Supplementary Materials

Data-driven analysis of amino acid change dynamics timely reveals

SARS-CoV-2 variant emergence

Anna Bernasconi^{1,*}, Lorenzo Mari¹, Renato Casagrandi¹, and Stefano Ceri¹

¹Politecnico di Milano, Departement of Electronics, Information, and Bioengineering, Milan, 20133, Italy *anna.bernasconi@polimi.it

Supplementary Figures

Figure S1. Counts of protein Spike amino acid changes in the UK in different bi-weekly periods. The tracks represent sequences of the five groups filtered by date (from the first half of November 2020 till the first half of January 2021). A blue background is used in the positions notably belonging to the Alpha variant, as first recognized as the B.1.1.7 lineage by Rambaut et al.⁵⁰: H69-, V70-, Y144-, N501Y, A570D, P681H, T716I, S982A, and D1118H; higher black bars in these positions from top to bottom indicate an increase in the frequency of these amino acid changes.

The plot was created using the Matplotlib library v3.3.4 of Python v3.8.5 (https://matplotlib.org/).

Figure S2. Example phylogenetic tree of SARS-CoV-2 major variants. Image generated with Nextstrain¹⁴ on Aug. 2, 2021 (https://nextstrain.org/ncov/gisaid/global).

Sequence data extraction

EPI_ISL_XXXXXX, 2020-01-10, 2020-04-30, B.1, North America/USA/California, {E_L21F, M_A123L, Spike_A570D, …} EPI_ISL_YYYYYY, 2020-12-03, 2021-01-06, R.1, Asia/Japan, {N_R203K, R_G204R, NSP14_P412H, Spike_E484K, …} EPI_ISL_ZZZZZZ, 2021-05-20, 2020-05-31, B.1617.2, Asia/India/West Bengal, {NSP6_T77A, Spike_E484Q,Spike_V383L, …} ...

				-					Dec 2	020				May 2	2021	
Change	Country	Week	#Sea	#Total		Change		W1	W2	W3	W4		W1	W2	W3	W4
	oounay	Week	<i>"</i> ocq.	"Total		E_L21F	•••	1	0	0	0		1	0	0	C
E_L21F	Japan	Dec-wk1-20	1	1043		N R203K		1012	1375	1083	1233		1747	235	1	C
E_L21F	Japan	Dec-wk2-20	0	1399	Matrix											
N_R203K	Japan	Dec-wk1-20	1012	1043												
N_R203K	Japan	Dec-wk2-20	1375	1399		:	÷		:			:		:		
Spike_E484K	Japan	Dec-wk1-20	6	1043					_							
Spike_E484K	Japan	May-wk1-21	288	1829		Spike_E484K	•••	6	5	4	12		288	36	1	C
						Spike_N501Y		1	2	12	12		1447	210	2	C
:						Spike_G769V		1043	3 1399	1116	1267		279	30	0	C
Spike_E484K	California	May-wk1-21	193	1154												Japar
Spike E484K	California	May-wk2-21	134	925											So	uth Afr
• -		-								_			_	U	nited Sta	ates (C
:					Totals			1043	1399	1116	1267		1829	257	5	C

Figure S3. Data extraction and aggregation steps. GISAID original data comprise records of sequence accession ID, collection date, submission date, Pangolin lineage, collection location, and list of amino acid changes. We compute a table of tuples with: amino acid change, country of collection, week of collection, absolute count of sequences holding that change, and total collected sequences in the same country-week. For selected countries (the example shows Japan), we build a matrix where rows are amino acid changes observed in at least five sequences for at least three weeks, columns are observation weeks, and cells contain the number of sequences collected in the given week exhibiting the specific amino acid change. A separate vector holds the total number of sequences collected in the location under study for each of the considered weekly periods. Note that the last weeks of May 2021 hold very few data, thereby producing diluted results of our clustering and warning method. Image generated with OmniGraffle v6.6.2 (https://www.omnigroup.com/).

Figure S4. Data-driven warning of possible candidate variant emergence issued in Japan. (a), The nine time points when warnings were raised. Note that Mar-wk1-21 exhibits two distinct warnings for clusters JP_093 and JP_98. (b), Cluster-lineage Jaccard similarity for the ten warnings. The four hits (similarity above the threshold $J_{cd} = 0.5$) are reported in Fig. 1 in the main text. Strong cluster-lineage similarity is already observed at the time when clustering is performed, which qualifies these as early hits. In this case, candidates were discarded within five weeks, as no late hits (i.e. strong similarity observed with some delay after clustering/warning between a cluster with an amino acid change composition that can be traced back to the original warning and a lineage dictionary) were recorded.

Plots were created using MATLAB R2021a (http://www.mathworks.com). All graphics were further processed using Adobe Illustrator 2021 (http://www.adobe.com).

Figure S5. Temporal dynamics of the two variants identified in UK. We show the decline of Alpha variant occurring together with the growth of the Delta variant. Details as in panels (d-g) of Fig. 1 in the main text. Plots were created using MATLAB R2021a (http://www.mathworks.com). All graphics were further processed using Adobe Illustrator 2021 (http://www.adobe.com).

Supplementary Tables

WHO	Pangolin	Nextstrain	GISAID	PHE	VoC	VoI	VuI	VuM	Seq.
	B.1.1.214				-	-	-	-	16611
	B.1.1.284				-	-	-	-	8877
	B.1.1.519				-	-	-	Е	17918
Alpha	B.1.1.7	20I/501Y.V1	GRY	VOC-20DEC-01	W,E,C,P	-	-	-	776222
•	B.1.160.[l20]	20A.EU2			-	-	-	-	22240
	B.1.177.[l21l50l75]lZ.1	20E (EU1)			-	-	-	-	83587
	B.1.177.12				-	-	-	-	6549
	B.1.177.[7 8 48 59 65]								9009
	B.1.177.86								5184
	B.1.2				-	-	-	-	86647
	B.1.214.2				-	-	-	Е	1200
	B.1.221	20A/S:98F			-	-	-	-	12723
	B.1.234								6078
	B.1.258.[24]	20A/S:439K			-	-	-	-	12575
	B.1.258.17								6634
Beta	B.1.351	20H/501Y.V2	GH/501Y.V2	VOC-20DEC-02	W,E,C,P	-	-	-	19284
	B.1.36.[8 16 24]								5901
Epsilon	B.1.427	20C/S:452R	GH/452R.V1		С	W,E	-	-	12889
Epsilon	B.1.429	20C/S:452R	GH/452R.V1		С	W,E	-	-	30509
Eta	B.1.525	20A/S:484K	G/484K.V3	VUI-21FEB-03	-	W,E,C	Р	-	5171
Iota	B.1.526	20C/S:484K	GH/253G.V1		-	W,C	-	Е	20147
Iota	B.1.526.1	20C			-	С	-	Е	8201
Iota	B.1.526.2				-	-	-	Е	9190
	B.1.596				-	-	-	-	9772
Kappa	B.1.617.1	20A/S:154K	G/452R.V3	VUI-21APR-01	-	W,E,C	Р	-	2791
Delta	B.1.617.2	20A/S:478K	G/478K.V1	VOC-21APR-02	W,E,C,P	С	-	-	17354
Lambda	C.37		GR/452Q.V1		-	W	-	Е	1083
	D.2								12335
Gamma	P.1 P.1.2	20J/501Y.V3	GR/501Y.V3	VOC-21JAN-02	W,E,C,P	-	-	-	22833
Zeta	P.2	20B/S.484K	GR/484K.V2	VUI-21JAN-01	-	W,C	Р	Е	3325
	R.1				-	-	-	-	8247

Table S1. List of considered lineages

 \overline{WHO} names¹⁶; Pangolin lineages¹³; Nextstrain clades¹⁴; GISAID clades¹; Public Health England²² (PHE). VoC (Variant of Concern), VoI (Variant of Interest), VuI (Variant under Investigation), and VuM (Variant under Monitoring) are provided by four authoritative sources (W = WHO¹⁶; E = ECDC²⁸; C = CDC²⁷; P = PHE²²). Numbers of sequences refer to groups of lineages that share the same dictionary (see Supplementary Table S2).

Table S2. The lineage dictionary

Label	Dictionary: changes in > 75% sequences
B.1.1.214(JP1)	N_M234I, NSP14_P43L, NSP16_R287I
B.1.1.284(JP2)	N_P151L, NSP12_A423V, NSP3_S543P, NSP5_P108S
B.1.1.519	NSP3_P141S, NSP4_T492I, NSP6_I49V, NSP9_T35I, Spike_P681H, Spike_T478K, Spike_T732A
B.1.1.7(Alpha)	N_D3L, N_S235F, NS8_Q27*, NS8_R52I, NS8_Y73C, NSP3_A890D, NSP3_11412T, NSP3_T183I, NSP6_F108-, NSP6_G107-, NSP6_S106-, Spike_A570D, Spike_D1118H, Spike_H69-, Spike_N501Y, Spike_P681H, Spike_S982A, Spike_T716I, Spike_V70-, Spike_Y144-
B.1.160.[l20]	N_A376T, N_M234I, NS3_Q57H, NSP12_A185S, NSP12_V776L, NSP13_E261D, NSP13_K218R, NSP4_M324I, Spike_S477N
B.1.177.12	N_A220V, N_P365S, NS3_R122I, Spike_A222V
B.1.177.[718148159165]	N_A220V, Spike_A222V, Spike_L18F
B.1.177.86	N_A220V, NS7b_E39*, Spike_A222V, Spike_L18F
B.1.177.[l21l50l75]lZ.1	N_A220V, Spike_A222V
B.1.2(US1)	N_P199L, N_P67S, NS3_G172V, NS3_Q57H, NS8_S24L, NSP14_N129D, NSP16_R216C, NSP2_T85I, NSP5_L89F
B.1.214.2	N_D3L, NSP12_R583G, NSP3_I580V, NSP3_T1063I, NSP8_A74V, N_T205I, Spike_N450K, Spike_Q414K, Spike_T716I
B.1.221	N_P199L, NS3_G172R, NS3_Q38R, NS3_V202L, NSP3_H295Y, Spike_S98F
B.1.234	N_S194L, NSP2_V485I, NSP3_K1241R, NSP4_D217G, N_T391I
B.1.258.17	NS3_Q185H, NS8_E64*, NSP12_V720I, NSP13_A598S, NSP13_H290Y, NSP13_P53L, NSP14_E453D, NSP14_P46L, NSP3_11683T, NSP9_M1011, Spike_H69-, Spike_L189F, Spike_N439K, Spike_V70-, Spike_V7721
B.1.258.[l24]	NSP13_H290Y, NSP3_I1683T, Spike_N439K
B.1.351(Beta)	E_P71L, NS3_Q57H, NS3_S171L, NSP2_T85I, NSP3_K837N, NSP5_K90R, NSP6_F108-, NSP6_G107-, NSP6_S106-, N_T205I, Spike_A243-, Spike_A701V, Spike_D215G, Spike_D80A, Spike_E484K, Spike_K417N, Spike_L242-, Spike_L244-, Spike_N501Y
B.1.36.[18116124]	N_\$194L, N\$3_Q57H
B.1.427(Epsilon)	NS3_Q57H, NSP13_D260Y, NSP13_P53L, NSP2_T85I, NSP4_S395T, N_T205I, Spike_L452R, Spike_S13I, Spike_W152C
B.1.429(Epsilon)	NS3_Q57H, NSP13_D260Y, NSP2_T85I, NSP9_I65V, N_T205I, Spike_L452R, Spike_S13I, Spike_W152C
B.1.525(Eta)	E_L21F, M_I82T, N_A12G, NSP12_P323F, NSP3_T1189I, NSP6_F108-, NSP6_G107-, NSP6_S106-, N_T205I, Spike_A67V, Spike_E484K, Spike_F888L, Spike_H69-, Spike_Q52R, Spike_Q677H, Spike_V70-, Spike_Y144-
B.1.526(Iota)	N_M234I, N_P199L, NS3_P42L, NS3_Q57H, NS8_T11I, NSP13_Q88H, NSP2_T85I, NSP4_L438P, NSP6_F108-, NSP6_G107-, NSP6_S106-, Spike_A701V, Spike_D253G, Spike_E484K, Spike_L5F, Spike_T95I
B.1.526.1(Iota)	N_M234I, NS3_P42L, NS3_Q57H, NS8_A51S, NS8_T11I, NSP2_T85I, NSP4_A446V, NSP4_K399E, NSP4_L438P, NSP6_F108-, NSP6_G107-, NSP6_S106-, NSP6_V278I, N_T205I, Spike_D80G, Spike_D950H, Spike_F157S, Spike_L452R, Spike_T859N, Spike_Y144-
B.1.526.2(Iota)	N_P13L, N_S202R, NS3_P42L, NS3_Q57H, NS7a_L116F, NS8_T11I, NSP13_Q88H, NSP2_T85I, NSP3_G1128S, NSP4_L438P, NSP6_F108-, NSP6_G107-, NSP6_S106-, Spike_D253G, Spike_L5F, Spike_Q957R, Spike_S477N, Spike_T951
B.1.596(US2)	N_P199L, N_P67S, NS3_G172V, NS3_Q57H, NS8_S24L, NSP14_N129D, NSP2_T85I, NSP5_L89F
B.1.617.1(Kappa)	N_D377Y, N_R203M, NS3_S26L, NS7a_V82A, NSP13_M429I, NSP15_K259R, NSP3_T749I, NSP6_T77A, Spike_E484Q, Spike_L452R, Spike_P681R, Spike_Q1071H
B.1.617.2(Delta)	M_182T, N_D377Y, N_D63G, N_R203M, NS3_S26L, NS7a_T120I, NS7a_V82A, NSP12_G671S, NSP13_P77L, Spike_D950N, Spike_E156G, Spike_F157-, Spike_L452R, Spike_P681R, Spike_R158-, Spike_T19R, Spike_T478K
C.37(Lambda)	N_G214C, N_P13L, NSP3_F1569V, NSP3_P1469S, NSP3_T428I, NSP4_L438P, NSP4_T492I, NSP5_G15S, NSP6_F108-, NSP6_G107-, NSP6_S106-, Spike_D253N, Spike_F490S, Spike_G252-, Spike_G75V, Spike_L249-, Spike_L452Q, Spike_P251-, Spike_R246-, Spike_S247-, Spike_T250-, Spike_T76I, Spike_T859N, Spike_Y248-
D.2	NSP2_I120F, Spike_S477N
P.1 P.1.2(Gamma)	N_P80R, NS3_S253P, NS8_E92K, NSP13_E341D, NSP3_K977Q, NSP3_S370L, NSP6_F108-, NSP6_G107-, NSP6_S106-, Spike_D138Y, Spike_E484K, Spike_H655Y, Spike_K417T, Spike_L18F, Spike_N501Y, Spike_P26S, Spike_R190S, Spike_T1027I, Spike_T20N, Spike_V1176F
P.2(Zeta)	N_A119S, N_M234I, NSP5_L205V, NSP7_L71F, Spike_E484K, Spike_V1176F
R.1(JP3)	M_F28L, N_Q418H, N_S187L, NSP13_G439R, NSP14_P412H, Spike_E484K, Spike_G769V, Spike_W152L

The dictionary contains amino acid changes occurring in at least 75% of a lineage's sequences. Worldwide confounding (too frequent) changes are already removed, North-America-specific ones are not. Some lineages are grouped as they share the same dictionary of amino acid changes.

Country	#Deposited Seq.	COVID-19 Cases	Sequenced%	Delay 2020	Delay 2021
USA	517,218	33,326,436	1.55	121.29	27.70
United Kingdom	425,455	4,515,778	9.42	37.74	15.65
Germany	119,813	3,701,692	3.24	165.17	21.13
Denmark	102,456	284,888	35.96	55.99	29.01
Sweden	55,158	1,076,993	5.12	88.45	46.62
Japan	49,007	755,711	6.48	130.27	50.61
Switzerland	41,853	696,801	6.01	91.71	23.09
France	39.872	6.104.346	0.65	143.17	30.22
Netherlands	34,314	1,684,374	2.04	61.70	24.56
Spain	30,510	3.693.012	0.83	128.99	36.00
Italy	29.301	4.225.163	0.69	139.11	21.65
Canada	28.000	1.395.336	2.01	178.37	73.08
Belgium	23,278	1,066,957	2.18	76.98	18.17
Australia	17 811	30 141	59.09	67.81	12.15
India	16,309	28.574.350	0.06	111.98	46.61
Austria	15,793	645.834	2.45	116.26	50.63
Ireland	14 316	263 252	5 44	134.10	21.79
Poland	13 245	2 874 092	0.46	109.06	24.32
Brazil	12,243	16 803 472	0.40	162.32	46.82
Israel	11,835	839 532	1 41	48.23	62 73
Slovenia	11,055	254 692	4.62	101 08	25.89
Norway	10 173	126 218	4.02 8.06	78 44	25.09
Lithuania	0.014	275 545	3.00	78.44	20.60
Liuluallia Maxico	9,914	275,545	0.30	174.72	29.00
Dertugal	9,317	2,420,022	0.39	1/4./2	29.03
Portugal	8,334 177 T	631,031 70,089	0.98	63.21 57.59	23.79
Luxembourg	7,771	1 690 272	0.42	57.58	50.50
South Africa	/,101	1,080,373	0.43	83.24	08.15
Greece	0,818	400,751	1.08	1/4.30	32.94
South Korea	0,212	142,851	4.55	105.00	33.99
Finland	5,572	92,913	0.00	154.45	03.23
T	5,070	6,333	//.35	135.17	11.46
Turkey	4,820	4,447,074	0.11	129.20	27.69
Philippines	4,293	1,247,899	0.34	163.09	89.50
Russia	3,968	5,040,390	0.08	108.05	57.22
Czech Republic	3,407	1,662,608	0.20	141.02	40.82
Latvia	3,350	134,162	2.50	119.18	34.80
Argentina	3,218	3,884,447	0.08	196.08	44.64
Slovakia	2,656	390,129	0.68	85.22	23.08
Singapore	2,575	62,145	4.14	89.88	10.91
Bulgaria	2,485	419,180	0.59	133.08	40.80
Qatar	2,256	218,080	1.03	294.87	56.50
Chile	2,199	1,403,101	0.16	164.08	25.36
Hong Kong	1,867	11,849	15.76	125.78	64.61
United Arab Emirates	1,846	576,947	0.32	171.14	33.00
Indonesia	1,845	1,837,126	0.10	129.49	63.64
Estonia	1,782	129,909	1.37	74.25	33.12
Croatia	1,656	357,109	0.46	162.09	40.16
Bangladesh	1,639	805,980	0.20	106.80	33.43
Thailand	1,337	169,344	0.79	99.41	25.93
Colombia	1,334	3,488,046	0.04	144.99	40.48
Peru	1,226	1,965,432	0.06	166.92	58.72
China	1,155	90,697	1.27	117.00	16.90
Reunion	1,094	-	-	153.25	53.70
New Zealand	1,064	2,682	39.67	87.06	13.84

Table S3. Statistics on SARS-CoV-2 sequencing in world countries

Countries contributing to the GISAID database with more than 1,000 sequences; COVID-19 cases⁶⁵; percentage of sequences over cases; average delay (in days) between sample collection and sequence submission dates.

Country	#Deposited Seq.	COVID-19 Cases	Sequenced%	Delay 2020	Delay 2021
California	58.236	3.689.996	1.58	99.63	36.42
Texas	56,688	2,880,056	1.97	152.86	32.36
New York	42,174	1.151.994	3.66	102.36	23.35
Florida	31,293	2.286.332	1.37	97.15	23.60
Michigan	25,742	994,774	2.59	98.55	24.51
Minnesota	22.624	600.990	3.76	84.64	24.19
Washington	22,522	438,544	5.14	66.34	22.27
Massachusetts	18,109	705.818	2.57	149.46	20.34
Illinois	17.143	1.383.739	1.24	190.38	25.13
Arizona	16.661	882.691	1.89	165.14	30.43
Wisconsin	15.056	674,939	2.23	86.00	24.55
Colorado	14,791	545.002	2.71	137.16	27.98
Pennsylvania	14.229	1.204.099	1.18	132.46	22.64
New Jersev	13.069	1.026.054	1.27	188.05	27.03
Marvland	12.155	460.339	2.64	77.58	24.73
Utah	12.115	406.825	2.98	117.14	71.36
North Carolina	9,130	1.004.622	0.91	157.64	24.33
Virginia	7.827	676.300	1.16	75.40	25.31
Wyoming	7,425	60.549	12.26	133.69	29.24
Oregon	7,413	202.247	3.67	102.72	38.63
Georgia	7,403	1.125.017	0.66	121.46	27.62
Connecticut	7.370	347,748	2.12	91.18	22.28
Indiana	6.435	745.690	0.86	217.37	26.65
Ohio	6.326	1.103.380	0.57	171.57	34.22
New Mexico	5,152	203.330	2.53	97.07	29.94
Louisiana	5.032	472.617	1.06	90.36	27.05
West Virginia	4,977	162.111	3.07	136.66	35.41
Tennessee	4.084	863,890	0.47	145.73	27.36
Nevada	3,914	325,031	1.20	140.95	27.29
Maine	3,456	68,057	5.08	75.98	20.94
Rhode Island	3,434	151,953	2.26	122.11	23.60
Missouri	3,123	601,503	0.52	212.70	27.48
Kansas	2,971	314,689	0.94	195.82	16.79
South Carolina	2,949	593,061	0.50	122.58	31.48
Alabama	2,695	546,259	0.49	74.46	24.67
Hawaii	2,206	34,568	6.38	104.46	30.31
New Hampshire	2,065	98,840	2.09	110.76	20.58
Kentucky	1,954	459,540	0.43	152.10	25.06
Nebraska	1,944	223,517	0.87	98.05	27.12
Alaska	1,908	67,591	2.82	72.98	20.51
Delaware	1,784	108,957	1.64	120.17	24.36
North Dakota	1,715	110,151	1.56	160.14	36.85
Idaho	1,149	192,630	0.60	147.05	27.03
Vermont	1,040	24,240	4.29	132.83	19.29
Iowa	936	371,761	0.25	97.77	28.34
Mississippi	903	317,783	0.28	116.04	24.59
Arkansas	787	341,889	0.23	86.97	30.50
Montana	766	112,057	0.68	135.32	23.13
Oklahoma	693	453,552	0.15	108.99	27.31
South Dakota	561	124,242	0.45	123.46	27.42

Table S4. Statistics on SARS-CoV-2 sequencing in all US states

All 50 US states contributing to the GISAID database; COVID-19 cases⁶⁶; other columns as in Supplementary Table S3.

Country/US State	<pre>#rows (changes)</pre>	#columns (weeks)
United Kingdom	3808	64
Germany	2137	64
Denmark	1456	59
California	1278	62
Switzerland	1011	62
Texas	1009	59
New York	929	61
Sweden	860	61
France	841	62
Florida	773	61
Italy	635	63
Netherlands	626	62
Spain	620	62
Washington	616	61
Japan	594	63
Canada	583	56
Belgium	551	61
Massachusetts	517	58
Minnesota	506	58
Michigan	474	58
Illinois	415	60
Pennsylvania	406	56
Colorado	404	54
Ireland	371	55
Arizona	365	58
Maryland	347	46
Wisconsin	344	60
New Jersey	336	38
Utah	324	57
India	306	59
North Carolina	304	54
Oregon	273	57
Connecticut	266	42
Ohio	245	40
Virginia	239	59
Georgia	238	54
Australia	225	62
Indiana	224	28
Wyoming	203	42
New Mexico	185	52
Brazil	171	59
Louisiana	158	58
Austria	140	53
South Africa	84	56

 Table S5. Size of the aggregated data matrices

Matrices are extracted from GISAID for the countries and US states analyzed in this study, ordered by number of rows (changes).