
Frontiers in Immunology | www.frontiersin.

Edited by:
Christophe Matthys,
KU Leuven, Belgium

Reviewed by:
Christopher Lupfer,

Missouri State University,
United States

Teneema Kuriakose,
St. Jude Children’s Research Hospital,

United States

*Correspondence:
Alberto López-Reyes
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Several countries around the world have faced an important obesity challenge for the past
four decades as the result of an obesogenic environment. This disease has a multifactorial
origin and it is associated with multiple comorbidities including type 2 diabetes,
hypertension, osteoarthritis, metabolic syndrome, cancer, and dyslipidemia. With
regard to dyslipidemia, hypertriglyceridemia is a well-known activator of the NLRP3
inflammasome, triggering adipokines and cytokines secretion which in addition induce
a systemic inflammatory state that provides an adequate scenario for infections,
particularly those mediated by viruses such as HIV, H1N1 influenza, and SARS-CoV-2.
The SARS-CoV-2 infection causes the coronavirus disease 2019 (COVID-19) and it is
responsible for the pandemic that we are currently living. COVID-19 causes an aggressive
immune response known as cytokine release syndrome or cytokine storm that causes
multiorgan failure and in most cases leads to death. In the present work, we aimed to
review the molecular mechanisms by which obesity-associated systemic inflammation
could cause a more severe clinical presentation of COVID-19. The SARS-CoV-2 infection
could potentiate or accelerate the pre-existing systemic inflammatory state of individuals
with obesity, via the NLRP3 inflammasome activation and the release of pro-inflammatory
cytokines from cells trough Gasdermin-pores commonly found in cell death by pyroptosis.

Keywords: severe acute respiratory syndrome coronavirus 2, coronavirus disease 2019, pyroptosis,
obesity, inflammasome
INTRODUCTION

Obesity has reached epidemic proportions globally; thus, the World Health Organization (WHO)
identifies it as a serious public health problem, particularly in west countries (1). The global increase of
obesity in the last 50 years has doubled, and it has been estimated that a third of the world population
is obese or overweight (2). TheWHO defines obesity as a complex entity in which there is an excessive
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accumulation of fat that affects practically all body functions and
compromises the individual’s health (1). Furthermore, obesity is
considered the fifth risk factor for mortality, as it is the main risk
factor of diabetes, cardiovascular disease, hypertension,
dyslipidemia, musculoskeletal disorders such as osteoarthritis,
and other diseases (3–5). It is well known that obesity leads to a
low-grade chronic inflammation promoted by the release of
adipokines and cytokines (6). This dysfunctional state
contributes to a systemic lipotoxicity affecting liver, muscle and
pancreas, activating NOD-, LRR-, and the pyrin domain-
containing protein 3 (NLRP3) inflammasome (7–10). Beyond
cellular damage, organ dysfunction and metabolic compromise,
the low-grade chronic inflammation could condition to viral
diseases, such as those instigated by HIV (11, 12), H1N1
influenza virus (13–15), and SARS-CoV-2 (16).

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) causes the coronavirus disease (COVID-19), which is
responsible for more than 758,942 deaths worldwide (17). The
WHO has listed COVID-19 as a global health crisis (18). Similar
to obesity, this virus induces a systemic inflammation; however,
the SARS-CoV-2 produces an uncontrolled increase of cytokine
secretion causing multiple organ failure, followed by death (19–
21). It should be noted that during the cytokine storm caused
by SARS-CoV-2, the inflammasome could be involved in
the maintenance of inflammation, as it happens in obesity (22–
24). Given that obesity might be associated with the development
of aggressive clinical symptoms in COVID-19, we aimed to
suggest the possible role of NLRP3 inflammasome as a link
between obesity and the increased risk for a severe COVID-
19 outcome.
INFLAMMASOME AND PYROPTOSIS

The NLRP3 inflammasome is a multiprotein complex present
in macrophages, dendritic cells and other non-immune cells.
The activation of NLRP3 as the pivotal component of the innate
immune system, plays a critical role in the host defense against
bacteria, fungi and viruses among others; however, the NLRP3
is also associated with metabolic and inflammatory conditions
such as gout, diabetes mellitus, insulin resistance, and obesity
(25–28).

The inflammasome is coordinated by the NLRP3 sensor
[Nucleotide-Binding Oligomerization Domain (NOD), Leucin-
rich repeat (LRR), Pyrin domain (PYD), adaptor protein ASC,
as well as the effector protein caspase 1] (29, 30). In most cases, the
activation of NLRP3 is regulated by pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs) that are recognized by the Toll-like receptors
(29, 31). The canonical activation of NLRP3 requires two
independent signals; an initial priming signal and a second one
to be fully activated (Figure 1).

The priming signal begins when PAMPs and other
inflammatory mediators such as interleukin 1-beta (IL-1b)
and tumor necrosis factor-alpha (TNF-a) bind to their
respective receptors (Pattern Recognition Receptors, IL-1bR,
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TNF-aR). These receptors induce the activation of nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-kB),
which promotes the transcription of NF-kB-dependent genes
such as NLRP3, pro-IL-1b, and pro-interleukin-18 (IL-18)
(31–33). NF-kB also modulates the gene expression of
interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-12 (IL-12),
TNF-a, and interferon-gamma inducible protein 10 (IP-10) (31,
34). These cytokines play a critical role in acute inflammation, as
well as in promoting the synthesis of acute phase proteins
that modify permeability and endothelial functions leading to
the recruitment of other immune system cells. In particular,
TNF-a and IL-6 regulate transcription and transduction of
IL-1b (34).

The second activation signal of NLRP3 could be initiated by
several extracellular stimulus including those mediated by crystals
of cholesterol, uric acid, asbestos and b amyloid, which induce the
release of ROS (reactive oxygen species), as well as lysosomal
enzyme cathepsin B and Ca2+ caused by a destabilization and
rupture of lysosome or endosome (35–37). The increase of
cathepsin B and Ca2+ as well as aberrant ionic flux may trigger
mitochondrial damage. Mitochondrial dysfunction occurs via an
increase of mitochondrial ROS, oxidized mitochondrial DNA,
cardiolipins and proteins that respond to viruses such as
mitofusin-1 and -2 or mitochondrial antiviral signaling protein,
promoting the oligomerization of NLRP3 (25, 38). This assembly
allows caspase-1 to start the cleavage of pro-IL-1b and pro-IL-18
(Figure 1).

The final step of the NLRP3 inflammasome activation is the
cleavage of Gasdermin D (GSDMD) by caspase-1, resulting in
the release of GSDMD N-terminal fragments that are essential
for pore formation on cell membranes (39). These pores lead to
the release of cytosolic content causing unrestrained dissemination
of inflammatory mediators including IL-1b, IL-18, that induce
cell death by pyroptosis contributing to host immune defense
(40, 41).
OBESITY, INFLAMMASOME,
AND PYROPTOSIS

As a functional organ, adipose tissue (AT) is the main endocrine
and immunological tissue implicated in the pathophysiology of
obesity and metabolic dysfunction (42, 43). AT has a complex and
heterogeneous composition that includes endothelium,
extracellular proteins matrix, stem cells, fibroblasts and immune
cells, and adipocytes (43–46). There are three types of AT. White
AT is the organ responsible for storing energy mainly in the form
of triglycerides for energy demand periods. In contrast, brown AT
is composed of rich mitochondria and multivacuolar smaller
adipocytes that are positive for the expression of uncoupling
protein-1, which is responsible for thermogenesis and generation
of heat rather than ATP from the oxidation of fatty acids (47).
Finally, the most recently AT identified, beige adipocyte tissue,
resembles BATmorphology and function, it can differentiate from
precursors found in WAT in response to stimuli as cold exposure
(48–50).
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In obesity, white AT promotes cellular, molecular and biochemical
alterations that cause local and systemic changes. Locally, adipocyte
hyperplasia and hypertrophy modify the AT structure; at a systemic
level, these alterations promote inflammation, insulin resistance,
nonalcoholic fatty liver diseases, and dyslipidemias (42, 45, 51, 52).

The impaired adipocytes function caused by hyperplasia and
hypertrophy induce an exacerbated lipolysis releasing fatty acids
(such as palmitic and lauric acids), and triggers the formation of
ceramides and cholesterol crystals that activate tissue-resident
macrophages through the TLR4 signaling (53–55). This
macrophage stimulation itself triggers the production of ROS,
calcium accumulation, as well as the release of IL-6, TNF-a, and
monocyte chemoattractant protein-1 (MCP-1) (56–58). The
chemokine MCP-1 leads to the recruitment of monocytes, while
Frontiers in Immunology | www.frontiersin.org 3
the interferon gamma (IFN-g), secreted by T cells in AT stimulates a
polarization process in macrophages, from the anti-inflammatory
state (M2) to the pro-inflammatory (M1) phenotype thereby
perpetuating a low-grade systemic inflammation (56, 57, 59, 60).

The inflammatory activity of M1 macrophages is traditionally
mediated by the activation of TNF-aR, IL-1bR, and CD36, which
is a priming signaling that activates NF-kB promoting the
transcription of NLRP3, pro-IL-1b, pro-IL-18, and other
inflammatory cytokines (61). However, for the NLRP3
inflammasome assembly, a second hit is required; this second
hit is induced by the binding of ceramides, fatty acids, oxidized
low-density lipoproteins and cholesterol crystals to TLR 2/4 (37,
58, 62–64). Finally, the sustained activation of NLRP3 will induce
the assembly of GSDMD pores into the macrophage cell
FIGURE 1 | Pyroptosis triggered in obesity and COVID-19. A possible signaling that triggers the activation of NLRP3 and consequently cell pyroptosis in COVID-19
may be linked to obesity. In individuals with obesity, pyroptosis is characterized by the activation of NOD-like receptors that induce the formation of cell membrane
pores mediated by Gasdermin D and the release of inflammatory factors. The SARS-CoV-2 uses ACE2, a receptor highly express in AT, to entry human host cells
promoting the expression of pro-inflammatory cytokines and oligomerization of NLRP3. Upon the NLRP3 inflammasome activation, Gasdermin-pores and cell
membrane swelling promote cell pyroptosis, particularly in macrophages and lymphocytes. Cell signaling represented by straight lines show the canonical activation
of NLRP3 in obesity. Dotted line represents the possible contribution of SARS-CoV-2 in NLRP3 activation. ACE2, angiotensin-converting enzyme 2; AT, adipose
tissue; Mfn2, mitofusin-2; MAVS, mitochondrial antiviral signaling protein; GSDMD, Gasdermin D; IRF, interferon-regulatory factor; ROS, reactive oxygen species;
TLR, toll-like receptor; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TRIF, protein-inducing interferon-b.
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membrane (40, 65). This process constitutes the pyroptotic cell
death mechanism, disrupting the osmotic potential and pouring
pro-inflammatory molecules to the system (65) (Figure 1).
COVID-19, INFLAMMASOME, AND
PYROPTOSIS

The causal agent of COVID-19 is known as SARS-CoV-2. The
viral infection is mediated by the attachment between a spike
glycoprotein and the angiotensin-converting enzyme 2 (ACE2)
in human host cells (66). The host target receptor mediates a
virus-cell membrane fusion and a viral entry that could cause
virus-linked pyroptosis (67, 68), leading to SARS-CoV-2-
induced lymphopenia (22, 69).

The innate immune system cells detect the viral RNA by
Pattern Recognition Receptors like TLR 3/7 in the endosome;
then, cascades of signaling pathways are triggered by TRIF and
MyD88 leading to the activation of transcription factors
including NF-kB and interferon-regulatory factor 3/7 (IRF)
(70). Not only TLR signaling can induce an excessive
inflammatory response to SARS-CoV-2, the inflammasome
activation stimulated by viral internalization can also induce it;
presumably, this occurs through spike proteins binding to
CD147 (71). The massive release of TNF-a, IFN-g, IL-1b, IL-8,
MCP-1, and IP-10 seen in acute phase of COVID-19 patients
(22) may probably be linked to pyroptosis, especially in
lymphocytes through the NLRP3 inflammasome activation.

The pyroptosis-mediated cell death has been described
previously in another coronavirus infection (72, 73). Recent
evidence suggests that Severe Acute Respiratory Syndrome-related
Coronavirus (SARS-CoV) induces NLRP3-dependent pyroptosis in
macrophages, which is triggered by the essential ion channel activity
of viroporin 3a (72) as well as by a direct interaction of ORF8b with
the LRR domain of NLRP3 (73). Moreover, it has been
demonstrated that ORF3a and E protein can stimulate NF-kB
signaling, resulting in the transcription of NLRP3, chemokines,
and pro-inflammatory cytokine, including IL-1b, IL-18, and IL-8
(74–76). Additionally, ORF3a might also mediate NLRP3
inflammasome activation through the ubiquitination of ASC
promoting maturation and secretion of IL-1b (75). In contrast, E
protein induces the assembly of NLRP3 inflammasome via the
formation of pores in Endoplasmic Reticulum-Golgi intermediate
compartment membranes that triggers a massive calcium ion
transportation to the cytosol (77–79). Finally, Chang et al.
highlight the biological role of SARS-CoV unique domain (SUD)
as a direct inductor of NLRP3 inflammasome activation in alveolar
epithelial cells, as well as its activity modulating pulmonary
inflammation mediated by CXCL10 in vitro and in vivo through
NLRP3 inflammasome pathway (80). These molecular mechanisms
have been linked to the induction of cytokine storm and cell death
in SARS-CoV (72, 73, 81, 82).

In the particular case of SARS-CoV-2 strains, recent evidence
suggests similar signaling pathways with SARS-CoV in
modulating the inflammation by activating NLRP3. A novel
Frontiers in Immunology | www.frontiersin.org 4
study has revealed homology functional domains of ORF3a
when compared with those reported in SARS-CoV strains,
suggesting some hypothetical pathways of ORF3a linked to the
NF-kB activation and NLRP3 inflammasome assembly (83).
Considering SARS-CoV-2 has high nucleotide sequence
homology to SARS-CoV and 94.7% amino acid identity of E
protein (84, 85), it could be inferred that pyroptosis might play a
central role in the pathogenesis of COVID-19. Individuals infected
with SARS-CoV-2 often show high concentration of pro-
inflammatory cytokines (22, 86), which is a downstream
indicator of inflammatory programmed cell death (Figure 1) (65).

Different reports have shown that COVID-19 is characterized
by a dysfunctional immune response, which exacerbates the
disease progression as result of a persistent inflammation
associated with high peripheral levels of IL-1b, IL-6, TNF-a,
MCP-1, and IP10 (22, 87–89). This aggravated inflammatory
response triggers a cytokine storm, contributing to the
pathological inflammation and multi-organ injury seen in
severely ill COVID-19 patients (23, 90–92). With regard to the
exacerbated inflammation probably caused by aberrant
activation of NLRP3 inflammasome in COVID-19, potential
targets are being explored including host signaling proteins
and effector molecules that lead cytokine storm (24, 93–95).

To date, some different drugs such as Acalabrutinib have
shown their beneficial effects in COVID-19. This therapeutic
strategy inhibits the Bruton tyrosine kinase (BTK) enzyme,
which is a direct regulator in NLRP3 inflammasome activation
(96, 97). The use of the drug in severe COVID-19 patients showed
a decrease in serum inflammatory biomarkers (24). Furthermore,
Colchicine (93–95) has been successfully tested as inhibitor of
NLRP3 inflammasome, improving survival outcomes in COVID-
19 patients since it suppresses caspase-1 activation and subsequent
IL-1b and IL-18 processing (94, 98). In this sense,
Hydroxychloroquine, another NLRP3 inhibitor, has shown a
role affecting the NLRP3 inflammasome activation and assembly
(99–101). In addition, different clinical trials registered to evaluate
the efficacy of pharmacological inhibitors of the NLRP3
inflammasome in treating COVID-19; include Colchicine
(NCT04326790, NCT04322565, NCT04328480, NCT04322682),
Hydroxychloroquine in combination with Azithromycin
(NCT04339816, NCT04336332), Melatonin (NCT04409522),
and Tranilast (ChiCTR2000030002); versus standard care.

In other hand, recent studies have evaluated the use of
Anakinra (102, 103) as a therapeutic strategy focused in
signaling inhibition of IL-1b to treat COVID-19 related cytokine
storm. This drug is a human IL-1b receptor antagonist that
inhibits inflammation response. Moreover, there are different
clinical trials registered to study the efficacy and safety of
Canakinumab (anti-IL-1b monoclonal antibody) in COVID-19-
induce pneumonia (NCT04362813, NCT04348448) and COVID-
19 cardiac injury (NCT04365153). In addition, Tocilizumab (anti-
IL-6 treatment) showed clinical improvement in COVID-19
patients (104–106). There are few drugs with mechanisms of
action targeting NLRP3 such as Necrosulfonamide (107) and
Disulfiram (108), by inhibiting the N-terminal GSDMD pores.
The NLRP3 inhibition may represent an optimal strategy to
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mitigate the impact of comorbidities associated with COVID-19
such as diabetes mellitus (109, 110), hypertension (111), and
obesity (112, 113).
THE CLINICAL IMPACT OF OBESITY IN
COVID-19

Different studies have reported fatal COVID-19 outcomes in
individuals with at least one chronic disease such as hypertension,
diabetes, cardiovascular disease, and obesity (87, 114–116). In
individuals infected with SARS-CoV-2, overweight and obesity
could be conditioning the critical outcome of COVID-19. The
high number of young individuals with COVID-19 that have been
hospitalized might be explained by the high obesity incidence found
among them (117–119). Furthermore, data suggest that overweight
and obesity determined by BMI are associated with the presence of
severe pneumonia or increased incidence of ICU admission of
individuals with COVID-19 in the USA (117, 120, 121), China
(122, 123), Mexico (114, 124), and France (125).

A possible explanation is that tissue expression of ACE2 may
play a key role in the progression of COVID-19 patients with
obesity, since obese individuals have increased AT mass that leads
to an elevated number of ACE2-expressing cells and therefore an
increased risk of SARS-CoV-2 infection (126, 127). Other obesity-
implicated conditions have been associated with a severe course of
COVID-19 such as respiratory symptoms, impaired metabolic
health, cardiac stress, dysfunctional host defense against viral
infection, and multi-organ damage (120, 125).

Interestingly, obesity has been associated with a decrease in
mortality in patients with acute respiratory distress syndrome
(ARDS), and this is referred to as the “obesity paradox”. However,
the high mortality among patients with obesity who manifest SARS-
CoV-2 infection has prompted the notion that SARS-CoV-2 has
disproved the “obesity paradox” in ARDS (128, 129). The paradox
fades if body composition (i.e., fat mass, lean mass, and skeletal
muscle mass), body fat distribution (abdominal obesity carries a
higher risk of developing metabolic disorders than peripheral or
gluteofemoral obesity), AT functionality, and the differences between
subcutaneous and visceral AT are considered (130–135). Moreover,
the metabolically unhealthy obese phenotype seems to be associated
with increased activation of the NLPR3 in macrophages infiltrating
visceral AT and a less favorable inflammatory profile than the
metabolically healthy phenotype (136). In obese individuals, the
innate immune system might be already in a “primed state” due to
chronic low-grade inflammation and this could promote an
hyperinflammatory response (137, 138); under this scenario, we
wonder if trained immunity mediated by NLRP3 in obese conditions
to severe outcomes in COVID-19 patients, or normal weight patients
infected by SARS-CoV-2 are developing trained immunity that
accelerates and trigger short-term development of degenerative
chronic comorbidities such as atherosclerosis, diabetes,
osteoarthritis, gout, autoimmune diseases, and even obesity itself.
This sustained activation state could induce poor clinical outcomes
of COVID-19, amplifying the pro-inflammatory response to SARS-
CoV-2 infection (Figure 2).
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DISCUSSION

Recent evidence suggests that 1) AT hypertrophy and
hyperplasia promote the synthesis of triglycerides, oxidized
phospholipids, IL-1b, TNF-a, and adipokines triggering the
systemic inflammatory state regularly observed in individuals
with obesity (53–55); 2) these molecules are responsible for
increasing the vulnerability to infections in individuals with
obesity because the priming phase of the inflammasome is
already active (61); 3) the recognition of SARS-CoV-2 by
endosomal TLRs 3/7 will trigger multiple signaling and cellular
pathways that will allow inflammasome assembly and
FIGURE 2 | The SARS-CoV-2 knockouts obese individuals. Schematic
representation of the lethal impact generated by SARS-CoV-2 infection in
obese individuals with metabolic and inflammatory stress. The released
adipokines by hypertrophic and hyperplasic adipose tissue promote the
NLRP3 inflammasome activation, leading to systemic inflammation that is
amplified during viral infection.
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consequent maturation of cytosolic pro-cytokines such as IL-1b
and IL-18 as well as the activation of GSDMD (70, 83); 4) the
Gasdermin-pore formation will start cell death by pyroptosis via
the release of pro-inflammatory mediators in COVID-19
patients (22, 83, 86). To summarize the recognition of the
molecular pathways involved in the inflammasome might
explain the vulnerability of obese patients to develop severe
cases of COVID-19 (Figure 2).
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López-Reyes et al. Obesity and SARS-CoV-2 Link
epidemic in China. J Autoimmun (2020) 109:102434. doi: 10.1016/
j.jaut.2020.102434

69. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical
Characteristics of Coronavirus Disease 2019 in China. N Engl J Med
(2020) 382(18):1708–20. doi: 10.1056/NEJMoa2002032

70. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and
immune responses. J Med Virol (2020) 92(4):424–32. doi: 10.1002/jmv.25685

71. Wang K, Chen W, Zhou Y, Lian J, Zhang Z, Du P, et al. SARS-CoV-2
invades host cells via a novel route: CD147-spike protein. bioRxiv [Preprint]
(2020). doi: 10.1101/2020.03.14.988345

72. Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe Acute Respiratory
Syndrome Coronavirus Viroporin 3a Activates the NLRP3 Inflammasome.
Front Microbiol (2019) 10:50. doi: 10.3389/fmicb.2019.00050

73. Shi CS, Nabar NR, Huang NN, Kehrl JH. SARS-Coronavirus Open Reading
Frame-8b triggers intracellular stress pathways and activates NLRP3
inflammasomes. Cell Death Discov (2019) 5:101. doi: 10.1038/s41420-019-
0181-7

74. DeDiego ML, Nieto-Torres JL, Regla-Nava JA, Jimenez-Guardeno JM,
Fernandez-Delgado R, Fett C, et al. Inhibition of NF-kappaB-mediated
inflammation in severe acute respiratory syndrome coronavirus-infected
mice increases survival. J Virol (2014) 88(2):913–24. doi: 10.1128/JVI.02576-13

75. Siu KL, Yuen KS, Castano-Rodriguez C, Ye ZW, Yeung ML, Fung SY, et al.
Severe acute respiratory syndrome coronavirus ORF3a protein activates the
NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of
ASC. FASEB J (2019) 33(8):8865–77. doi: 10.1096/fj.201802418R

76. Kanzawa N, Nishigaki K, Hayashi T, Ishii Y, Furukawa S, Niiro A, et al.
Augmentation of chemokine production by severe acute respiratory syndrome
coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation. FEBS
Lett (2006) 580(30):6807–12. doi: 10.1016/j.febslet.2006.11.046

77. Nieto-Torres JL, Verdia-Baguena C, Jimenez-Guardeno JM, Regla-Nava JA,
Castano-Rodriguez C, Fernandez-Delgado R, et al. Severe acute respiratory
syndrome coronavirus E protein transports calcium ions and activates the NLRP3
inflammasome. Virology (2015) 485:330–9. doi: 10.1016/j.virol.2015.08.010

78. Nieto-Torres JL, DeDiego ML, Verdia-Baguena C, Jimenez-Guardeno JM,
Regla-Nava JA, Fernandez-Delgado R, et al. Severe acute respiratory
syndrome coronavirus envelope protein ion channel activity promotes
virus fitness and pathogenesis. PLoS Pathog (2014) 10(5):e1004077.
doi: 10.1371/journal.ppat.1004077

79. Jimenez-Guardeno JM, Nieto-Torres JL, DeDiego ML, Regla-Nava JA,
Fernandez-Delgado R, Castano-Rodriguez C, et al. The PDZ-binding
motif of severe acute respiratory syndrome coronavirus envelope protein
is a determinant of viral pathogenesis. PLoS Pathog (2014) 10(8):e1004320.
doi: 10.1371/journal.ppat.1004320

80. Chang YS, Ko BH, Ju JC, Chang HH, Huang SH, Lin CW. SARS Unique
Domain (SUD) of Severe Acute Respiratory SyndromeCoronavirus Induces
NLRP3 Inflammasome-Dependent CXCL10-Mediated Pulmonary
Inflammation. Int J Mol Sci (2020) 21(9):3179. doi: 10.3390/ijms21093179

81. He L, Ding Y, Zhang Q, Che X, He Y, Shen H, et al. Expression of elevated
levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in
SARS patients: relation to the acute lung injury and pathogenesis of SARS.
J Pathol (2006) 210(3):288–97. doi: 10.1002/path.2067

82. Yue Y, Nabar NR, Shi CS, Kamenyeva O, Xiao X, Hwang IY, et al. SARS-
Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death.
Cell Death Dis (2018) 9(9):904. doi: 10.1038/s41419-018-0917-y

83. Issa E, Merhi G, Panossian B, Salloum T, Tokajian S. SARS-CoV-2 and ORF3a:
Nonsynonymous Mutations, Functional Domains,and Viral Pathogenesis.
mSystems (2020) 5(3):e00266–20. doi: 10.1128/mSystems.00266-20

84. Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, et al. Genomic
characterization of the 2019 novel human-pathogenic coronavirus isolated
from a patient with atypical pneumonia after visiting Wuhan. Emerg
Microbes Infect (2020) 9(1):221–36. doi: 10.1080/22221751.2020.1719902

85. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and
epidemiology of 2019 novel coronavirus: implications for virus origins and
receptor binding. Lancet (2020) 395(10224):565–74. doi: 10.1016/S0140-
6736(20)30251-8

86. Li S, Jiang L, Li X, Lin F, Wang Y, Li B, et al. Clinical and pathological
investigation of patients with severeCOVID-19. JCI Insight (2020) 5(12):
e138070. doi: 10.1172/jci.insight.138070
Frontiers in Immunology | www.frontiersin.org 8
87. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of
immune response in patients with COVID-19 in Wuhan,China. Clin Infect
Dis (2020) 71(15):762–8. doi: 10.1093/cid/ciaa248

88. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics
of lymphocyte responses and cytokine profiles in the peripheral blood of
SARS-CoV-2 infected patients. EBioMedicine (2020) 55:102763. doi: 10.1016/
j.ebiom.2020.102763

89. Wang F, Nie J, Wang H, Zhao Q, Xiong Y, Deng L, et al. Characteristics of
Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J Infect
Dis (2020) 221(11):1762–9. doi: 10.1093/infdis/jiaa150

90. Ruan Q, Yang K,WangW, Jiang L, Song J. Clinical predictors of mortality due to
COVID-19 based on an analysis of data of 150 patients from Wuhan, China.
Intensive Care Med (2020) 46(5):846–8. doi: 10.1007/s00134-020-05991-x

91. Yang Y, Shen C, Li J, Yuan J, Wei J, Huang F, et al. Plasma IP-10 and MCP-3
levels are highly associated with diseaseseverity and predict the progression
of COVID-19. J Allergy ClinImmunol (2020) 146(1):119–27. doi: 10.1016/
j.jaci.2020.04.027

92. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel
AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet
(2020) 395(10234):1417–8. doi: 10.1016/S0140-6736(20)30937-5

93. Deftereos SG, Giannopoulos G, Vrachatis DA, Siasos GD, Giotaki SG,
Gargalianos P, et al. Effect of Colchicine vs Standard Care on Cardiac and
Inflammatory Biomarkers and Clinical Outcomes in Patients HospitalizedWith
Coronavirus Disease 2019: The GRECCO-19 Randomized Clinical Trial. JAMA
Netw Open (2020) 3(6):e2013136. doi: 10.1001/jamanetworkopen.2020.13136

94. Montealegre-Gomez G, Garavito E, Gomez-Lopez A, Rojas-Villarraga A, Parra-
Medina R. [Colchicine: a potential therapeutic tool against COVID-19. Experience
of 5 patients]. Reumatol Clin (2020). doi: 10.1016/j.reuma.2020.05.001

95. Della-Torre E, Della-Torre F, Kusanovic M, Scotti R, Ramirez GA, Dagna L,
et al. Treating COVID-19 with colchicine in community healthcare setting.
Clin Immunol (2020) 217:108490. doi: 10.1016/j.clim.2020.108490

96. Ito M, Shichita T, Okada M, Komine R, Noguchi Y, Yoshimura A, et al.
Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation
and contributes to ischaemic brain injury. Nat Commun (2015) 6:7360.
doi: 10.1038/ncomms8360

97. Purvis GSD, Collino M, Aranda-Tavio H, Chiazza F, O’Riordan CE, Zeboudj
L, et al. Inhibition of Bruton’s tyrosine kinase regulates macrophageNF-
kappaB and NLRP3 inflammasome activation in metabolic inflammation. Br
JPharmacol (2020) 177(19):4416–32. doi: 10.1111/bph.15182

98. Scarsi M, Piantoni S, Colombo E, Airo P, Richini D, Miclini M, et al.
Association between treatment with colchicine and improved survivalin a
single-centre cohort of adult hospitalised patients with COVID-19
pneumonia and acuterespiratory distress syndrome. Ann Rheum Dis
(2020)79:1286–9. doi: 10.1136/annrheumdis-2020-217712

99. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al.
Hydroxychloroquine and azithromycin as a treatment of COVID-19: results
of an open-label non-randomized clinical trial. Int J Antimicrob Agents
(2020) 56(1):105949. doi: 10.1016/j.ijantimicag.2020.105949

100. Fujita Y, Matsuoka N, Temmoku J, Furuya MY, Asano T, Sato S, et al.
Hydroxychloroquine inhibits IL-1beta production from amyloid-stimulated
human neutrophils. Arthritis Res Ther (2019) 21(1):250. doi: 10.1186/s13075-019-
2040-6

101. Lucchesi A, Silimbani P,Musuraca G, Cerchione C,Martinelli G, Di Carlo P, et al.
Clinical and biological data on the use of hydroxychloroquine against SARS-CoV-
2 could support the role of the NLRP3 inflammasome in the pathogenesis of
respiratory disease. J Med Virol (2020). doi: 10.1002/jmv.26217

102. Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M, Canetti D,
et al. Interleukin-1 blockade with high-dose anakinra in patients with
COVID-19, acute respiratory distress syndrome, and hyperinflammation: a
retrospective cohort study. Lancet Rheumatol (2020) 2(6):e325–e31.
doi: 10.1016/S2665-9913(20)30127-2

103. Day JW, Fox TA, Halsey R, Carpenter B, Kottaridis PD. Interleukin-1
blockade with anakinra in acute leukaemia patientswith severe COVID-19
pneumonia appears safe and may result in clinical improvement. Br J
Haematol. (2020) 190(2):e80–e83. doi: 10.1111/bjh.16873

104. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe
COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A (2020) 117
(20):10970–5. doi: 10.1073/pnas.2005615117
October 2020 | Volume 11 | Article 570251

https://doi.org/10.1016/j.jaut.2020.102434
https://doi.org/10.1016/j.jaut.2020.102434
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1002/jmv.25685
https://doi.org/10.1101/2020.03.14.988345
https://doi.org/10.3389/fmicb.2019.00050
https://doi.org/10.1038/s41420-019-0181-7
https://doi.org/10.1038/s41420-019-0181-7
https://doi.org/10.1128/JVI.02576-13
https://doi.org/10.1096/fj.201802418R
https://doi.org/10.1016/j.febslet.2006.11.046
https://doi.org/10.1016/j.virol.2015.08.010
https://doi.org/10.1371/journal.ppat.1004077
https://doi.org/10.1371/journal.ppat.1004320
https://doi.org/10.3390/ijms21093179
https://doi.org/10.1002/path.2067
https://doi.org/10.1038/s41419-018-0917-y
https://doi.org/10.1128/mSystems.00266-20
https://doi.org/10.1080/22221751.2020.1719902
https://doi.org/10.1016/S0140-6736(20)30251-8
https://doi.org/10.1016/S0140-6736(20)30251-8
https://doi.org/10.1172/jci.insight.138070
https://doi.org/10.1093/cid/ciaa248
https://doi.org/10.1016/j.ebiom.2020.102763
https://doi.org/10.1016/j.ebiom.2020.102763
https://doi.org/10.1093/infdis/jiaa150
https://doi.org/10.1007/s00134-020-05991-x
https://doi.org/10.1016/j.jaci.2020.04.027
https://doi.org/10.1016/j.jaci.2020.04.027
https://doi.org/10.1016/S0140-6736(20)30937-5
https://doi.org/10.1001/jamanetworkopen.2020.13136
https://doi.org/10.1016/j.reuma.2020.05.001
https://doi.org/10.1016/j.clim.2020.108490
https://doi.org/10.1038/ncomms8360
https://doi.org/10.1111/bph.15182
https://doi.org/10.1136/annrheumdis-2020-217712
https://doi.org/10.1016/j.ijantimicag.2020.105949
https://doi.org/10.1186/s13075-019-2040-6
https://doi.org/10.1186/s13075-019-2040-6
https://doi.org/10.1002/jmv.26217
https://doi.org/10.1016/S2665-9913(20)30127-2
https://doi.org/10.1111/bjh.16873
https://doi.org/10.1073/pnas.2005615117
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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