cardiac simulations.

Methods

Overview of the simulation framework
Figure 1 shows a two-dimensional (2D) illustration of our

simulation outline. We represent a heart with a volumetric

tetrahedral mesh model. In the 2D case, we consider a horizontal

cross section of the heart, and the target model is represented with

a 2D triangular mesh (Figure 1A and 1B). Before running a

simulation, we construct a local region, Ni, around each i-th vertex,

xi, of the model by connecting its immediate (1-ring) neighbors

(Figure 1D). The local region represents a fragment of myocar-

dium, and neighboring local regions overlap. During each

simulation step, we first deform all local regions independently,

and then deform the global shape to satisfy the contracted local

regions as much as possible. In Figure 1E, local regions are

contracted in the circumferential direction (i.e., fiber direction)

and expanded in the transmural direction. As a result, the

ventricular wall thickens, and the right and left ventricles (RV and

LV, respectively) shrink (Figure 1F and 1C).

A major difference between our method and traditional physics-

based methods is that we replace internal force computations with

local regional contractions and compute global motion using

geometric constraints. This effectively avoids overshooting, an

inherent problem in traditional physics-based methods, and

achieves unconditional robustness.

Contraction Function
We denote the contraction condition of the i-th local region, Ni,

at time t, with the contraction function Ti(t). As excited myocardial

fibers contract along their longitudinal direction and expand in the

transverse direction, we define Ti(t) as anisotropic scaling. To

determine Ti(t), we consider the three most important elements:

local myocardial fiber direction, contraction timing, and contrac-

tion rate.

Myocardial fiber direction is represented with a smooth

vector field, in which a single unit vector, d1
i , is defined at

each local region, Ni. Although such a vector field can be
captured by using diffusion tensor magnetic resonance
imaging (MRI) [17], it requires specific techniques and
devices. For simulation purpose, mathematical representations

are useful to represent a vector field inside a simplified LV model

[3,8]. To construct vector fields in complicated whole heart model,

Takayama et al. [18] presented a sketch based interface. In this

paper, we used latter two methods.

Contraction timing and rate are also important elements

to determine contraction conditions of local regions. Some

researchers have computed them using electrophysiological

simulations [5–8,19,20]; however, these simulations usually

require a lot of computational time. Our purpose is to achieve

an interactive framework, and then we specify the contraction

timing and rate by a time-contraction curve, which plots contraction

ratio c(t)[½0,1� at time t[½0,T �, where T is a time cycle (Section 3

and Video S1). Given the contraction rate c(t), we compute the

scaling ratio along the fiber direction as

s(t)~1{c(t)|Amc ð1Þ

where Amc[[0,1) is a maximum contraction (MC) rate. For example,

when Amc = 0.2, the local regions are contracted by 20% (scaled to

0.8 times) along the fiber direction when c(t) = 1.0. Note that the

time-contraction curve lacks the ability to represent excitation

propagation phenomena. To emulate this in an easy-to-control

way, we used a phase-shift field presented in [14].

Contraction function. Given the fiber direction vector d1
i

and the scaling rate s1
i (t) for each local region, Ni, at time t, the

contraction function Ti(t)[R363 is defined as an anisotropic scaling

matrix,

Ti(t)~ d1
i d2

i d3
i

� � s1
i (t) 0 0

0 s2
i (t) 0

0 0 s3
i (t)

0
B@

1
CA d1

i d2
i d3

i

� �T ð2Þ

where d2
i and d3

i are arbitrary unit vectors orthogonal to d1
i ,

orthogonal to each other, and satisfy d1
i ~d2

i |d3
i . Thus, {d1

i , d2
i ,

Figure 1. An overview of our kinematic approach. (A) Heart
model. LA, RA, LV, and RV stand for left/right atrium, and left/right
ventricle, respectively. (B) Target mesh model in 2D. Constructed local
regions (D) are constructed along the fiber orientation so as to maintain
their original volumes (E). (F, C)We deform global shape so as to satisfy
the shapes of the constructed local regions as much as possible.
doi:10.1371/journal.pone.0036706.g001
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d3
i } constructs a normalized orthogonal basis at Ni. s1

i (t), s2
i (t), and

s3
i (t) represent the scaling rate along d1

i d2
i , and d3

i , respectively.

We defines2
i (t)~s3

i (t)~1=
ffiffiffiffiffiffiffiffiffi
s1

i (t)
q

so that a scaled local region

maintains its original volume.

Notice that, our simulation framework is not limited to

manually designed fiber orientations and time-contraction curves;

it would be easy to import fiber orientation data obtained from a

real heart [17] and contraction timing obtained from excitation

propagation simulations [19,20].

Kinematic Approach
As previously mentioned, we construct overlapping local

regions, Ni, at each vertex, xi, by connecting neighboring vertices.

The contraction condition at Ni at time t is defined by Ti(t)[R363.

For each simulation frame, we compute global motion in two

steps: computing goal position gi and updating position xi and

velocity vi of the i-th vertex.

Goal position computation. The goal position gi is the

desired position of the i-th vertex in the next simulation frame.

This is obtained by computing the best-fitting rigid transforma-

tions from the rest shapes to the deformed shapes of all local

regions and blending the results. Figure 2 provides a 2D

illustration of the goal position computation. Let us focus on the

r-th local region Nr. The relative locations of Nr rest shape vertices

with respect to its mass center, c0
r ~

P
i[Nr

wr
i x

0
iP

i[Nr
wr

i

, are defined as

brest
i ~Tr(t)(x

0
i {c0

i ), (i[Nr), ð3Þ

where x0
i is the i-th vertex position of the undeformed original

shape, and wr
i represents orientation-dependent weights (we

explain this later). Note that we scale the original relative positions

(x0
i {c0

i ) by Tr(t). Similarly, the relative locations of the current

shape vertices with respect to its mass center, cr~

P
i[Nr

wr
i
xiP

i[Nr
wr

i

, are

defined as

bcurr
i ~ (xi{ci), (i[Nr), ð4Þ

where xi is the i-th vertex position of the deformed current shape.

We then compute the rotation matrix Rr which fits the rest shape

to the current deformed shape of Nr by solving,

arg minRr

X
i[Nr

wr
i Rrb

rest
i {bcurr

i

� �2 ð5Þ

Please see [12,14] for a detailed method to solve this

minimization problem. Given the fitting rotation matrix Rr, we

can estimate the goal positions of vertices in Nr as

gr
i ~RrTr(x

0
i {c0

r )zcr, (i[Nr), ð6Þ

The process that computes the best-fitting rigid transformation

from a rest shape to a current shape in each local region is called

shape matching. Now, we compute shape matching for all local

regions. As one vertex belongs to multiple local regions, multiple

goal positions are derived for each vertex. Finally, we blend them

to obtain the goal positions:

gi~

P
frDi[Nrg wr

i g
r
iP

frDi[Nrg wr
i

ð7Þ

Update vertex positions and velocities. Given goal posi-

tion gi, we update positions xi and velocities vi of the current

simulation frame to

v0i~viz
gi{xi

h
zh

fext
i
mi

x0i~xizhv0i

ð8Þ

where h is a time step, fext
i is an external force on the i-th vertex,

and mi is the mass of the i-th vertex.

Stiffness control. Stiffness control is an important topic.

Rivers and James [13] modified stiffness by changing the size of

local regions, whereas Ijiri et al. [14] controlled stiffness by

repeating the goal position computation. In our setup, the local

region size cannot be changed. Because each region represents a

fragment of myocardium and is linearly contracted, a large local

region causes large errors. We therefore use the repetitive method

[14]. We first apply shape matching to the current shape xi to

obtain the initial goal position g1
i . We then use g1

i as the target

shape and apply shape matching to g1
i to obtain g2

i . We iteratively

compute gM
i and use it as the goal position. A force applied on a

vertex affects vertices farther away for a larger value of M,

resulting in stiffer deformations. We specify M = 10 for all

examples in this study excepting Figure 3.

Fiber direction dependent weights. Weighting coefficients,

wr
i , for computing the mass centers of local regions and blending

shape-matching results are important in the SMD framework.

Previous studies [13,14] specified these coefficients as wr
i ~mi=DNi D,

where DNi D is the number of vertices in Ni. This results in isotropic

elasticity. However, cardiac muscle exhibits anisotropic elastic

behavior; the muscle is stiffer in the fiber direction than in the

Figure 2. 2D illustration of goal-position computation. Focus on
the r-th region, Nr. We have its undeformed original shape (A) and
current deformed shape (C). The rest shape of Nr is obtained by scaling
the original shape (B). We translate the rest shape to fit its mass center
to that of the current shape (D) and then rotate the rest shape to fit the
current shape as much as possible (E). We compute the shape matching
for all local regions (F) and blend the results to obtain the goal positions
(G). In (F), we visualize the fitting results of only four regions.
doi:10.1371/journal.pone.0036706.g002
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plane perpendicular to the fiber direction [11,15,16]. To achieve

this anisotropic stiffness, we define the weights depending on the

local fiber direction, wr
i ~mi| d1

r
:vi= vik k

� �2
z0:01

� �
, where d1

r is

a unit fiber direction vector at Nr and vi~x0
i {

P
k[Nr

mkx0
kP

k[Nr
mk

is the

location of x0
i relative to the mass center of Nr. That is, we place

stronger weights for vertices of which the relative position is along

the fiber direction. This simple modification efficiently achieves

anisotropic stiffness (Figure 3).

Volume preservation. Although we contract local regions so

that they maintain their original volumes and use them as the rest

states, the total volume of the computed goal position is seldom

maintained. This is because the complicated fiber orientation

causes locally inconsistent contractions, and the goal position is

obtained as a result of local compromise. To guarantee

preservation of the total volume, we modify the goal position,

similar to the volume-preserving SMD presented by Takamatsu

and Kanai [21]. This method first generates a global displacement

vector field from the boundary surface normal and then computes

a sufficient displacement.

Results

Comparison with a physics-based model
To evaluate the reproduction performance of our method, we

compared deformation simulation results generated with our

kinematic and physics-based approaches. As a target for compar-

ison, we used a 3D body extension [11] of the Zajac muscle model

[9,10]. Note that, although this is a skeletal muscle model, this

primitive muscle model is very widely used and recently presented

myocardial model [4] shares similar characteristics, e.g., incom-

pressible elasticity, non-linear stress-strain relationship, and

sarcomere length dependency, with the Zajac model [9,10]. We

adopted this simple but essential model to evaluate how much our

kinematic approach can reproduce fundamental traits of cardiac

motion. We used the following material parameters, Young’s

modulus, 0.02 MPa; relative density, 1.1; and maximum stress,

0.4 MPa, inferred from previous studies [10,22]. As a simplified

LV model, we prepared a thick-walled-cylinder with a 10 mm

thickness, a 45 mm inner diameter, and 50 mm an axial length

(Figure 4). Myocardial fiber orientation inside the model is usually

denoted using two angles, atrans and ahelix, which define the angle

between the circumference direction and the fiber orientation on a

plane perpendicular to the LV longitudinal axis and the

inclination of the fiber orientation from the plane perpendicular

to the LV longitudinal axis, respectively. Using this notation, we

specified the fiber orientation as atrans = 0u, and ahelix as linearly

varying from +60u to 260u along the transmural direction [1,3,8]

(Figure 4B and 4C). We also specified a simple time-activation

curve for the physics-based method and the same shaped time-

contraction curve for our method as in Figure 5A.

Both methods generate axially symmetric deformations and we

measured the following four values: wall thickness, W; vertical

length, L; spatial volume, V; and slant angle of the external surface,

Sext (Figure 4A). The spatial volume represents the volume of an

internal cylinder, which corresponds to the volume of the LV

chamber. The slant angle is that between the cylinder axis and the

vertical edges that exist on an external cylinder vertically oriented

in the undeformed state. This exhibits the magnitude of twisting

deformation. Figure 5B, C, D, E shows the temporal variations of

the four values. The solid line corresponds to the physical model,

whereas the dashed red lines correspond to the deformations

computed using our method with different MC rates (i.e.,

Amc = 0.1, 0.3, 0.5, and 0.7).

During full activation (i.e., time 0.5–0.75), our method with

Amc = 0.5 achieved values very close to those of the physics method

for W, V, and Sext (Figure 5B, 5D, and 5E). The decrease ratio of L

was less than 15% in the both methods (Figure 5C). We found a

difference between the two methods in the temporal variation of

the four measurements during the activation rate varying (i.e., time

0.25–0.5 and 0.75–1.0). Our method generated approximately

linear variations in W and L, whereas the physics-based method

resulted in nonlinear variations (Figure 5B and 5C). This

nonlinearity of the physical model is caused by two major reasons;

the active muscular force depends on the both activation rate and

muscle elongation rate [10], and Mooney-Rivlin hyperelastic

material used in [11] has a nonlinear strain-stress relationship.

Whereas, our kinematic method simply translates local contrac-

tions into global deformation; the global deformations are

obtained from the accumulations of local scaling and local

rotation. When the influence of local scaling is dominant (i.e.,

influence of local rotation is small enough), temporal variations of

global measurements are almost proportional to the specified time-

contraction curve.

Figure 3. The effect of fiber-direction-dependent weights. We
specified horizontal (B), vertical (C), and 45u-slanted (D) fiber orientation
in a thick -sheet model (100 mm6100 mm620 mm) (A). We then fixed
the top regions and observed the resting shapes in a gravity field
without activation. The resting shapes (B–D) show that the model is
stiffer in the fiber direction than in the perpendicular direction. We
specified gravity acceleration as 9.8 m/s2, time step h = 0.005 s, and
stiffness iteration M = 3. Note that we used small stiffness value so as to
observe large deformations.
doi:10.1371/journal.pone.0036706.g003

Figure 4. A simplified LV model. (A) A simplified LV model. (B) Two
angles, atrans and ahelix, denote the myocardial fiber orientation in the
model. (C) The specified ahelix varies linearly along the transmural
direction.
doi:10.1371/journal.pone.0036706.g004
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Contraction speed fitting
The gradient of temporal variation of the global shape

measurements represents contraction speed that is important

clinically. For heart simulators, the ability to reproduce an

observed contraction speed is very important. Using our method,

the temporal changes in the simulated motion can easily be

controlled by modifying the time-contraction curve based on

physiological or clinical data.

As mentioned above, it can be estimated that a temporal

variation of a global measurement is almost proportional to the

specified time-contraction curve, when the effect of local scaling is

dominant. Based on this estimation, we designed a new time-

contraction curve by taking the time-W curve obtained by the

physics-based simulation (the solid curve in Figure 5B) and

normalizing its domain and range into [0,1] as in Figure 5F. We

then simulated deformations with it. As a result, our method

achieved temporal variations (chart shapes) very close to those of

the physics simulation in W, L, and V (Figure 5G, 5H, and 5J).

However, we found small difference in slant angle, Sext (Figure 5I).

Since Sext is affected by the both local contraction and rotation, it is

difficult to perfectly adjust it with our current method. Notice that

the difference in Sext is small enough for our main purposes, i.e.,

estimating LVEFs and generating real-time animations.

Influence of fiber orientation
To examine the influence of myocardial fiber orientation on

global deformation, four different fiber orientations were specified

in the simplified LV model. Then the deformation was computed

using our method and the physics-based method. Because the MC

rate that provides the deformation closest to that of the physics-

based method depends on fiber orientation, we tested all Amc values

within the interval of 0.05 for each of the four cases and selected

the one that output the deformed shape closest to the physics-

based simulation. We used spatial volume value as a metric for

closeness.

Figure 6 and Video S2 summarize the specified fiber

orientations, selected MC rates, and contracted shapes with their

three measurements. In all four cases, our method achieved results

very close to the physics-based method. In the cases of ahelix = 90u
and 260u (Figure 6C and 6D), the decrease in spatial volume was

very small or almost zero, meaning that the two models do not

have pump ability. In the case of ahelix = 0u (Figure 6B), the model

was elongated in the vertical direction, which is never observed in

an actual heart. Varying ahelix from +60u to 260u along the

transmural direction resulted in the highest decrease ratio of

spatial volume, indicating that this model has potential as an

efficient pump (Figure 6A).

Whole heart model construction
Next, we applied our method to a whole-heart model. We

constructed a tetrahedral mesh model of a whole heart from

electrocardiogram-gated MRI images. We extracted the heart

region from human chest images at end-diastole and generated a

tetrahedral mesh from the boundary surface of the extracted

region using TetGen [23]. Model A in Figure 7A is the obtained

model. Its approximate sizes were 160 mm in the longitudinal

direction and 120 mm in the lateral direction, and the wall

thicknesses were approximately 11 mm (LV), 13 mm (mid-wall),

and 5 mm (RV). To accurately capture the transmural variation in

myocardial fiber orientation, an edge-based subdivision [24] was

applied to the obtained model; we subdivided all edges of model A

longer than 10 mm to obtain model B and 5 mm to obtain model C.

Note that the LV walls of models A, B, and C had approximately

two, three, and four vertices (layers), respectively, in the

transmural direction (Figure 7A).

We manually designed a myocardial fiber orientation in the

models using a two step sketching interface [18]. We first created a

layer structure inside the model by placing constraint points with

depth values. After placement, the depth values of all points are

smoothly interpolated inside the model, and a smooth depth field

is obtained (Figure 7B and C). We then draw multiple orientation

strokes on each layer. The strokes represent local fiber orientation

at their locations. We referred to anatomical studies on myocardial

fiber orientation in ventricles [1–3,17] and in atria [25] to specify

the orientation strokes. The stroke orientations are interpolated

inside the model resulting in smooth fiber orientation field

(Figure 7D and E). We also segmented the local regions into

atrial, ventricular, or excluded regions (Figure 7F).

We designed the time-contraction curve as in Figure 8C. The

green chart indicates the contraction rate of local regions in the

Figure 5. Simulation results of the simplified LV model. Simulation results computed using the physics-based method [10,11] and our
method. In the top row (A–E), we compare the two methods with the same time-activation/contraction curve (A). In the bottom row (F–J), we modify
the time-contraction curve for our method (F) and compare the two methods. In (A) and (F), solid lines indicate time-activation curves for the physical
method and dashed lines are time-contraction curves for our method. While (B–E) show temporal variations in the four shape measurements
computed with (A), (G–J) show those computed with (F). In (B–E) and (G–J), the solid line indicates the results of the physics-based method, and the
dashed red lines denote the results of our method with different MC rates.
doi:10.1371/journal.pone.0036706.g005
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ventricle, and the blue is for those in the atrium. The time-

contraction curve of the ventricle (green chart) was designed

according to a real heart. A temporal variation in LV wall

thickness of a real heart was observed by Traill et al. [26]

(Figure 8A). We normalized this time-wall thickness curve and

used it as the time-contraction curve. During t0–t1, the atrial

regions contract, during t1–t3 (systole), the ventricle regions

contract and the atrial regions are relaxed returning to their

original shapes, and during t3–t0 (diastole), the ventricular regions

are relaxed.

Beating simulation of a whole heart
We computed the beating motions of model B with time cycle

T = 1.1 s, time step h = 0.01 s, and different MC rates (i.e.,

Amc = 0.4, 0.5, 0.6, and 0.7). The dashed red lines in Figure 8B

show the temporal changes of LV posterior wall thickness of the

simulated beating motion. This demonstrates that our method

achieves temporal changes of wall thickness that are very close to

those observed in an actual heart [26]. The two rows in Figure 8D

and 8E indicate representative frames of the simulated beating

motion with Amc = 0.5. The top row highlights activated local

regions in yellow, and the second row transparently visualizes the

deformation of each chamber. Video S3 shows the simulation

results in an animation.

To illustrate the feasibility of our real-time framework, we

implemented three interaction tools: a cutting tool, a peeling tool,

and a direct deformation tool (Figure 8F, G and Video S4). The

cutting tool allows the user to temporally cut the model to observe

a cross section by drawing a stroke. The peeling tool allows peeling

the model and observing the motions of muscular layers. The

direct dragging tool allows grabbing and dragging a vertex of the

heart model. During dragging, the system adds an external force

oriented to the dragged direction onto the grabbed vertex. Because

our algorithm guarantees unconditional robustness, the simulation

never diverges even if extremely large forces are applied.

We next observed LVEF, which is a common parameter for

evaluating cardiac function, to evaluate further the resulting

motion quantitatively. We simulated the beating motions of models

A, B, and C using the same setup as shown in Figure 8. The two

charts in Figure 9 indicate the LVEF of the three models with

respect to different MC rates. While we used the anisotropic

stiffness model to obtain the left chart, the right was computed

using the traditional isotropic stiffness model [13,14].

Figure 6. A comparison between our approach and the
physics-based method using four different fiber orientations.
Each panel provides the specified fiber orientation and Amc value on the
top, a contracted shape with the physics-based method on the bottom
left (blue), and a contracted shape with our method on the bottom
right (red).
doi:10.1371/journal.pone.0036706.g006

Figure 7. A whole heart model. (A) Three heart tetrahedral-mesh
models with different subdivision levels. (B–D) Fiber orientation field
construction process with the painting interface [18]. In (B), constraint
points for the three regions (i.e., epicardium, RV/RA endocardium, and
LV/LA endocardium) are highlighted in blue, green, and red and have
depth values of 0.0, 0.5, and 1.0, respectively. In (D), light blue curves
indicated the specified orientation strokes. (E) Smooth myocardial fiber
orientation fields of the atrium (left) and ventricle (right) constructed.
(F) Segmented local regions; atrium and ventricle regions are
highlighted in blue and green.
doi:10.1371/journal.pone.0036706.g007
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Our orientation-dependent stiffness model generated a higher

LVEF than the isotropic stiffness model. This can be explained as

follows. All ventricular regions contract along the fiber direction

and expand in the orthogonal direction. Our anisotropic model

places higher weights on the contraction along the fiber direction

and lower weights on the orthogonal expansion, whereas the

isotropic model deals with the contraction and expansion fairly. As

a result, the anisotropic model causes a strange vertical elongation

(Figure 9, bottom right). Also, no significant difference in LVEF

with respect to model resolution was observed in the anisotropic

stiffness model.

Discussion

Evaluations of simulated motion
We compared the motion simulated by our approach and the

physics-based method (Figures 5 and 6) and demonstrated that our

kinematic method achieved contracted shapes that were very close

to those of the physics-based method.

We applied our method to whole-heart models. Figure 8 shows

that our method achieved beating motion with a physical

appearance comparably close to real heart motion. The local

contraction ratio of actual healthy hearts is approximately 15%

and the LVEF is 60–80% [27]. Meanwhile, in our framework, the

MC rate, Amc, represents an ideal local contraction rate and an

actual local contraction rate is usually smaller. This is because the

complicated fiber orientation causes inconsistent local contraction,

and the global shape is obtained with local compromises. Taking

this into account, the LVEF of our simulated beating motion of

anisotropic stiffness model in Figure 9 (,75%) was within the

normal range of the LVEF of actual heart (60–80%). This suggests

that our kinematic approach can recreate physiologically consis-

tent heart contraction.

Since our kinematic approach directly compute global defor-

mation from the accumulations of regional fiber-level contractions,

it allows temporal variation of global shape measurements to be

easily controlled by modifying the time-contraction curve so that

its shape is proportional to the desired temporal variation curve

(Figures 5 and 8). This controllability is particularly useful for

reproducing observed motions. A cardiac simulation method with

such a high controllability has never been achieved before.

Figure 8. Beating motion of the whole heart model. (A) The temporal variation of wall thickness of an actual healthy heart observed by Traill et
al. [26]. The four dashed red lines in (B) indicate the temporal variations of wall thickness of our simulation results with different MC rates (Amc = 0.4,
0.5, 0.6., and 0.7). (C) Specified time-contraction curve; the blue chart is for atrial regions and the green chart is for ventricular regions. (D, E)
Representative frames of the whole-heart simulation with different visualization. (F–H) Three interaction tools. (F, G) Cross sections and myocardial
layers of the heart at time t0 and t3. (H) Direct dragging tool. White arrows indicate the grabbed point and black arrows are dragged direction.
doi:10.1371/journal.pone.0036706.g008

Figure 9. LVEFs of the simulated beating motion with respect
to different MC rates. The left chart was computed with the
presented fiber-direction-dependent anisotropic stiffness model, and
the right chart was computed with the isotropic stiffness model. The
bottom panels show the whole-hearts at end-diastole (time t0) and
end-systole (time t3).
doi:10.1371/journal.pone.0036706.g009
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Performance
Table 1 shows the number of vertices of the three heart models

and the total time taken to compute a single simulation frame. The

number of vertices is equivalent to the number of local regions.

Timing was generated on an Intel Core i7 3.33-GHz machine.

Our system achieved an interactive frame rate even for the finest

model. Table 1 also provides simulation times for the simple LV

model (Figure 4) computed using our method and the physics-

based method [10,11]. Since it is possible to accelerate the physics-

based method retaining similar results by reducing the degrees of

freedom, we provide its computational time with a coarser

discretized LV model (bottom of Table 1). The coarser model

was created by halving the number of elements in the axial and

circumferential directions. These results indicate that our method

outperforms the physics-based method in computational time.

Notice that this timing is limited to our specific implementation

and do not fairly compare the kinematic and physics-based

methods. However, we believe that our kinematic method is more

efficient since it does not solve equilibrium equations and is more

suitable for real-time applications. Also, further acceleration of our

method would be possible using GP-GPU techniques [28,29].

Potential applications
The biggest advantage of our method is its computational

efficiency and robustness. Because our simulator can run on a

consumer-level PC, it is accessible to many people with little

knowledge of computer-science and would be a good tool for

understanding the heart. If it were integrated into electronic

medical-chart systems, the real-time beating animation generated

by our system would help patients to understand their disease

conditions and expected recoveries. Similarly, education, digital

content creation, and surgery simulators are good potential

applications of our system.

Although our method is not based on a physical model, little

difference was found between the physics-based method and our

approach using a simplified LV model with the same fiber

orientation. We believe that our method can provide a useful tool

for studying the influence of specific fiber orientation on the

LVEF. If the mechanical changes of a patient with myocardial

infarction were integrated into our method, the LVEF of the

infarcted heart could be estimated immediately, and the abnormal

LV wall motion could be observed in real time on a consumer-

level PC.

Limitations and Future work
Since our method induces global motion not by inner forces but

by local contractions, at present it is unable to observe some

physical values, such as stress distributions or ventricular wall

pressures. It is also difficult to estimate the relationship between

macroscopic deformation speed and internal muscular forces. The

quantitative relationship between the SMD and various physics-

based methods has not yet reported, and its detailed analysis

remains as our future work. Another future work includes

integrating electrophysiological simulations or fluid simulations

into our method and comparing our simulation results with the

motions of actual hearts captured by four-dimensional imaging

devices. We also intend to tackle an inverse elastic body kinematics

problem, in which local contraction conditions will be estimated

from observed global deformation.

Conclusions
We have presented a kinematic method for efficiently and

robustly simulating the beating motion of the heart in real time on

a consumer-level PC. Our method computes motion in two steps:

contracting local regions along the fiber direction and estimating

the global shape that best satisfies all contracted local regions by

SMD. By introducing fiber-direction-dependent weights into

SMD, we can emulate the anisotropic stiffness of the myocardium.

A comparison between our method and a physics-based method

[10,11] indicated that both methods generated very similar

beating motions. Our method achieved a highly realistic beating

motion with a LVEF comparable to that of an actual heart. We

found that our method has high controllability; it allowed us to

easily adjust the contraction speeds of the simulated motion to

observed data by modifying the time-contraction curve. Finally,

we believe that our method provides an important step to bridge a

gap between the unwieldy heart contraction simulations and the

user-friendly interactive applications. Hopefully, this method will

be used in various interactive applications and enhance the value

of cardiac simulations.

Supporting Information

Video S1 A basic interface of our prototype system. This

video shows a basic interface for modifying local contraction rate

and timing, and our real-time simulation result.

(WMV)

Video S2 Comparison between our method and a
physics-based method. This video shows simulation results

generated with our method and the physics based method side-by-

side.

(WMV)

Table 1. Simulation Performance.

No. of vertices Time/frame (ms)

Model A 2479 7.3

Model B 7116 24.2

Model C 28685 110.7

Simple LV(Fig. 4) (our method) 1200 4.1

Simple LV(Fig. 4) (physics-based method) 1200 554.2

Coarser discretized Simple LV (Fig. 4) (physics-based method) 300 118.3

Time/frame indicates an average time to compute a single simulation frame.
doi:10.1371/journal.pone.0036706.t001
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Video S3 Left ventricle ejection fraction of a simulated
whole heart. This video shows simulated whole heart motions

with three different maximum contraction rates.

(WMV)

Video S4 Three interaction tools. This video shows our

three interaction tools, a cutting tool, a peeling tool, and a direct

deformation tool.

(WMV)
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