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Iterative improvements from feedback for language models

Yuxi Li
yuxili@gmail.com

Abstract

Iterative improvements from feedback is a gen-
eral approach for many, if not all, successful
systems. Ground-truth-in-the-loop is critical.
Language models (LMs) like ChatGPT are phe-
nomenal, however, there are still issues like
hallucinations and a lack of planning and con-
trollability. We may leverage LMs’ competence
of language to handle tasks by prompting, fine-
tuning, and augmenting with tools and APIs.
AI aims for optimality. (Current) LMs are ap-
proximations, thus induce an LM-to-real gap.
Our aim is to bridge such a gap. Previous study
shows that grounding, agency and interaction
are the cornerstone for sound and solid LMs. It-
erative improvements from feedback is critical
for further progress of LMs and reinforcement
learning is a promising framework, although
pre-training then fine-tuning is a popular ap-
proach. Iterative updates are too expensive for
monolithic large LMs, thus smaller LMs are
desirable. A modular architecture is thus pre-
ferred. These help make LMs adapt to humans,
but not vice verse. We discuss challenges and
opportunities, in particular, data & feedback,
methodology, evaluation, interpretability, con-
straints and intelligence.

1 Introduction

Iterative improvements from feedback appears as
a universal principle, e.g., gradient descent in op-
timization, expectation-maximum, boosting, and
temporal difference learning in AI, trial and er-
ror in animal learning, policy iteration in dynamic
programming, close-loop feedback control, (agile)
software development, free market for economy,
and evolution of our humankind.

Principle: Most, if not all, successful systems
make iterative improvements from feedback.

A successful system should be built on ground
truth, although it may start with a learned, approx-
imate model or simulator. For an AI system, this
includes trustworthy training data and evaluation

feedback, and when planning is involved, a re-
liable world model. For a system with human
users, human data and feedback are paramount,
and human-in-the-loop is relevant or may be a must.
Prominent AI systems like search engines and large
language models are built on valuable data, from
the Internet and from user feedback. AlphaGo se-
ries and games AI have made remarkable achieve-
ments, where a perfect game rule, i.e. a model, is a
core factor: it can generate high quality or perfect
data including game scores. We should not de-
ploy an AI system trained purely from a simulator,
especially for high stake systems like healthcare,
robotics and autonomous vehicles. We evaluate a
system with ground truth for dependable perfor-
mance results. A system should not self-evaluate
itself, e.g., a student should not self-grade the as-
signment. Section 4 discusses more about approx-
imation.Section 6 discusses more about data and
evaluation.

Principle: Ground-truth-in-the-loop.
Language models (LMs), in particular, Chat-

GPT (OpenAI, 2022a) and GPT-4 (OpenAI, 2023a),
have being taken us by storm. Both opportunities
and challenges abound for LMs, with vast potential
applications, and issues like hallucinations and a
lack of planning and controllability, see e.g., Ope-
nAI (2023a) and OpenAI (2023b). In this article,
we discuss if and how the principle of iterative im-
provements from feedback can be applied to LMs.

Mahowald et al. (2023) study LMs’ linguistic
(“knowledge of rules and patterns of a given lan-
guage”) vs functional (“a host of cognitive abilities
required for language understanding and use in the
real world”) competence and experimental results
show impressive yet imperfect linguistic compe-
tence, however, at the same time, failures on tests
requiring functional competence .

Premise: Current LMs have strong linguistic
but weak functional competence.

Then we can leverage LMs’ competence as a



good model of language. Moreover, we can man-
age to improve the functional competence, e.g., fac-
tuality, safety, planning and controllability. Prompt-
ing is a natural way to utilize LMs, based on the
capacity of in-context learning (Brown et al., 2020).
Fine-tuning an LM can further improve its exper-
tise. A parameter efficient approach makes fine-
tuning large LMs feasible considering the cost. In-
tegrating LMs with tools and APIs can achieve
various functionalities.

There are more and more "small" LMs around
10B parameters or less. They are actually very large
and in a relative sense. When resources become
cheaper, larger models are more affordable. When
models become stronger, smaller models may be
good enough. Being environment friendly, smaller
models are preferred.

Most LMs are trained without optimizing for
downstream tasks. Most works utilizing LMs focus
on feasibility and correctness. There is a room for
further improvements w.r.t. optimality.

Purpose: AI aims for optimality.
To achieve optimality for an AI system, com-

putational bounded rationality leads to approxima-
tions (Gershman et al., 2005). Popular methods for
general intelligence recently are learning to learn,
like transfer / few-shot / multi-task / meta-learning.
This boils down to finding a feasible/optimal solu-
tion with multiple objectives and/or multiple con-
straints. Multi-objective optimization usually will
not optimize all objectives. The more and the
tighter constraints, the less chance to find a feasible
solution. Also, with negative transfer, the previous
knowledge may interfere with later learning.

Premise: General intelligence is approximation.
A general purpose AI system approximates the

underlying world model, i.e., there is a gap between
a learned and the real model. We dub this “LM-
to-real gap” or LM2real gap or LM to reality gap,
following recent study on simulation to reality gap
or sim-to-real gap in robotics and RL communi-
ties. LMs can represent both Language Models and
Large Models, which also include foundation mod-
els (Bommasani et al., 2022). Our goal is to bridge
such a gap. See Section 4 and 6.5 about approxi-
mation and constraints, respectively. Section 6.6
discusses more about intelligence.

Purpose: Bridge LM-to-real gap.
As in Bisk et al. (2020), a language describes

the physical world and facilitates the social interac-
tions, and we can’t learn language from a radio (In-

ternet), from a television, or by ourselves. Ground-
ing and agency from interactions with the physical
and social world are indispensable for LMs.

Premise: Grounding, agency and interaction are
indispensable for sound and solid LMs.

Among LMs, GPT-4 is by far regarded as the
most capable. However, it is too large to itera-
tively improve relatively frequently. On the con-
trary, small LMs are improving, even surpassing
GPT-4 in certain tasks, and are conducive to itera-
tive improvements from feedback. To satisfy cer-
tain performance thresholds, we may have to limit
the number of tasks, so that they can be solved to-
gether to attain a feasible solution. This justifies
a modular approach: each module handles certain
tasks, and all collaborate together. Moreover, is-
sues like privacy and compliance with regulations
may favour modularity. Modularity and small LMs
will become competent and versatile.

Premise: Modularity and small LMs facilitate
iterative improvements from feedback.

Prompt engineering, a popular approach to using
LMs, shows how humans have to adapt to AI by
deciphering how to use AI, e.g., Zamfirescu-Pereira
et al. (2023) study how non-AI experts try and
fail to design prompts. This does not align well
with one goal of developing AI: AI should adapt to
humans. AI should figure out a human’s intention
and help achieve the goal. Although humans may
have to adapt to tools to some extent, LMs are at
their early stage, e.g., as a user interface, there is a
large room for LMs to improve.

Purpose: AI adapts to humans, not vice versa.

Iterative improvements from feedback can
achieve optimality and improve adaptability of AI
to humans. Reinforcement learning (RL) (Sutton
and Barto, 2018) is a promising framework to learn
from feedback and for adaptive control, and thus to
advance language models. AlphaGo (Silver et al.,
2016) set a landmark in AI by defeating a world
champion in Go, using self-play RL to make iter-
ative improvements. It is desirable to harness the
achievements in AlphaGo and games AI.

Premise: Reinforcement learning is promising
for iterative improvements from feedback.

See Figure 1 for a brief illustration. In the fol-
lowing, we discuss the above principles, premises
and purposes in more detail.
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Figure 1: A brief conceptual framework of iterative im-
provements from feedback for language models: princi-
ples, premises and purposes. See text for more detail.

2 Background

2.1 Experience grounds language

As illustrated in Figure 2, Bisk et al. (2020) define
five levels of world scopes. Together with texts,
perception, embodiment and social interaction con-
textualize a language with the world.

Grounding is about meaning, understanding, and
being appropriate and consistent with the context.
Embodiment is about interaction, with action, re-
ward and planning, in a physical world. Social
interaction is about communication in human so-
ciety. Agency, with belief, desire and intention, is
about acting to achieve goals. An agent is a learner
and decision maker (Sutton and Barto, 2018).

As discussed in Carta et al. (2023), symbol
grounding makes actions based on the internal sym-
bol system to be affordable in the environment,
direct grounding associates elementary symbols
with high-dimensional perceptions, and grounding
transfer associates abstract concepts with elemen-
tary symbols. Carta et al. (2023) propose functional
grounding to manipulate internal symbols to model,
predict and control external processes.

In Smith and Gasser (2005), the embodiment
also includes social interaction: “The embodiment
hypothesis is the idea that intelligence emerges in
the interaction of an agent with an environment
and as a result of sensorimotor activity.” Smith and
Gasser (2005) summarizes six lessons from babies
for the development of embodied cognition: be
multimodal, be incremental, by physical, explore,
by social, and use language. Bohg et al. (2017)
and Ostrovski et al. (2021) show the importance of
active perception, following Held and Hein (1963).
Lampinen et al. (2023) show evidence for passive
learning of active causal strategies, however, ad-
mit that active learning is more beneficial and con-
founding is challenging for passive learners. See
also Roy et al. (2021).

Bisk et al. (2020) prioritize grounding and
agency and highlight the importance of physical
and social context of language. Computer vi-
sion, speech recognition, robotics, simulators and
videogames facilitate investigation of language.

2.2 Reinforcement learning

Reinforcement learning is a general framework
for sequential decision making with broad appli-
cations (Bertsekas, 2019; Littman, 2015; Powell,
2021; Sutton and Barto, 2018; Szepesvári, 2010).
An RL agent interacts with the environment over
time to learn a policy, by trial and error, that max-
imizes a long-term, cumulative reward. At each
time step, the agent receives an observation, se-
lects an action to be executed in the environment,
following a policy, which is the agent’s behaviour,
i.e., a mapping from an observation to actions. The
environment responds with a scalar reward and by
transitioning to a new state according to the envi-
ronment dynamics. Deep RL is at the intersection
of deep learning (Bengio et al., 2021; LeCun et al.,
2015; Goodfellow et al., 2016; Schmidhuber, 2015)
and RL, with deep learning to approximate func-
tions for value, policy, reward, transition, etc.

RL has remarkable achievements like AlphaGo
series (Silver et al., 2016, 2017, 2018), ChatGPT,
contextual bandits (Li et al., 2010), Decision Ser-
vice (Agarwal et al., 2016), ReAgent (Gauci et al.,
2019), ride-hailing order dispatching (Qin et al.,
2020), AlphaStar (Vinyals et al., 2019) for Star-
Craft II, DeepStack (Moravčík et al., 2017) and
Libratus (Brown and Sandholm, 2017) for Texas
Hold’em Poker, Cicero (Bakhtin et al., 2022) for
Diplomacy, Gran Turismo Sophy (Wurman et al.,
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Figure 2: Five levels of World Scopes based on Bisk et al. (2020): small scale Corpus (our past) for corpora and
representations, large scale Internet (most of current NLP) for the written world, Perception (multimodal NLP) for
the world of sights and sounds, Embodiment and action for interaction with physical world, and Social world for
interaction with human society.



2022), Degrave et al. (2022) for magnetic con-
trol of tokamak plasmas, Bellemare et al. (2020)
for navigating stratospheric balloons, AlphaTen-
sor (Fawzi et al., 2022) for matrix multiplication,
and AlphaDev (Mankowitz et al., 2023) for sorting.

See Li (2017) for an overview about deep RL
and Li (2022) for discussion about RL in practice.

2.3 Auto-regressive language model

A language model is about the probability distri-
bution of a sequence of tokens. In ChatGPT and
many LMs, an auto-regressive language model is
the probability distribution of next token, given
previous tokens, i.e., the conditional probability
distribution:

probability(next token|previous tokens).

We focus on such LM here. It can be regarded as
a policy, where the “previous tokens” are the state
(observation) and the “next token” is the action.

Many problems in natural language processing
(NLP) are sequential decision making problems,
thus RL is a natural framework. See e.g., Gao et al.
(2019); Li (2017).

2.4 Large LMs

GPT stands for Generative Pre-trained Trans-
former (Radford et al., 2018, 2019; Brown
et al., 2020; OpenAI, 2022a, 2023a). Transform-
ers (Vaswani et al., 2017) are the backbone of LMs,
featuring self-attention, conducive to long range
dependancy and large scale implementation. GPT
series and many LM variants are based on deep
learning, in particular, self-attention Transformers,
self-supervised learning (Balestriero et al., 2023),
and pre-training models.

There are many large LMs, e.g., GPT-
3, ChatGPT, GPT-4, BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2023f), T5 (Raffel
et al., 2020), LaMDA (Thoppilan et al., 2022),
PaLM (Chowdhery et al., 2022), Sparrow (Glaese
et al., 2022), Claude (Bai et al., 2022a), Chin-
chilla (Hoffmann et al., 2022) Megatron-Turing
NLG (Smith et al., 2022), Gopher (Rae et al.,
2022), BLOOM (BigScience Workshop et al.,
2023), LLaMA (Touvron et al., 2023). The pa-
rameter sizes are huge, e.g., 175 billion for GPT-3.

2.5 Specialized LMs

There are many specialized models, e.g.,
AlphaFold (Tunyasuvunakool et al., 2021),

Codex (Chen et al., 2023b), AlphaCode (Li
et al., 2022), WebGPT (Nakano et al., 2022),
Robotics Transformer (RT-1) (Brohan et al.,
2022), BiomedGPT (Zhang et al., 2023a), Clinical
Camel (Toma et al., 2023), BloombergGPT (Wu
et al., 2023b), FinGPT (Yang et al., 2023a),
Med-PaLM 2 (Singhal et al., 2023), Musi-
cLM (Agostinelli et al., 2023), AudioGPT (Huang
et al., 2023).

2.6 “Small” LMs
Following LLaMA (Touvron et al., 2023), many
“small” LMs appear, with around 10B or smaller,
e.g., Alpaca (Taori et al., 2023), Dolly (Conover
et al., 2023), Koala (Geng et al., 2023), Vi-
cuna/StableVicuna (Chiang et al., 2023), Chat-
GLM (Du et al., 2020; Zeng et al., 2023), Sta-
bleLM (Stability AI, 2023), Guanaco (Dettmers
et al., 2023), Pythia (Biderman et al., 2023),
GPT4All1, Open-Assistant2, ColossalChat (You,
2023). “Small” is a relative concept: as software
and hardware improve, the current large models
may become small. See Kim (2023b) for a list of
open sourced fine-tuned LMs.

There are also specilized small LMs, e.g., Go-
rilla (Patil et al., 2023), a LLaMA-7B-based model,
surpassing GPT-4 w.r.t. API calls, TinyStories (El-
dan and Li, 2023) for fluent and consistent stories
with <10M parameters, and phi-1 (Gunasekar et al.,
2023) for good coding performance with 1.3B pa-
rameters and 7B tokens.

2.7 Modularity
Mahowald et al. (2023) propose a modular architec-
ture with a language component, a problem solver,
a grounded experiencer, a situation modeler, a rea-
soner, and a goal setter. Laird et al. (2017) discuss
the Soar cognitive architecture, including percep-
tion, motor, representation, working memory, (pro-
cedural, semantic, and episodic) long-term mem-
ories, reinforcement learning, semantic learning,
episodic learning, and decision procedure.

Modularity may enhance adaptability, composi-
tionality, efficiency, scalability, consistency, robust-
ness, and interpretability and mitigate catastrophic
forgetting (Pfeiffer et al., 2023).

Karpas et al. (2022) propose Modular Reason-
ing, Knowledge and Language (MRKL), a modular,
neuro-symbolic architecture to combine LMs, ex-
ternal knowledge sources and discrete reasoning.

1https://github.com/nomic-ai/gpt4all
2https://github.com/LAION-AI/Open-Assistant

https://github.com/nomic-ai/gpt4all
https://github.com/LAION-AI/Open-Assistant


Modularity is related to hierarchical learning and
planning (Russell and Norvig, 2020), in particular,
hierarchical RL (Sutton et al., 1999).

2.8 Discussions & debates about LMs

There are all sorts of discussions & debates,
e.g., the dangers of stochastic parrots (Bender
et al., 2021), limitation of neural networks (Delé-
tang et al., 2023), limitation of autoregressive
models (Lin et al., 2021), lack of causality (Jin
et al., 2023), lack of compositionality (Dziri et al.,
2023), lack of recursion (Zhang et al., 2023b),
limitations (Deshpande et al., 2023; McKenzie
et al., 2023) of scaling laws (Kaplan et al., 2020;
Hoffmann et al., 2022), model collapse (Shu-
mailov et al., 2023), artificial general intelligence
(AGI) (Allyn-Feuer and Sanders, 2023; Bubeck
et al., 2023; Marcus, 2023), evaluation of AI (Bur-
nell et al., 2023), social norms (Browning and Le-
Cun, 2023), distortion of human beliefs (Kidd and
Birhane, 2023), risks and benefits (Goldman, 2023),
existential risk (Bengio, 2023), court hearing due
to hallucination (Novak, 2023), risk of further con-
centration of wealth (Chiang, 2023), eight things
to know (Bowman, 2023). See more discussions
about AI alignment with human value, e.g., Rus-
sell (2019); Mitchell (2020); Christian (2021). See
surveys, e.g. LMs in practice (Yang et al., 2023b)

3 How to improve LMs?

Besides pre-training and fine-tuning, we can clas-
sify methods to improve LMs as follows: a) for-
mat/content of prompts: a.1) vanilla text, a.2) mul-
timodality, a.3) augmentation with tools, a.4) inte-
gration of advanced techniques like search, learn-
ing and coding; b) feedback, b.1) open-loop, no
feedback during inference, b.2) close-loop, en-
tirely/mainly from LMs, b.3) close-loop, from en-
vironment (games, code interpreter, robotics, etc.)
including LMs; c) fixed LMs vs iterative improve-
ments of LMs.

See Table 1 for an illustration of the taxonomy
with example methods. Admittedly, methods and
models in all the tables are not comprehensive.

3.1 Pre-training

A common approach is pre-training then fine-
tuning LMs. In the pre-training stage, LMs, and
foundation models (Bommasani et al., 2022) in
general, are trained on broad data, usually with
self-supervised learning (Balestriero et al., 2023) at

scale, being widely adaptive to downstream tasks.
Table 2 compare several pre-training models.

Radford et al. (2018) introduce generative pre-
training for LMs, which could be regarded as
“GPT-1”. Radford et al. (2019) introduce GPT-
2, an unsupervised multitask learning LM. Brown
et al. (2020) introduce GPT-3, a few-shot learning
LM, popularizing the concept of in-context learn-
ing (Dong et al., 2023). OpenAI (2022a) introduces
ChatGPT and OpenAI (2023a) introduces GPT-4.

Devlin et al. (2019) introduce Bidirectional En-
coder Representations from Transformers (BERT).
See a survey about BERT Rogers et al. (2020). Raf-
fel et al. (2020) introduce Text-to-Text Transfer
Transformer (T5).

There are foundation models for control/RL.
Gato (Reed et al., 2022) is a generalist pol-
icy for multi-task, multi-modality, and multi-
embodiments. Adaptive Agent (AdA) (Adaptive
Agent Team et al., 2023) is an RL foundation
model adaptive to a vast and diverse task space
at human timescale. Sun et al. (2023b) propose
self-supervised multi-task pre-training with control
transformer (SMART).

3.2 Fine-tuning

Fine-tuning further improve LMs. Table 3 compare
several fine-tuning models.

Large LMs like GPT-3 have a huge number of
parameters so that it is prohibitively expensive to
make a full refinement. Fortunately, parameter
efficient fine-tuning (PEFT) methods, like Low-
Rank Adaptation (LoRA) (Hu et al., 2021) and
quantized LoRA (QLoRA) (Dettmers et al., 2023)
have shown that it is possible to fine-tune a small
number of parameters while achieving comparable
performance. Liu et al. (2022) show that PEFT
outperforms in-context learning. See more stud-
ies about PEFT, e.g., Mao et al. (2022), He et al.
(2023), Ding et al. (2023), Chen et al. (2023a).

RL from human feedback (RLHF) is adopted
by many LMs. Christiano et al. (2017) propose
RLHF, i.e., by defining a reward function with pref-
erences between pairs of trajectory segments, to
tackle the problems without well-defined goals and
without experts’ demonstrations, and to help im-
prove the alignment between human value and the
objective of RL system. Ouyang et al. (2022) pro-
pose to fine-tune GPT-3 with human feedback, in
particular, with RL, to follow instructions for bet-
ter alignment with human value. ChatGPT, after



methods to improve language models examples
pre-training BERT, T5, GPT-3, GATO, AdA, SMART
fine-tuning SFT, RLHF, RLAIF, PEFT (LoRA, QLoRA, etc.),

LIMA, PEBBLE, CoH, rewarded soup, DPO

prompting

vanilla text CoT, prefix tuning, prompt tuning, Least-To-Most,
TEMPERA, RLPrompt, ReAct, Cicero, GLAM

multi-modality Gato, SayCan, Inner Monologue, Code as Policies,
Voyager, RoboCat, Visual ChatGPT, Chameleon

augmentation with tools Toolsformer, HuggingGPT, DSP, PAL, LLM+P, Code
as Policies, ReProver, Visual ChatGPT, Chameleon

with advanced techniques:
search, learning, coding

ToT, RAP, AdaPlanner, PG-TD, Voyager, ReProver

feedback
open-loop, no feedback CoT, prefix tuning, prompt tuning, HuggingGPT
close-loop, feedback from LMs
and environment

ReAct, ToT, RAP, DSP, DESP, AdaPlanner, SayCan,
Inner Monologue, Code as Policies, Voyager, Cicero,
RoboCat, CodeRL, ILQL, GLAM, ReProver

language fixed most methods except those below
models iterative improvements Cicero, RoboCat, CodeRL, ILQL, GLAM, ReProver

Table 1: Methods to improve language models. See Sections 3 for more details including abbreviations.

model training
method

purpose

BERT SL & SSL masked token prediction
next sentence prediction

T5 SL & SSL text-to-text
GPT-3 SSL next token prediction
GATO SL control

SMART SSL control
AdA RL control

Table 2: Pre-training models. Feedback during training,
but not during inference. SL: supervised learning. SSL:
self-supervised learning. RL: reinforcement learning.

pre-training, conducts 1) supervised fine-tuning
(SFT), 2) reward model learning, 3) reinforcement
learning (OpenAI, 2022a), where the last two steps
constitute RLHF.

Instruction following or instruction tuning in-
cludes supervised fine-tuning and RLHF, both of
them are imitation learning; see Section 6.1.

Christiano et al. (2017), Ouyang et al. (2022)
and many RLHF papers use Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017) to optimize
a policy. Ramamurthy et al. (2023) propose Nat-
ural Language Policy Optimization (NLPO). Zhu
et al. (2023) propose Advantage-Induced Policy
Alignment (APA).

RLHF plays a critical role in human alignment

and facilitates learning of the objective function.
ChatGPT collects human data. Bai et al. (2022b)
propose Constitutional AI with rules or principles
and RL from AI Feedback (RLAIF) with super-
vised learning and RL to reduce the reliance on
human involvements in learning an LM. Glaese
et al. (2022) also design rules in Sparrow.

Lee et al. (2021) propose unsupervised pre-
training and preference-based learning via relabel-
ing experience (PEBBLE) to improve the efficiency
of human-in-the-loop feedbacks with binary labels,
i.e. preferences, provided by a supervisor. Liu et al.
(2023b) propose Chain of Hindsight (CoH) to con-
vert all feedback into sentences. Wu et al. (2023c)
propose fine-grained RLHF to learn from and mul-
tiple reward models, each of which associates with
a specific error category with dense signals at seg-
ment level. Human Feedback Gives Better Rewards
for Language Model Training Rame et al. (2023)
propose rewarded soups to handle the heterogene-
ity of diverse rewards by interpolation of multiple
strategies to achieve Pareto-optimal alignment.

Rafailov et al. (2023) propose Direct Preference
Optimization (DPO) without reward modelling or
RL. However, DPO applies only to the Bradley-
Terry model underling current RLHF to estimate
score functions from pairwise preferences. There
may be other ways to handle human preference and
non-preference ways to handle value alignment,
e.g., Knox and Stone (2008) uses ratings to transmit



method training method
SFT supervised learning

PEFT supervised learning
LIMA supervised learning
RLHF reward modelling & RL

RLAIF reward modelling & RL
PEBBLE reward modelling & RL

CoH reward modelling & RL
fine-grained RLHF reward modelling & RL

rewarded soup reward modelling & RL
DPO classification

Table 3: Fine-tuning methods. Feedback during training,
but not during inference. SFT: supervised fine-tuning.
PEFT: parameter efficient fine-tuning, e.g., LoRA.

human knowledge to an RL agent.
LIMA (Zhou et al., 2023a) shows the importance

of a high-quality pre-training model and carefully
curated instruction data.

Zhang et al. (2021) survey human guidance for
sequential decision-making. Wirth et al. (2017)
present a survey of preference-based RL methods.
Lambert et al. (2022) is a blog about RLHF. RL
from human feedback goes back at least to Knox
and Stone (2008).

Goldberg (2023) discusses that a “traditional”
language model is trained with natural text data
alone, while ChatGPT is not traditional any more:
it is augmented with instruction tuning, program-
ming language code data, and RLHF.

3.3 Prompting

Prompts serve as the user interface for LMs. In this
sense, most methods are about improving prompts,
in particular, those with fixed LMs.

Here we discuss open-loop methods, which
do not benefit from feedback, e.g., Chain-of-
Thought (CoT) (Wei et al., 2022), Least-to-Most
prompting (Zhou et al., 2023b), Zero-Shot Plan-
ners (Huang et al., 2022a) and Chameleon (Lu
et al., 2023a). Human users may improve their
prompt engineering skills after seeing outputs of
prompts. However, such methods do not improve
themselves based on such feedback.

There are works for prompt optimization /
automation, e.g., prefix-tuning (Li and Liang,
2021), prompt tuning (Lester et al., 2021), sym-
bol tuning (Wei et al., 2023), RLPrompt (Deng
et al., 2022), TEMPERA (Zhang et al., 2023d),
PromptPG (Lu et al., 2023b). Such methods im-

method training method
Chain of Thought no training

Chameleon no training
Least-to-Most no training

prefix tuning supervised
prompt tuning supervised

TEMPERA RL
RLPrompt RL

Table 4: Prompt improvement methods. Note: Prompts
are a user interface for LMs, so that many methods
improving LMs are about improving prompts. This
table lists open-loop methods: 1) no training and 2)
feedback during training, but not during inference.

prove prompts in an “offline” manner, i.e., not inter-
actively while using prompts. Note, prefix-tuning
and prompt tuning are classified as parameter ef-
ficient fine-tuning, in e.g., Ding et al. (2023), He
et al. (2023), Ruder et al. (2022). See a survey (Liu
et al., 2023e).

The drawbacks of prompting are inefficiency,
poor performance, sensitivity to prompt, and lack
of clarity (Ruder et al., 2022). It also lacks adapt-
ability to users, so that uses have to figure out how
to use LMs with prompt engineering. Users’ heavy
reliance on prompt engineering implies that LMs
are not good enough; otherwise, an LM can adapt
to a user and guide a user how to use the LM.

To extract the capacity of LMs, prompts integrate
sophisticated methods like 1) search, e.g., Tree of
Thought, 2) coding, e.g., Code as Policies and PAL,
and 3) planning with code, e.g., AdaPlanner and
Voyager, as in next section.

3.4 Close-loop feedback with self-reference to
fixed LMs

Close-loop methods benefit from feedback and
make improvements. Feedback may come from
external sources like games, code interpreter and
robotics. In the following, we discuss recent work
with close-loop feedback with fixed LMs. Table 5
presents a brief comparison.

Multimodality and embodiments may integrate
with visual Transformers and pre-training for per-
ception, like Contrastive Language-Image Pre-
training (CLIP) (Radford et al., 2021), diffu-
sion model (Rombach et al., 2022), or Control-
Net (Zhang and Agrawala, 2023). PaLM-E (Driess
et al., 2023) is an embodied multimodal LM.

Liang et al. (2023b) propose High-Modality Mul-



method feedback evaluator refinement
ReAct partial results & external sources LM action

ToT / RAP from a tree built with an LM LM whole plan
AdaPlanner results of sub-goals LM whole plan

SELF-REFINE feedback for prompt LM prompt
RCI output of prompt LM prompt

ProgPrompt output of code (prompt) LM prompt
DEPS output of prompt LM whole plan

Reflexion evaluation function or LM LM
Voyager environment feedback, execution

errors, self-verification of tasks
MineCraft & LM whole plan

Plan4MC LM helps RL with high level plan Minecraft skill, plan
LATM unit tests LM tool (code)
PG-TD quality of partial solution MCTS with LM code gen.
SayCan skill success LM & RL whole plan

Code as Policies environment LM code/prompt
Inner Monologue success detection, scene descrip-

tion, and human interaction
environment whole plan

Table 5: Close-loop feedback with self-reference to fixed LMs.

timodal Transformer (HighMMT) to handle 10
modalities: text, image, audio, video, sensors, pro-
prioception, speech, time-series, sets and tables.
Here we treat multi-modality basically as multi-
media, like image, audio and video.

General methods

ReAct (Yao et al., 2023b) integrates dynamic rea-
soning with high-level plans for task-specific ac-
tions, with feedback from LM and external sources.

Tree of Thoughts (ToT) (Yao et al., 2023a) builds
a tree and an evaluation function with an LM to ex-
plore multiple different multi-step scenarios, look
ahead and backtrack with search algorithms like
breadth first search (BFS) and depth first search
(DFS). Reasoning via Planning (RAP) (Hao et al.,
2023) follow a similar vein and study planning
methods like Monto Carlo Tree Search (MCTS).

AdaPlanner (Sun et al., 2023a) is a planning
method with an LM for both planning and refining,
together with a skill memory.

Wong et al. (2023) propose a probabilistic lan-
guage of thought (PLoT) for rational meaning con-
struction to integrate neural models of language
with probabilistic models for rational inference.

See more work, e.g., Self-Refine (Madaan et al.,
2023), RCI (Kim et al., 2023), Reflexion (Shinn
et al., 2023), DEPS (Wang et al., 2023d). See also

Auto-GPT 3 and BabyAGI 4.

Games
Games to AI is like fruit flies to genetics. Games
AI, in particularly with RL, is promising to push
LMs and AI further.

Fan et al. (2022) propose MINEDOJO, an open-
ended task suite based on Minecraft game with
Internet-scale domain knowledge, together with
an agent learning algorithm with large pre-trained
models. Voyager (Wang et al., 2023a) explores
Minecraft continuously with the modules of auto-
matic curriculum, skill library and iterative prompt-
ing mechanism. Plan4MC (Yuan et al., 2023) im-
proves skill learning and planning for Minecraft
tasks with assistance from LM.

See Cicero (Bakhtin et al., 2022) in next section.
See also Generative Agents (Park et al., 2023) and
CAMEL (Li et al., 2023a).

Programming language
Programming language is more formal and thus
relatively easier than natural language. Moreover,
we may utilize a program interpreter to help judge
the correctness and quality of generated codes.

Zhang et al. (2023c) propose Planning-Guided
Transformer Decoding (PG-TD) to integrate a

3https://github.com/Significant-Gravitas/
Auto-GPT

4https://github.com/yoheinakajima/babyagi

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/yoheinakajima/babyagi


planning algorithm like Monte Carlo tree search
(MCTS) and the Transformer of an LM to improve
the correctness of generated code.

Chen et al. (2023c) propose Self-Debugging to
teach an LM to debug generated code via few-shot
prompting by identifying mistakes from explana-
tions in natural language, without feedback for
code correctness or error messages.

Cai et al. (2023) propose LATM to create
reusable tools (Python utility functions) with LMs
for both tool making and tool using.

Yang et al. (2023c) propose InterCode, an RL
environment for interactive code generation, where
observations are execution feedback, actions are
code and rewards are either a binary completion
score or more complex criteria defined by users.

See early discussion for AdaPlanner (Sun et al.,
2023a) and PLoT (Wong et al., 2023) and later
for Code as Policies (Liang et al., 2023a) in this
section. See Section 6 for CodeRL (Le et al., 2022)
and Haluptzok et al. (2023).

Robotics
Robotics come with multi-modality, embodiments
and interaction, with perception and action.

There are a series of efforts for robotics:
Robotics Transformer (RT-1) (Brohan et al., 2022)
for real-world robotics control at scale, Inner Mono-
logue (Huang et al., 2022b) for chaining together
perception models, robotic skills, and human feed-
back for processing and planning in robotic control,
SayCan (Ahn et al., 2022) for grounding LM in
robotic affordances, ROSIE (Yu et al., 2023) for
scaling robot learning with semantically imagined
experience, Code as Policies (Liang et al., 2023a)
for leveraging LMs to generate policy code for
embodied control, and ProgPrompt (Singh et al.,
2023) for generating plans with LMs. See Robo-
Cat (Bousmalis et al., 2023) in next section.

3.5 Close-loop feedback with iterative
improvements of LMs

As discussed in the last section, most methods with
a close-loop feedback share a common feature of
self-reference to fixed LMs, which raises the con-
cern of how to handle mistakes by LMs. Incor-
porating multimodality, embodiment and interac-
tion information can help improve grounding and
mitigate the issue. Ideally, we can make iterative
improvements of LMs from feedback.

Most existing methods focus on feasibility and
correctness, rather than optimality. There are

emerging works to take one step further by refining
LMs with iterative improvements from feedback.
See Table 6 for a brief comparison.

Cicero (Bakhtin et al., 2022) integrates an LM
with planning and RL algorithms in the seven-
player game of Diplomacy to infer players’ beliefs
and intentions from conversations and to generate
dialogues for negotiation and tactical coordination.

CodeRL Le et al. (2022) follows an actor-critic
RL approach during training, with an actor LM
for code generation and a critic network for error
prediction of generated code as feedback to the
actor. During inference, CodeRL leverages unit
tests to further improve code generation.

Haluptzok et al. (2023) propose to synthesize
programming puzzles and solutions verified by ex-
ecution and improve code generation by self-play.

Yang et al. (2023d) propose LeanDojo: an open-
source Lean5 playground with toolkits, data, mod-
els, and benchmarks for theorem proving, together
with ReProver, a retrieval-augmented prover LM
based on a T5-like encoder-decoder Transformer.

Snell et al. (2023) propose implicit language Q-
learning (ILQL) to fine-tune an LM to maximize
user-specified utility functions.

Carta et al. (2023) propose GLAM to improve
functional grounding in interactive environments
with RL using an LM as a policy.

RoboCat (Bousmalis et al., 2023) is a visual goal-
conditioned foundation model for robotic manipu-
lation, with zero-shot and few-shot generalization,
based on Gato (Reed et al., 2022).

Levine (2023b) discusses the purpose of an LM
beyond predicting next token and how RL can help
fulfill it. Levine (2023a) discusses when data and
optimization collaborate, we can solve problems in
new ways and in real world outside of simulators.

Yang et al. (2023e) show that foundation models
are helpful for all components in decision mak-
ing: states, actions, rewards, transition dynamics,
agents, environments, and applications, with gen-
erative modeling or representation learning, thus
they will benefit mutually from each other.

RLHF is one application of RL for LMs to han-
dle human value alignment. The discussion above
shows that RL may advance LMs in many ways.

3.6 Augmented LMs with tools

A natural way to harnesses the language compe-
tence of LMs is by utilizing tools like a search

5https://leanprover.github.io

https://leanprover.github.io


method feedback evaluator
Cicero game play game engine,

agent
CodeRL error prediction critic model

ReProver environment Lean
ILQL environment LM

GLAM environment BabyAI_Text
RoboCat demonstration &

generated data
model

Table 6: Close-loop feedback with iterative improve-
ments of (language) models.

engine, a vector database, a code interpreter, or a
symbolic AI solver to handle tasks. A common
approach is: 1) converts the natural language de-
scription of the problem into the language by the
tool, 2) the tool solves the problem, and 3) trans-
lates the solution back into text. Table 7 shows a
brief comparison.

A method needs to answer questions like which
tools/APIs to call, when to call, with what argu-
ments, and how to translate the results back into
LMs. Toolformer (Schick et al., 2023) and Ge
et al. (2023) follows a self-supervised and an RL
approach, respectively. HuggingGPT (Shen et al.,
2023) relies on an LM.

Demonstrate-Search-Predict (DSP) expresses
high-level programs for demonstrations aware of
the LM and the retrieval model, relevant passages
searches and grounded predictions generation for
the LM and the retrieval model to process more re-
liably (Khattab et al., 2023), and shows task-aware
are favourable to task-agnostic strategies.

Program-Aided Language models (PAL) (Gao
et al., 2022) converts a relevant piece of text to
code and uses a runtime like a Python interpreter
to solve the problem.

LLM+P (Liu et al., 2023a) converts a language
description of a planning problem into the planning
domain definition language (PDDL), solves it with
classical planners, and translates the solution back
into text.

See also LangChain6, Visual ChatGPT (Wu
et al., 2023a), TaskMatrix.AI (Liang et al., 2023c),
RCI (Kim et al., 2023), etc.

Domain expertise is still required, see e.g.,
ChemCrow (Bran et al., 2023). See Mialon
et al. (2023) for a survey about augmented LMs.

6https://langchain.com

method tool tool language
Toolformer general text

HuggingGPT general text
DSP retrieval model code
PAL code interpreter code

Code as code interpreter code
Policies
LLM+P planners PDDL

ReProver math library code

Table 7: Augmented LMs with tools.

APIBank (Li et al., 2023c) is a benchmark for aug-
mented LMs with tools.

HuggingGPT follows an open-loop without
learning from feedback. Toolformer, LLM+P and
PAL have feedback during training, but not during
inference. DSP and Code as Policies incorporate
feedback for improvements, with fixed LMs. Re-
Prover incorporates feedback to improve the LM.

4 LMs are approximations

A model specifies how an agent interacts with an
environment. A model refers to the transition prob-
ability and the reward function, mapping states
and actions to distributions over next states and ex-
pected rewards, respectively. The agency requires
both state and reward prediction, so do LMs. An-
dreas (2022) admits that, besides predicting text,
an agent is what we want for human language tech-
nologies, with beliefs and goal achieving.

A model may be built with prior knowledge,
from a dataset by estimating parameters, and/or by
a generative approach. A simulator may be built
based on a model explicitly, e.g., from game rules
like the Arcade Learning Environment for Atari
games (Bellemare et al., 2013; Machado et al.,
2018) or computer Go, chess and shogi (Silver
et al., 2018), and physics like Mujoco (Todorov
et al., 2012), or implicitly, e.g. those with gen-
erative models (Ho and Ermon, 2016; Chen et al.,
2019). Planning works with a model or a simulator.

Andreas (2022) emphasizes that current LMs are
approximations. Moreover, degrees of approxima-
tions should vary for different tasks. It is desirable
to characterize such approximation errors.

There are many concrete examples. Kocoń et al.
(2023) shows that ChatGPT is Jack of all trades,
master of none. Valmeekam et al. (2023) shows
only 3% success rate of executable plans gener-

https://langchain.com


ated by GPT-3. Li et al. (2023b) shows that Othel-
loGPT struggles with generating legal moves for
the game Othello. Yao et al. (2023a) propose Tree
of Thought, and experiments show that GPT-4 can
not fully solve the Game of 24.

Errors occur naturally from an approximate
model. Compounding errors are particularly se-
rious for sequential decision makings, like a se-
quence of tokens. When applying an LM in prac-
tice, we need to handle errors. One question for
practitioners is if it is always feasible to fix an error
from a strong LM.

4.1 AlphaGo vs ChatGPT
Next we discuss if LMs may borrow ideas from
AlphaGo series, which set a landmark in AI by
tackling a very hard problem pursued by many
researchers for decades.

The lessons from AlphaGo series follow. 1) With
a game rule, there is a perfect model, which can
generate infinite high quality data, esp., reliable
feedback. 2) This supports iterative improvements
of the policy, with trial and error, using general
policy iteration, by self play, to achieve a strong
computer program. 3) Imitation learning is not
enough: In and before AlphaGo, studies use expert
games for training. However, self play RL achieves
super-human performance in Go, chess, and shogi
from scratch, without human knowledge, and also
in many other games.

Moreover, Levine (2023a) illustrates that RL
can stitch parts of policies to attain a better pol-
icy. Levine (2023b) shows that in a tech support
application, RL can learn from several specialists
for different aspects to improve the job.

For LMs, there is no perfect rule for most prob-
lems, neither perfect feedback. Games and code
generation appear as exceptions to some extent,
with reliable feedback from a game engine and
a code interpreter, respectively. The approach in
ChatGPT can be treated as imitation learning.

4.2 Bridge LM-to-real gap
An LM like GPT-4 is used as a simulator of
the underlaying model in many cases like SELF-
INSTRUCT (Wang et al., 2023b) and React (Yao
et al., 2023b). However, a simulator usually can not
precisely reflect the reality. Also, from the discus-
sion above, LMs are approximations. Then there
is a language model to reality gap, or LM-to-real /
LM2real gap for short. How to bridge such a gap
is critical and challenging.

In applications with physical systems like
robotics and autonomous driving, where it is much
easier to train an agent in simulation than in re-
ality, simulation to reality gap, or sim-to-real, or
sim2real, or reality gap, attract much attention re-
cently. Some LM applications may tolerate more
errors, like a writing aid; however, some may be
high-stake and/or involve physical systems, e.g.,
healthcare like Med-PaLM 2 (Singhal et al., 2023)
and robotics like SayCan (Ahn et al., 2022).

LMs may borrow ideas from similar study in
robotics to reduce the LM-to-real gap. Here is a
brief discussion. Chebotar et al. (2019) study how
to adapt simulation randomization with real world
experience. James et al. (2019) propose to adapt
from randomized to canonical scenes, without real-
world data. James et al. (2020) propose RLBench, a
robot learning benchmark and environment. Deitke
et al. (2020) propose RoboTHOR, an open sim-to-
real embodied AI platform. Gondal et al. (2019)
propose a distanglement dataset to study the sim-to-
real transfer of inductive bias. Hanna et al. (2021)
study sim-to-real RL with grounded action trans-
formation. Kadian et al. (2020) develop a library
Habitat-PyRobot Bridge (HaPy) to execute iden-
tical code in simulation and on real robots seam-
lessly, and investigate sim2real predictivity with a
new performance metric Sim-vs-Real Correlation
Coefficient. Zhao et al. (2020) present a brief sur-
vey on sim-to-real in deep RL for robotics. Lavin
et al. (2021) discuss simulation intelligence.

5 Iterative improvements from feedback

Iterative improvements from feedback provides a
general approach to achieving optimality and im-
proving adaptability of LMs. It makes the foun-
dation sound and solid, by improving the world
model, improving grounding for better understand-
ing and better consistency with the world, and im-
proving agency for goal achieving.

Figure 3 illustrates the framework of iterative
improvements from feedback with modularity in a
general sense. Modules 0-N send decisions to and
receive feedback from other modules, tools, APIs,
and the task. Module 0 serves as a coordinator.
Modules can interact and learn from each other.
Tools and APIs can be regarded as fixed modules;
i.e., they do not learn. One or more of Modules 1-N
may be large LMs, and keep fixed, i.e., not learn
from feedback. From RL’s perspective, a learning
module is an agent, and the rest is its environment.



Module 0

Modules 1-N

Tools, APIs

by Yuxi Li. 2023.
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from a module’s viewpoint: 
incoming arrow: feedback

outgoing arrow: decision

iterative improvements
from feedback

Figure 3: Iterative improvements from feedback

Such a framework is general. We focus on LMs
here. The prohibitive cost of updating large LMs
will not allow for relatively frequent iterative im-
provements from feedback. As a result, next gen-
eration LM systems would follow a modular archi-
tecture, potentially with many small LMs, rather
than a monolithic, general-purpose large LM.

There will be many modules with specific ex-
pertise, for horizontal functionalities and vertical
applications. In particular, one module serves as
the interface to users and coordinates all LMs, tools,
and APIs. Another module builds the world model
from interactions with the world. Moreover, one or
more module are dedicated to safety and ethics.

We may deploy one or a couple of large LMs to
harness the language competence and functionali-
ties large LMs outperform small LMs significantly.
Large LMs are kept fixed, to avoid prohibitive up-
dating costs and/or due to their being proprietary,
until when new versions are available. Small LMs
can improve iteratively from feedback, from users,
other LMs, tools, APIs, and all the rest of the world,
using reinforcement learning and AI algorithms.
Small LMs are preferred to large LMs, esp. when
small LMs are good enough.

Modularity with small models is promising for

further progress in AI. Augmenting LMs with tools,
APIs and plugins is an evidence for modularity. It
also becomes feasible for players without huge re-
sources, thus more amenable for AI academics (To-
gelius and Yannakakis, 2023).

5.1 Connection with existing methods

Pre-training then fine-tuning is common for LMs.
As discussed in Section 3, most approaches im-
prove prompts with fixed LMs, like GPT-4.

ChatGPT follows iterative deployment (OpenAI,
2022a,b), making updates after collecting a big
batch of users’ feedback. This may be the edge
GPT-4 over other large LMs. This is helpful for
making improvements. It is reasonable since a
huge LM is too costly to update often. However, it
is desirable to make more frequent refinements.

It is feasible to fine-tune a small LM frequently,
or even to incorporate feedback when building it.

Prompting provides the initial condition of a lan-
guage model, or the starting “previous tokens” in
ChatGPT. It is desirable to leverage mature tools.
Prompting and augmentation with tools depend on
the capability of an LM, need to handle errors, and
are not able to improve an LM.

Consider LM as a policy, supervised fine-tuning,



parameter efficient fine-tuning and reinforcement
learning from human feedback follow the approach
of imitation learning. As discussed in Section 4.1,
imitation learning is not enough. RL is thus promis-
ing for LMs.

5.2 Experience and model

Sutton (2022a) talks about the increasing role of
sensorimotor experience in AI to be more grounded,
learnable and scalable. Sensorimotor experience is
the sensations and actions of an agent’s ordinary
interaction with the world.

Sutton (2022b) proposes the common model
of intelligent agent, which is model-based RL. It
integrates experience with model, aligning with
Pearl (2020). It reconciles nature with nurture,
empiricism with rationalism, and connectionism
with symbolism.The common model is thus promis-
ing for achieving sound and solid grounding and
agency. The common mode is conceptually similar
to the autonomous machine intelligence architec-
ture (LeCun, 2022), which includes configurator,
perception, world model, actor, critic, intrinsic cost,
and short term memory. Mialon et al. (2023) dis-
cuss a modular implementation, which applies sim-
ilarly to the common model. See Section 6.6 for
more discussion about general intelligence.

Building on trial and error with experience,
close-loop optimal control with dynamic program-
ming, and temporal difference learning (Sutton and
Barto, 2018), reinforcement learning naturally im-
plements iterative improvements from feedback.

6 Challenges and opportunities

We discuss challenges and opportunities to imple-
ment iterative improvements from feedback, in par-
ticular, data, feedback, methodology, evaluation,
interpretability, constraints and intelligence.

6.1 Data and feedback

The importance of training data are second to none
for big data problems, like many with deep learning,
specifically, LMs. It is critical to follow the princi-
ple pf ground-truth-in-the-loop. Recent success of
LMs, among many machine learning applications,
provides evidence.

Olausson et al. (2023) show the importance of
feedback from tests and human programmers for re-
pairing code generated by LMs. phi-1 (Gunasekar
et al., 2023) shows the importance of high-quality
textbook-like data. LIMA (Zhou et al., 2023a)

shows the importance of high-quality of instruc-
tion data.

Gudibande et al. (2023) show the issue of im-
itating large LMs. Shumailov et al. (2023) dis-
cuss the issue of model collapse due to training
with generated data from LMs as well as Gaussian
Mixture Models (GMMs) and Variational Autoen-
coders (VAE), and show the importance of genuine
human data for LMs. It explicitly indicates issues
with methods generating data from LMs like SELF-
INSTRUCT (Wang et al., 2023b). It also casts
doubts on many self-reference methods, like most
of those discussed in Section 3, namely, those rely
on feedback from fixed LMs.

Feedback is indispensable for an iterative ap-
proach. In RL, rewards provide evaluative feedback
for agents to make decisions. We discuss feedback
in the context of LMs in Section 3. Here we dis-
cuss reward, interaction, as well as their connection
with psychology, which will shed light on iterative
improvements of LMs with feedback. Feedback
is also data. We single it out here from data to
highlight the nature of interaction.

Sparse reward
Rewards may be so sparse that it is challenging for
learning algorithms, e.g., in text generation with
RLHF, a reward may occur at the completion of
the text. Lightman et al. (2023) propose process
supervision rather than output supervision to have
denser feedback. Hindsight Experience Replay
(HER) (Andrychowicz et al., 2017) is a way to han-
dle sparse rewards. Unsupervised auxiliary learn-
ing (Jaderberg et al., 2017) is an unsupervised way
harnessing environmental signals. Intrinsic moti-
vation (Barto, 2013; Singh et al., 2010) is a way
to provide intrinsic rewards. Colas et al. (2020)
present a short survey for intrinsically motivated
goal-conditioned RL.

Reward shaping is to modify reward function to
facilitate learning while maintaining optimal pol-
icy (Ng et al., 2000). It is usually a manual en-
deavour. Jaderberg et al. (2018) employ a learning
approach in an end-to-end training pipeline.

Imitation learning
Reward functions may not be available for some
RL problems. In imitation learning (Osa et al.,
2018), an agent learns to perform a task from ex-
pert demonstrations, with sample trajectories, with-
out reinforcement signals. Two main approaches
are behavioral cloning and inverse RL. Behavioral



cloning, or learning from demonstration, maps
state-action pairs from expert trajectories to a pol-
icy, maybe as supervised learning, without learning
the reward function (Levine, 2021). Inverse RL is
determines a reward function given observations
of optimal behavior (Ng and Russell, 2000). Prob-
abilistic approaches are developed for inverse RL
with maximum entropy (Ziebart et al., 2008) to deal
with uncertainty in noisy and imperfect demonstra-
tions. Ross et al. (2010) reduce imitation learn-
ing and structured prediction to no-regret online
learning, and propose Dataset Aggregation (DAG-
GER), which requires interaction with the expert.
Abbeel and Ng (2004) approach apprenticeship
learning via IRL. Syed and Schapire (2007), Syed
et al. (2008), and Syed and Schapire (2010) study
apprenticeship learning with linear programming,
game theory and reduction to classification.

Supervised fine-tuning follows a behavioral
cloning approach. RLHF follows an inverse RL
approach. Both of them follow imitation learning.

Reward function
A reward function may not represent the intention
of the designer. A negative side effect of a misspeci-
fied reward refers to potential poor behaviors result-
ing from missing important aspects. An old exam-
ple is about the wish of King Midas, that everything
he touched, turned into gold. Unfortunately, his
intention did not include food, family members,
and many more. Russell and Norvig (2020) give
an example that a vacuum cleaner collects more
dust to receive more rewards by ejecting collected
dust. Hadfield-Menell et al. (2016) propose a co-
operative inverse RL (CIRL) game for the value
alignment problem. Hadfield-Menell et al. (2017)
introduce inverse reward design (IRD) to infer the
true reward function, based on a designed reward
function, an intended decision problem, e.g., an
MDP, and a set of possible reward functions. Dra-
gan (2020) talks about optimizing intended reward
functions.

Embodiments and social interaction
As discussed in Section 2.1, LMs can interact with
physical and human worlds through embodiments
and social interaction to improve grounding and
agency. Shumailov et al. (2023) discuss the model
collapse issue when sampling from a learned model
like an LM. Iterative improvements from feedback
by interacting with the world, like the Dyna frame-
work (Sutton and Barto, 2018), can mitigate or even

eliminate such an issue.
Liu et al. (2023d) propose Sirius for human-in-

the-loop learning for robotics. As discussed ear-
lier, Lee et al. (2021) propose PEBBLE leveraging
human-in-the-loop feedback. Before the large lan-
guage model era, Abbeel (2021) discusses that,
similar to the pre-training then finetuning in com-
puter vision on ImageNet and in NLP, like GPT-X
and BERT, on Internet text, we may be able to pre-
train large-scale neural networks for robotics as
a general solution, with unsupervised representa-
tion learning on Internet video and text, with un-
supervised (reward-free) RL pre-training, mostly
on simulators and little on the real world data, with
human-in-the-loop RL, and with few shot imitation
learning on demonstrations.

Reinforcement learning integrates with social
learning, e.g., Krishna et al. (2022) show that so-
cially situated AI helps learning from human in-
teraction, and Ndousse et al. (2021) study social
learning via multi-agent RL. Wang et al. (2023c)
survey interactive NLP, considering interactions
with humans, knowledge bases (KBs), models and
tools, and environments. In Figure 3, users together
with tools and APIs including KBs and models are
part of the environment. Bolotta and Dumas (2022)
discuss social interaction as the “dark matter” of
AI.

Connection with psychology

When humans are involved, psychology and be-
havioural science may provide insights. From self-
motivation theory (Ryan and Deci, 2020), the basic
psychological needs of autonomy, competence and
relatedness mediate positive user experience out-
comes such as engagement, motivation and thriv-
ing (Peters et al., 2018). Flow is about the psy-
chology of optimal experience (Csikszentmihalyi,
2008). As such, they constitute specific measurable
parameters for which designers can design in order
to foster these outcomes within different spheres of
experience. Such self-motivation theory and flow,
or positive psychology, may help the design of re-
ward and human-computer interaction (HCI), and
there are applications in games (Tyack and Mekler,
2020), education (Ryan and Deci, 2020), etc. Cruz
and Igarashi (2020) survey design principles for in-
teractive RL. Intrinsic motivation has been applied
in RL as discussed earlier. RLHF is an approach
dealing with preference and value alignment. How-
ever, it appears that self-motivation theory, flow



and positive psychology are under-explored in AI.

6.2 Methodology

AI, in particular, LMs, is enjoy a rapid progress.
With ample resources including talents, compute
and fundings and the focused attention, there will
be more efficient and effective solutions from hard-
ware to software, from theory to practice, including
but not limited to processor, system level softwares
like compilers and schedulers, neural network ar-
chitecture, learning algorithms like those for pre-
training and fine-tuning, distributed and/or decen-
tralized algorithms, all sorts of applications ranging
from enterprise to customer and from cloud to edge
devices, and solving issues like hallucination, pri-
vacy, safety and human-value alignment.

See Tay et al. (2022) for a survey about efficient
Transformers. See Treviso et al. (2023) for a survey
about efficient methods for NLP.

For concrete examples, see e.g., Backpack (He-
witt et al., 2023) for a new network architecture,
RWKV (Peng et al., 2023) for reinvention of RNN
for LMs, Sophia (Liu et al., 2023c) a second-order
optimizer for speed-up, AWQ (Lin et al., 2023)
for compression and acceleration, and Goat (Liu
and Low, 2023) outperforming GPT-4 on arith-
metic tasks. We introduce Gorilla (Patil et al.,
2023), TinyStories (Eldan and Li, 2023) and phi-
1 (Gunasekar et al., 2023) in Section 2.6. See a
talk (Choi, 2022) about small vs large LMs.

Ramamurthy et al. (2023) propose an open-
source modular library, Reinforcement Learn-
ing for Language Models (RL4LMs), General
Reinforced-language Understanding Evaluation
(GRUE) benchmark, and an RL algorithm Natu-
ral Language Policy Optimization (NLPO).

Sutton (2019) states that search and learning are
general purpose methods that scale arbitrarily with
computation, and also highlights the importance
of meta methods. People may tend to scale up the
sizes of the neural network and the training dataset
to achieve better performance, refering to the Bitter
Lesson as a support, which, however, is a mis-
reading. For example, scaling up heuristic search
algorithms like A* and IDA* failed to achieve a
superhuman Go. AlphaGo resulted from the cul-
mination of achievements in deep learning, rein-
forcement learning, and Monte-Carlo tree search
(MCTS), together with powerful computing. See
also Brooks (2019); Kaelbling (2019).

Deshpande et al. (2023) study downscaling ef-

language model parameter size
BERT 100/340M

T5 60/220/770M, 3/11B
GPT-3 175B

LLaMA 7/13/65B
Alpaca 7B

Dolly 7/13B
Vicuna 7/13B

Guanaco 7/13B
Goat 7B

Gorilla 7B
phi-1 1.3B

TinyStories 10M

Table 8: A glimpse of LM parameter sizes. B: billion.
M: million.

fects with a shrunk language, showing benefits
of pre-training models of 1.25M parameters and
that compute-optimal models break the power law.
McKenzie et al. (2023) provide 11 datasets for em-
pirical analysis of inverse scaling laws and discuss
the importance of data and objectives for train-
ing LMs. Zhang et al. (2023e) propose NeQA,
a dataset containing questions with negation and
exhibit inverse, U-shaped, or positive scaling. For
a “historical” context, Kaplan et al. (2020) study
scaling laws that the overall cross-entropy loss of
an LM improves with the increased scale of model,
dataset and compute for training, and Hoffmann
et al. (2022) show that the model and data should
be scaled equally for compute-optimal training.

Consider the journey from ENIAC in 1945, 27
tons, equivalent to US$6,200,000 in 2021 to iPhone
in 2007, 3.5 inch, 135g, 600+ MHz CPU, GPU,
128MB eDRAM, 16GB flash memory, US$499.
with faster iterations, we expect smaller, cheaper,
yet more capable LMs to appear soon.

Table 8 shows a glimpse of LM parameter sizes.

6.3 Evaluation
Evaluation provides feedback to researchers and
developers, as well as to learning algorithms, to
make improvements. Evaluation and benchmarks
for NLP and language models have been making
steady progress. However, there are still lots of
challenges, in particular, for interactive applica-
tions.

Burnell et al. (2023) presents guidelines for ro-
bust evaluation practices with more granular re-
porting, in particular, in-depth performance break-



downs beyond aggregate metrics and instance-by-
instance evaluation results.

Gehrmann et al. (2022) survey obstacles in eval-
uation of test generation and propose to evaluate
a model with multiple datasets via multiple met-
rics and document human evaluation well. The
authors propose the following best best practice &
implementation: make informed evaluation choices
and document them, measure specific generation
effects, analyze and address issues in the used
dataset(s), evaluate in a comparable setting, run
a well-documented human evaluation, produce ro-
bust human evaluation results, document results in
model cards, and release model outputs and anno-
tations.

Srivastava et al. (2022) introduce the Beyond
the Imitation Game benchmark (BIG-bench) which
has more than 200 tasks.

Liang et al. (2022) present HELM, Holistic
Evaluation of Language Models, to improve trans-
parency of LMs. The authors present a taxonomy
of scenarios and metrics to evaluation LMs with
a multi-metric approach: a) evaluate 16 core sce-
narios each with 7 metrics, namely, accuracy, cali-
bration, robustness, fairness, bias, toxicity, and effi-
ciency; b) conduct 7 targeted evaluations for 26 tar-
geted scenarios for specific aspects like knowledge,
reasoning, memorization, copyright and disinfor-
mation; and c) evaluate 30 LMs on all 42 scenarios.

Lee et al. (2022) introduce Human-AI Language-
based Interaction Evaluation (HALIE) to extend
non-interactive evaluation w.r.t three factors: 1)
targets, including full process and final output, 2)
perspectives, including first-person and third-party,
and 3) criteria including preference and quality.

Biderman et al. (2023) propose Pythia to study
the process of training LMs with checkpoints for
16 LMs with parameter sizes from 70M to 12B.

Maynez et al. (2023) benchmark LM capacities
for 27 generation tasks and provide recommenda-
tions on the selection of tasks, methods and metrics,
and on practice to monitor generation capacities
including benchmarks, automated metrics, and effi-
cient utilization of computational resources.

Mozannar et al. (2023) propose CodeRec User
Programming States (CUPS) to model user be-
haviour and costs in AI-assisted programming with
GitHub Copilot and show that 34.3% of total ses-
sion time spends on double-checking and editing
suggestions.

Francis et al. (2023) discuss the principles for
social robot navigation: safety, comfort, legibility,
politeness, social competency, agent understand-
ing, proactivity and responsiveness to context, and
based on which, the guidelines for evaluation w.r.t.
metrics, scenarios, benchmarks, datasets and simu-
lators.

6.4 Interpretability

Explainability and interpretability are critical for
AI (Barredo Arrieta et al., 2020). We briefly re-
view some work and make connection with many
concepts/issues in AI.

First we discuss the definition. As in Rudin
et al. (2021), explainable AI (XAI) “attempts to
explain a black box using an approximation model,
derivatives, variable importance measures, or other
statistics”, whereas interpretable ML creates “a pre-
dictive model that is not a black box”. In Murdoch
et al. (2019), interpretable ML includes explainable
ML, intelligible ML, and transparent ML. Lipton
(2018) argues that explanation is post hoc inter-
pretability. Miller (2019) treats explainability and
interpretability as the same.

Miller (2019) survey how people define, gener-
ate, select, evaluate, and present explanations in
philosophy, psychology, and cognitive science and
the implication for explainable AI. The major find-
ings are: explanations are contrastive, explanation
are selected in a biased manner, probabilities prob-
ably don’t matter, and explanations are social. The
author summarized that “explanations are not just
the presentation of associations and causes (causal
attribution), they are contextual”.

Doshi-Velez and Kim (2017) propose to de-
fine interpretability “as the ability to explain or
to present in understandable terms to a human”.
The authors discuss the relationship between in-
terpretability with other desiderata of ML systems.
Fairness or unbiasedness concerns with groups be-
ing protected from explicit or implicit discrimina-
tion. Privacy is about the protection of sensitive
information in the data. An algorithm is reliable
and robust if it can achieve a certain level of per-
formance with variation in parameters or inputs.
The predicted change in output due to a perturba-
tion, according to causality, will occur in the real
system. A method is usable if it provides infor-
mation to help users to accomplish a task. Trust
is about a system with confidence of human users.
Interpretability qualitatively assists to meet these



properties: fairness, privacy, reliability, robustness,
causality, usability and trust.

Lipton (2018) discusses the desiderata and meth-
ods for interpretable AI. Desiderata include trust,
causality, transferability, informativeness, and fair
and ethical decision making. Techniques and
model properties for interpretability include trans-
parency and post hoc explanations. The different
levels of transparency are: simulatability for the
entire model, decomposability for individual com-
ponents such as parameters, and algorithmic trans-
parency for the training algorithm.

Murdoch et al. (2019) propose to define inter-
pretable machine learning as “the extraction of rel-
evant knowledge from a machine-learning model
concerning relationships either contained in data
or learned by the model”. The authors propose the
predictive, descriptive, relevant framework, with
desiderata for evaluation: predictive accuracy, de-
scriptive accuracy, and relevancy judged relative to
a human audience.

Rudin et al. (2021) propose to define inter-
pretable ML in one sentence: “an interpretable
model is constrained, following a domain-specific
set of constraints that make reasoning processes
understandable”. The authors discusses five princi-
ples and ten grand challenges of interpretable ML.

Kim (2023a) proposes to build a language to
communicate with AI for alignment with our val-
ues, by reflecting the nature of the machines and
expanding what we know.

Neural networks are notoriously known as black-
boxes, especially giant ones like GPT-3. Bills et al.
(2023) propose to explain neurons in LMs with
LMs, rather than with ground truths. A local ex-
plainable method has inherent limitations since
distributed representation is critical for neural net-
works. Moreover, a local method like saliency
maps may have issues, e.g., see Adebayo et al.
(2018) and Rudin (2019). Rudin (2019) discusses
issues with post hoc explainable methods for high
stakes decisions and argues to use inherent inter-
pretable approaches instead. Explainability and
interpretability for (large) LMs is still nascent and
calls for more investigations.

6.5 Constraints

AI for good is a goal. Besides predictive and op-
timal, it is desirable for an AI system to be safe,
robust, adaptive, reliable, stable, transparent, fair,
trustworthy, explainable, etc., and not to have be-

haviours like discrimination w.r.t. race, gender,
nationality, etc. Constrains may express them.

A predictive model is built on domain knowl-
edge, real-world data, and high-fidelity simulators;
a robust method accounts for worst-case scenar-
ios and takes conservative actions, and an adaptive
method learns from online observations and adapts
to unknown situations (Brunke et al., 2021).

Thomas et al. (2019) discuss that, to prevent
undesirable behaviour of intelligent machines, a
user of a standard ML algorithm needs to constrain
the algorithm’s behaviour in the objective function
(with soft constraints or robust and risk-sensitive
methods) or in the feasible set (with hard con-
straints, chance constraints, or robust optimization
methods), both of which requires domain knowl-
edge or extra data analysis. The authors propose
a framework to shift the burden from the user to
the designer of the algorithm, by allowing the user
to place probabilistic constraints on the solution
directly, for classification, regression, and RL.

Wiens et al. (2019) discuss how to do no harm
in the context of healthcare, which may some-
what generalize to AI. AI practitioners, esp. those
with AI power and resources and/or those dealing
with high-stake applications like healthcare and au-
tonomous driving, may need to take a “Hippocratic
oath” or even go under stricter regulation.

Wing (2021) reviews trustworthy AI. Brunke
et al. (2021) survey safe learning in robotics, with
perspectives from learning-based control to safe
RL. Szepesvári (2020) discusses multi-objective
and constrained RL. García and Fernández (2015)
present a survey on safe RL. It is interesting to
explore how to incorporate ideas about constraints
to LMs.

6.6 Intelligence

There are long-standing debates about nature ver-
sus nurture, empiricism versus rationalism, and
connectionism vs symbolism. We discuss ear-
lier the importance of experience (Sutton, 2022a),
a common model of intelligent agent (Sutton,
2022b), an autonomous machine intelligence ar-
chitecture (LeCun, 2022), and a modular architec-
ture Mahowald et al. (2023).

Lake et al. (2017) discuss that we should build
machines toward human-like learning and thinking.
In particular, we should 1) build causal world mod-
els to support understanding and explanation, see-
ing entities rather than just raw inputs or features,



rather than just pattern recognition, 2) support and
enrich the learned knowledge grounding in intu-
itive physics and intuitive psychology, and 3) rep-
resent, acquire, and generalize knowledge, leverag-
ing compositionality and learning to learn, rapidly
adapt to new tasks and scenarios, recombining rep-
resentations, without retraining from scratch.

Jordan (2019) highlights the need of meaning
and reasoning for NLP, causality, representations
of uncertainty and long-term goals.

Pearl (2020) discusses that learning is guided
by data and model, and argues the importance of
balancing empiricism with a model for expediency,
transparency and explainability.

Bengio et al. (2021) propose a neuro-symbolic
approach to combine the merits from both sides:
symbolic AI for system 2 abilities like reasoning,
composability, and abstraction, and strengths of
deep learning including “efficient large-scale learn-
ing using differentiable computation and gradient-
based adaptation, grounding of high-level con-
cepts in low-level perception and action, handling
uncertain data, and using distributed representa-
tions”. Littman et al. (2021) also highlights a neuro-
symbolic approach.

Legg and Hutter (2007) compare tests of intel-
ligence w.r.t. the following properties: valid, in-
formative, wide range, general, dynamic, unbiased,
fundamental, formal, objective, fully defined, uni-
versal, practical, and test vs. definition. Chollet
(2019) presents the Abstraction and Reasoning Cor-
pus (ARC) benchmark.

Learning to learn is a core ingredient to achieve
strong AI (Botvinick et al., 2019; Kaelbling, 2020;
Lake et al., 2017; Sutton, 2019), and has a long
history, e.g., Schmidhuber (1987), Bengio et al.
(1991), and Thrun and Pratt (1998).

Learning to learn, a.k.a. meta-learning, is learn-
ing about some aspects of learning. It includes
concepts as broad as transfer learning, multi-task
learning, one/few/zero-shot learning, learning to
reinforcement learn, learning to optimize, learn-
ing combinatorial optimization, hyper-parameter
learning, neural architecture design, automated ma-
chine learning (AutoML)/AutoRL/AutoAI, etc. It
is closely related to continual learning and life-long
learning (Khetarpal et al., 2020).

The aim of few-shot meta-learning is to train a
model adaptive to a new task quickly, using only
a few data samples and training iterations (Finn
et al., 2017). Transfer learning is about transfer-

ring knowledge learned from different domains,
possibly with different feature spaces and/or dif-
ferent data distributions (Taylor and Stone, 2009;
Pan and Yang, 2010). Curriculum learning (Ben-
gio et al., 2009; Narvekar et al., 2020; Baker
et al., 2020; Vinyals et al., 2019), model distilla-
tion/compression (Hinton et al., 2014; Czarnecki
et al., 2019), and sim-to-real are particular types
of transfer learning. Multitask learning (Caruana,
1997) learns related tasks with a shared represen-
tation in parallel, leveraging information in related
tasks as an inductive bias, to improve generaliza-
tion, and to help improve learning for all tasks.
Schölkopf et al. (2021) discuss causal representa-
tion learning for transfer learning, multitask learn-
ing, continual learning, RL, etc. SeeHutter et al.
(2019) for a book on AutoML, Hospedales et al.
(2021) for a survey on meta-learning, Singh (2017)
for a tutorial about continual learning, (Chen et al.,
2021) for a survey and a benchmark on learn to
optimize, and (Portelas et al., 2020) for a survey on
automatic curriculum learning for deep RL.

The above sheds lights on how to achieve more
general and stronger intelligence.

Gershman et al. (2005) discuss that computa-
tional rationality leads to approximations when
maximizing expected utility for decision making,
considering the cost of computation in complicated
real-world problems. Although there is exponen-
tially growth in computation, this is (very likely)
still a valid principle.

Learning to learn, like transfer / few-shot / multi-
task / meta-learning are popular methods for gen-
eral intelligence recently. General intelligence
thus boils down to multi-objective and/or multi-
constraint problems, which are about approxima-
tion and compromise. See Section 4 for approxi-
mation and Section 6.5 for constraints.

When building an AI system, we need to con-
sider the boundary and set a pragmatical goal. In-
stead of training a system optimizing everything
or handling all potential tasks satisfactorily, we
may follow how humans have been organizing
the society in the long history, i.e., decompose
the whole into parts, solve them separately and
let them collaborate. In the pre-training then fine-
tuning pipeline, we may pre-train with data from
selected rather than all sorts of tasks to improve the
quality of representation (Schölkopf et al., 2021)
and to avoid issues like negative transfer (Taylor
and Stone, 2009; Pan and Yang, 2010).



7 Conclusion

Iterative improvements from feedback is a general
approach for many, if not all, successful systems.
Ground-truth-in-the-loop is critical. Reinforcement
learning is a promising framework to achieve sound
and solid grounding and agency of language mod-
els, by interacting with physical and social world,
although pre-training then fine-tuning is a popular
approach. Small modules are feasible for frequent
updates. This helps bridge the LM-to-real gap and
achieve optimality and controllability, besides fea-
sibility and correctness. This facilitates adaptabil-
ity of language models to humans, but not vice
versa, as current prompt engineering may require
significant efforts for humans to adapt to language
models. This requires valuable and reliable data,
feedback and evaluation, with sample-, time-, and
space-efficient algorithms, considering ethical and
social issues.

Limitations

This is a perspective paper with a brief survey.
More considerations are needed for ethical and
social aspects of language models and AI.
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Miladinović, Francesco Locatello, Martin Breidt,
Valentin Volchkov, Joel Akpo, Olivier Bachem, Bern-
hard Schölkopf, and Stefan Bauer. 2019. On the
transfer of inductive bias from simulation to the real
world: a new disentanglement dataset. In NeurIPS.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press.

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang
Geng, Hao Liu, Pieter Abbeel, Sergey Levine, and
Dawn Song. 2023. The false promise of imitating
proprietary llms. arXiv.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and
Yuanzhi Li. 2023. Textbooks are all you need. arXiv.

Dylan Hadfield-Menell, Anca Dragan, Pieter Abbeel,
and Stuart Russell. 2016. Cooperative inverse rein-
forcement learning. In NIPS.

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel,
Stuart Russell, and Anca Dragan. 2017. Inverse re-
ward design. In NIPS.

Patrick Haluptzok, Matthew Bowers, and Adam Tauman
Kalai. 2023. Language models can teach themselves
to program better. In ICLR.

Josiah P. Hanna, Siddharth Desai, Haresh Karnan, Gar-
rett Warnell, and Peter Stone. 2021. Grounded action
transformation for sim-to-real reinforcement learning.
Machine Learning, 110:2469–2499.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2023. Towards a
unified view of parameter-efficient transfer learning.
In ICLR.

Richard Held and Alan Hein. 1963. Movement-
produced stimulation in the development of visually
guided behaviour. Journal of comparative and physi-
ological Psychology, (56):872–876.

John Hewitt, John Thickstun, Christopher D. Manning,
and Percy Liang. 2023. Backpack language models.
In ACL.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2014.
Distilling the knowledge in a neural network. In
NIPS 2014 Deep Learning Workshop.

Jonathan Ho and Stefano Ermon. 2016. Generative
adversarial imitation learning. In NIPS.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models. arXiv.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli,
and Amos Storkey. 2021. Meta-learning in neural
networks: A survey. TPAMI.

https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://gist.github.com/yoavg/59d174608e92e845c8994ac2e234c8a9
https://gist.github.com/yoavg/59d174608e92e845c8994ac2e234c8a9
https://tinyurl.com/bdd772p5


Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. LoRA: Low-rank adaptation of
large language models. arXiv.

Rongjie Huang, Mingze Li, Dongchao Yang, Jia-
tong Shi, Xuankai Chang, Zhenhui Ye, Yuning Wu,
Zhiqing Hong, Jiawei Huang, Jinglin Liu, Yi Ren,
Zhou Zhao, and Shinji Watanabe. 2023. AudioGPT:
Understanding and generating speech, music, sound,
and talking head. arXiv.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022a. Language models as zero-
shot planners: Extracting actionable knowledge for
embodied agents. arXiv.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, Pierre Sermanet,
Noah Brown, Tomas Jackson, Linda Luu, Sergey
Levine, Karol Hausman, and Brian Ichter. 2022b.
Inner monologue: Embodied reasoning through plan-
ning with language models. arXiv.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren,
editors. 2019. Automatic Machine Learning: Meth-
ods, Systems, Challenges. Springer.

M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris,
G. Lever, A. Garcia Castaneda, C. Beattie, N. C. Ra-
binowitz, A. S. Morcos, A. Ruderman, N. Sonnerat,
T. Green, L. Deason, J. Z. Leibo, D. Silver, D. Hass-
abis, K. Kavukcuoglu, and T. Graepel. 2018. Human-
level performance in first-person multiplayer games
with population-based deep reinforcement learning.
arXiv.

Max Jaderberg, Volodymir Mnih, Wojciech Czarnecki,
Tom Schaul, Joel Z. Leibo, David Silver, and Koray
Kavukcuoglu. 2017. Reinforcement learning with
unsupervised auxiliary tasks. In ICLR.

Stephen James, Zicong Ma, David Rovick Arrojo, and
Andrew J. Davison. 2020. RLBench: The robot
learning benchmark & learning environment. IEEE
Robotics and Automation Letters, 5(2):3019 – 3026.

Stephen James, Paul Wohlhart, Mrinal Kalakrishnan,
Dmitry Kalashnikov, Alex Irpan, Julian Ibarz, Sergey
Levine, Raia Hadsell, and Konstantinos Bousmalis.
2019. Sim-to-real via sim-to-sim: Data-efficient
robotic grasping via randomized-to-canonical adap-
tation networks. In CVPR.

Zhijing Jin, Jiarui Liu, Zhiheng Lyu, Spencer Poff, Mrin-
maya Sachan, Rada Mihalcea, Mona Diab, and Bern-
hard Schölkopf. 2023. Can large language models
infer causation from correlation? arXiv.

Michael I. Jordan. 2019. Artificial Intelligence—the
revolution hasn’t happened yet. Harvard Data Sci-
ence Review, 1(1).

Abhishek Kadian, Joanne Truong, Aaron Gokaslan,
Alexander Clegg, Erik Wijmans, Stefan Lee, Mano-
lis Savva, Sonia Chernova, and Dhruv Batra. 2020.
Sim2Real predictivity: Does evaluation in simulation
predict real-world performance? IEEE Robotics and
Automation Letters, 5(4).

Leslie Kaelbling. 2019. Engineering
AI. https://medium.com/@lpk_61328/
engineering-ai-e310b8044d78.

Leslie Pack Kaelbling. 2020. The foundation of efficient
robot learning. Science, 369(6506):915–916.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv.

Ehud Karpas, Omri Abend, Yonatan Belinkov, Barak
Lenz, Opher Lieber, Nir Ratner, Yoav Shoham, Hofit
Bata, Yoav Levine, Kevin Leyton-Brown, Dor Muhl-
gay, Noam Rozen, Erez Schwartz, Gal Shachaf,
Shai Shalev-Shwartz, Amnon Shashua, and Moshe
Tenenholtz. 2022. Mrkl systems: A modular, neuro-
symbolic architecture that combines large language
models, external knowledge sources and discrete rea-
soning. arXiv.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li,
David Hall, Percy Liang, Christopher Potts, and
Matei Zaharia. 2023. Demonstrate-search-predict:
Composing retrieval and language models for
knowledge-intensive nlp. arXiv.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and
Doina Precup. 2020. Towards continual reinforce-
ment learning: A review and perspectives. arXiv.

Celeste Kidd and Abeba Birhane. 2023. How ai can dis-
tort human beliefs. Science, 380(6651):1222–1223.

Been Kim. 2023a. Beyond interpretability: developing
a language to shape our relationships with ai. https:
//tinyurl.com/ycykjca2.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
arXiv.

Sung Kim. 2023b. List of open sourced fine-tuned large
language models (LLM). https://tinyurl.com/
ykf57jd6.

W. Bradley Knox and Peter Stone. 2008. TAMER:
Training an agent manually via evaluative reinforce-
ment. In IEEE 7th International Conference on De-
velopment and Learning.
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