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In brief

A data-driven early warning detection

system is developed for variants of

concern in SARS-CoV-2. The model

builds on Gaussian process regression

and variant co-occurrence, is

computationally efficient, and enables the

authors to identify variants of concern at

times months before their WHO

assignation—hence of high interest for

real-time variant surveillance. It also gives

information about the nature of the

variant and its potential fatality impact.

This modeling method could easily be

applied to other areas of disease and

viruses.
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THE BIGGER PICTURE A critical goal for managing the rapid evolution of the SARS-CoV-2 pandemic is the
ability to anticipate in advance the next viral strain that will compromise human health—the ‘‘host-path-
ogen’’ balance. The drivers of the pandemic are variants of concern (VOCs), virus strains that sequentially
achieve dominance using unique patterns of genetic mutations leading to improved fitness. To discover the
emergent pattern of VOCs, we developed a new AI tool—early warning anomaly detection (EWAD). EWAD
provides a heads-up weeks to months in advance of what the next VOC may look like, helping us to antic-
ipate response measures that tip the host-pathogen balance to favor the host. The pattern recognition al-
gorithm enabling EWAD has important implications beyond the COVID-19 pandemic. It provides us with a
‘‘standard model’’ to understand the emergence of new pandemics as well as to understand mechanisti-
cally the genetic variation impacting human health ranging from cancer to neurodegeneration.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
We have developed a machine learning (ML) approach using Gaussian process (GP)-based spatial covari-
ance (SCV) to track the impact of spatial-temporal mutational events driving host-pathogen balance in
biology.We show how SCV can be applied to understanding the response of evolving covariant relationships
linking the variant pattern of virus spread to pathology for the entire SARS-CoV-2 genomeon a daily basis.We
show that GP-based SCV relationships in conjunctionwith genome-wide co-occurrence analysis provides an
early warning anomaly detection (EWAD) system for the emergence of variants of concern (VOCs). EWAD can
anticipate changes in the pattern of performance of spread and pathology weeks in advance, identifying sig-
natures destined to become VOCs. GP-based analyses of variation across entire viral genomes can be used
tomonitormicro andmacro features responsible for host-pathogen balance. The versatility of GP-based SCV
defines starting point for understanding nature’s evolutionary path to complexity through natural selection.
INTRODUCTION

The coronavirus disease 2019 (COVID-19) caused by SARS-

CoV-2 rapidly expanded to a global pandemic that has impacted

over 600 million people and led to the death of a projected 6
This is an open access article under the CC BY-N
million individuals.1 The pathology rate was dominated (>75%)

by the over �60 years age group.2–14 Given that Alpha, Delta,

and Omicron variants of concern (VOCs) generated worldwide

social and economic disruption,15 understanding the evolution

of the whole genome architecture (WGA) of SARS-CoV-2 in
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response to its global genetic variation and the host biological

responses is critical for understanding the fitness balance in

host-pathogen relationships that lead to fatality in the aging

population.16–21

Considerable evolution of the SARS-CoV-2 genome (�30,000

base pairs [bp]) has occurred since its initial emergence, leading

to multiple VOCs.22,23 VOCs are assigned lineage importance

based on allele frequency (i.e., a variant found in >75% of strains

analyzed) reflecting the dominant spread of a lineage in the

worldwide population and therefore potential for impact on path-

ophysiology.22 VOC assignments do not necessarily reflect all of

the mutational features responsible for real-world pathology in

the human population, a concern we now refer to and define

hereafter as ‘‘variant dark matter,’’ where undesignated variants

contribute significantly to the evolution of the many different viral

lineages that are traced by hierarchical mapping.22,24,25 There is

a need for a systematic approach toward assessing the entire

variational landscape in the context of real-world infection and

fatality information, to better understand SARS-CoV-2 and its

evolutionary race for host-pathogen dominance.

Gaussian process (GP) is a universal non-parametric regres-

sion machine learning (ML) approach used to interpolate a vari-

able over a range when given a sparse collection of known sam-

ple inputs. The output gives a quantitative value and an

associated uncertainty for every unknown point across the range

sampled for input. GP regression-based interpolation is a tool

used widely in a variety of disciplines,26–28 including geostatis-

tics,29,30 astronomy,31 and finite element method mathematical

modeling. GP-based covariance relationships provide a compu-

tational framework where ‘‘distance’’ separation between points

in space can be parameterized by two or more other variables to

achieve an understanding of complex environments bounded by

the points in space and time.

To address the role of worldwide genetic variation in human in-

herited genetic disease, we have developed a new approach us-

ing GP,29 referred to as spatial covariance (SCV).32,33 SCV

makes use of mutations in the genome leading to changes in

amino acid residues responsible for the protein fold. This helps

us understand sequence-to-function-to-structure SCV relation-

ships driving health and disease.32–37 SCV relationships provide

a universal approach to capture probabilistic phenotype out-

comes—with assigned uncertainty—that contribute to altered

protein function32,33,37,38 and response to therapeutics34–36

across the entire protein sequence.

In the evolution of RNA viruses, increased variant frequency in

the population can arise from genetic drift due to random events,

as well as from positive selection reflecting Darwinian principles

of fitness.39 Connecting these mutations to viral life cycle com-

ponents is a difficult task due to a lack of system-based ap-

proaches that link mutations to functional outcomes, and to di-

versity in the population.40 For example, linking large

databases that report strictly on the hierarchical mapping of

SARS-CoV-2 genomes and their mutations22,24,25 to those that

report experimental and clinical outcomes in the population are

in their infancy.15,41–44

Using the rapidly evolving collection of mutant alleles contrib-

uting to the WGA of SARS-CoV-2 lineages, we apply GP to

generate unprecedented ‘‘allele phenotype landscapes.’’ Allele

phenotype landscapes describe the role of all allele positions
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in the SARS-CoV-2 genome across the pandemic from the

first Wuhan strain to the recent Omicron strains (a total of

5,600,000 sequences over 724 days). They define SCV relation-

ships that link spread to pathology and fatality. These results are

evaluated in the context of analysis of co-occurring mutations45

(‘‘co-occurrence’’) across the same time frame to extract in-

sights into the evolution of the SARS-CoV-2 WGA. We find that

each VOC evolves different GP-based ‘‘search’’ strategies over

time. Importantly, a joint analysis of co-occurrences and resid-

uals extracted from the GP-based SCV maps that report on

‘‘actual’’ versus ‘‘predicted’’ changes provides an early warning

anomaly detection (EWAD) system for the emergence of VOCs.

EWAD provides an unprecedented view of features spanning

the entire WGA, from initiating variant dark matter to current

Omicron strains, features that drive host-pathogen system dy-

namics—referred to as the ‘‘Red Queen’’ effect.46 EWAD en-

ables a fresh view of the host-pathogen dynamics responsible

for emergent VOCs in the context of variant dark matter that is

hidden from consideration in conventional hierarchical mapping.

It provides a performance map to assess progression from

pandemic to endemic states by the changing dynamics of

spread-fatality covariance.

We posit that knowledge of genome-based SCV relation-

ships32–34,37,38 linking SARS-CoV-2 genotypic diversity to host

phenotypic diversity provides an unanticipated platform to

address the ‘‘Red Queen’’ effect46 responsible for natural selec-

tion leading to spread and fatality in the aging popula-

tion.17,19–21,47 GP-based SCV provides us with a new view of

the pandemic as a collective global phenomenon based on

evolutionary conserved covariant relationships that generate

biology and drive host-pathogen balance.32–38,48

RESULTS

Standard analysis shows no correlation between
pathology and genomic position
Despite the abundance of data from many sources, relating ge-

notype to phenotype faces many challenges, since data are

overall fragmented, heterogeneous, and miss rigorous connec-

tions that incorporate the potential of disease contribution

across the entire genome. To address this problem, we first

built data processing pipelines that feed directly from both

clinical outcomes/phenotypes49 and viral mutations recorded

in sequence files deposited worldwide (Global Initiative on

Sharing All Influenza Data [GISAID]47 aggregated at Chinese Na-

tional Center for Bioinformation 2019 Novel Coronavirus

Resource [CNCB]40). We integrated temporal geospatial data

with mutation-specific data between March 2020 and March

2022 capturing the spread of the virus up to the Omicron VOC

on a daily basis (see methods).

To understand spread, pathology, and disease management

throughout the SARS-CoV-2 virus genome, we used this world-

wide dataset of mutations, assessed by allele frequency, along

with two composite variables—allele frequency-weighted infec-

tivity rate (IR ðVÞ) and allele frequency-weighted pathology fatal-

ity rate (FR ðVÞ) (abbreviated as IR and FRÞ (see methods). We

use this algorithm to understand fitness of the virus in the popu-

lation, reflecting host-pathogen relationships and thereby what

we posit are the conserved evolutionary rules of viral WGA
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Figure 1. Illustration of the GP regression approach

(A) Data ingestion and pre-processing. Genotypic data from SARS-CoV-2 isolates and phenotypic data (cases and deaths) are gathered daily fromNGDC and JH

resource, respectively. For each reported SARS-CoV-2 mutation, allele frequency-weighted IR and FR are computed.

(B) SARS-CoV-2 mutations (alleles) are positioned by their genomic positions (x axis) and IR (y axis) and colored by FR (z axis). The pairwise spatial relationships

(indicated by black lines) are analyzed by GP regression. Shown is a simplified plot showing only 50 mutations for clarity.

(legend continued on next page)

ll
OPEN ACCESSArticle

Patterns 4, 100800, August 11, 2023 3



ll
OPEN ACCESS Article
worldwide. This is in contrast to the moremutation-focused hier-

archical clustering approaches that supply important information

on regional distributions of spread in terms of explicit case

counts.22

Strikingly, standard correlation analysis between the above

variables and genomic position shows that there is no detectable

correlation between IR/FR and genomic position (Figures S1A

and S1B), and the two variables themselves are poorly corre-

lated (Figures S1C and S1D, Pearson r = 0.1; log-transformed,

Pearson r = 0.4). Therefore, a new systems-based approach is

needed to integrate these features and provide a meaningful

description of WGA and its contribution to the evolving balance

in pathogen and host fitness. This is important to understand dis-

ease progression across the worldwide population.

SCV analysis linking SARS-CoV-2 mutations with real-
world infection and fatality
To understand the impact of genotype to phenotype relation-

ships from a WGA perspective, we took advantage of our previ-

ous work in inherited rare disease.32–37 Variation distributed in

the worldwide population provides a platform to dissect pathol-

ogy and therapeutic management through spatial covariance

(SCV).32–37 SCV utilizes the sample population to provide a

unique lens to focus on the functional impact of a variant in the

individual using GP regression ML. GP-based SCV utilizes the

sparse distribution of variation in the genome of the worldwide

population as input to assess as output the SCV of relationships

found for each protein that ties genotype to phenotype for every

residue in the polypeptide sequence. SCV relationships in in-

herited disease define the strength of covarying functional fea-

tures encoded by its evolving allele composition through

weighted proximity—thereby relating sequence to functional

features. SCV relationships allow us to deduce both residue-

by-residue and complex residue-residue multi-dimensional in-

teractions that can be used to describe protein function-struc-

ture relationships and their contribution to environmental fitness

at atomic resolution (see methods).32–34,38

To address the impact of WGA of SARS-CoV-2 on host-path-

ogen balance driving the spatial-temporal dynamics of spread

and pathology, we applied GP to generate allele-based pheno-

type landscapes that describe on a nucleotide-by-nucleotide

basis the SCV relationships linking viral spread to pathology

across the entire �30,000-bp SARS-CoV-2 genome (Figure 1).

Figures 1A–1C shows the process for generating the SCV rela-

tionships. These SCV relationships are defined by three axes

that include (1) allele genome position (x axis)), (2) allele fre-

quency-weighted infectivity rate (IRÞ (spread) (y axis), and (3)

allele frequency-weighted fatality pathology rate (FR) (z axis,

color) (Figure 1A). These three features, when generated in the
(C) As a first step in GP regression modeling, a variogram is computed (an illustrat

distance of paired data points in (B) (x axis) and the spatial variance of FR relativ

(D and E) GP regression maps of genomic position (x axis), and log-transformed

example are for 9/15/20). FR is predicted across the whole landscape according

sample points, weighted by a function of distance given by the variogram.

(D) Black dots represent variant input values used to compute GP regression, with

blue lines are boundaries between SARS-CoV-2 proteins, annotated on the top

(E) Input variants are shaded light gray for clarity of VOCs. Contour lines are drawn

(C). Labels on the map are signature mutations for Alpha (black), Beta (blue), Gam

VOC mutations in more detail, with all input mutations and contours that are use
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context of time, allow us to quantitatively image the spatial-tem-

poral features contributing to spread and pathology through the

different phases of the pandemic as a covariant collective of the

designated VOCs in the universal context of the global mutation

load (see methods for full details), visualized in daily SCV land-

scapes (Figures 1D and 1E, with zoomed inset).

The expanding time frame of SCV relationships
Focusing on the first stages of the pandemic up through to the

time of the Delta VOC, we show six tri-monthly snapshots from

the time lapses, each taken mid-month and annotated for the

set of signatureAlphaVOC (Figure 2A, panels 1–6, analysis of dis-

tance and variance in Figure 2B) and the Delta VOC (Figure 3A,

panels 1–6, analysis of distance and variance in Figure 3B).

See supplemental information for Beta and Gamma VOCs

(Figures S2 and S3) and supplemental videos 1–5 for the full

time lapses for each VOC. Beginning with 5/15/20 for the Alpha

VOC (Figure 2A, panel 1), only a few mutations are reported

including a mutation in nsp3 (T1001I), four in Spike (21991del,

21765del, P681H, T716I), and twomutations in the nucleocapsid

(NC) gene (R52I, S235F), both in areas of relatively high FR (Fig-

ure 2A, orange to red). The next time point 3 months later (Fig-

ure 2A, panel 2) reveals the emergence of an important Spikemu-

tation (501N- > Y) at the bottom of the map with very low IR/FR,

while the rest of the definingmutations for Alpha VOC are already

migrating to higher FR areas. By 11/15/20 (Figure 2A, panel 3), all

assignedmutations forAlphaVOCarepresent, andall in relatively

highFR regions reflecting their initial impact onpathologyasapo-

tential opportunist in a naive host environment, particularly the

aging population. From this time point onward, the distribution

ofmutations on themap increasingly ‘‘compacts’’ where the rela-

tive GP defined SCV relationships between mutations get

smaller, both at the 50 and 30 ends of the SARS-CoV-2 genome

(Figure 2A, panels 7 and 8). These VOC-containing clusters, as

a covariant collective, migrate toward the top of the allele pheno-

type landscape with higher IR suggestive of cooperation in WGA

features impacting both spread and fatality (Figure 2A, panels

4–6). However, their collective migration occurs in the context

of the increasing number of variant dark matter variants that re-

tune the GP-based allele phenotype landscape features over

time (Figure 2A, black dots). These hidden supporting residues

found in the global population contribute to the observed lineage

diversification from our GP-based SCV global perspective.

The primary factor responsible for the observed SCV compac-

tion is the increase in the number of Alpha VOC detections in

response to population testing leading to higher allele frequency

weights in IR; however, we still detect significant changes in the

SCV relationships of all VOCmutations in response to the chang-

ing local environments revealed by predicted FR (Figure 2A,
ive example is depicted) showing spatial relationships between the separation

e to IR (y axis).

IR (y axis) and FR (color scale, z axis) for SARS-CoV-2 genome (data in this

to the variogram computed in (C), where output is an average of surrounding

dot sizes proportional to the allele frequency of the mutations. Vertical dotted

axis.

at 10% and 25%percentiles of global variance estimated for model predictions

ma (green), and Delta (brown). The zoomed inset shows the region with most

d to train the GP regression model.
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panels 1–6, z axis). Intriguingly, by 2-15-21 (Figure 2A, panel 4),

we already notice that themutations in the 30 region of the SARS-
CoV-2 genome have migrated to a low FR region and this be-

comes more evident in successive snapshots, where all Alpha

mutations lay in a high IR/low FR region at the top of the allele

phenotype landscape. This trend likely reflects the beginning

of the impact of host countermeasures, including innate and

adaptive immune responses, vaccine availability, and physical

interventional measures such as masks and social distancing,

clearly illustrating the impact on fatality but less so on the global

spread of variants seen in the continued increase of IR at this

time frame (Figure 2A, panels 4–6).

For Delta VOC, the early time point (Figure 3A, panel 1 [(5/15/

20]) has two NC mutations already in high FR (203R- > M,

377D- > Y), similar to what was observed with Alpha (Figure 2A,

panel 1). These mutations are in two of the three disordered do-

mains of NC (LINK and CTD) where most protein-protein and pro-

tein-RNA interaction sites occur.50 By 11/15/20 (Figure 3A, panel

3), almost all signature mutations for Delta VOC are in relatively

high FR regions and this continues through the next time point

(Figure 2B, panel 4: 2/15/21) where the mutations are now more

spread over the IR axis thanwas observed in Alpha (compare Fig-

ure 2A, panel 4, with Figure 3A, panel 4). There are almost two or-

ders of magnitude of difference in IR between 478T- > K (Spike)

and 377D- > Y (NC) pointing to the fact that there is a wide differ-

ence in spread of signature mutations in Delta VOC reflecting

different evolutionary trajectories promoting success. These re-

sults, along with the emergent variant dark matter, suggest that

the Delta VOC is still evolving in the context of the worldwide pop-

ulation as a ‘‘predator,’’ whereas Alpha variants have comparable

values at these time points, suggesting that a consolidation of

WGA function has been achieved and curiously, appears to be

the endpoint in its race for fitness through SCV relationships—re-

flecting the limitations of its GP evolved WGA.

In the last two snapshots (Figure 3A, panels 5 [(5/15/21] and 6

[(8/15/21]), the Delta VOCs are now located in a high IR, low FR

cluster, as seen for Alpha but at an even lower FR/IR. Counts for

Delta VOC, as of May 2021, were at least 100 times lower than

Alpha VOC (Figure S4), reflecting the lower cumulative spread

of Delta compared with Alpha VOC at this point in time, although

Delta’s subsequent surging prevalence in the pandemic dwarfed

the real-time values of the Alpha VOC, suggestive of SCV-based

optimization for spread. For Beta andGammaVOCs, we observe

more of a mixed behavior over time compared with the trajec-

tories of Alpha VOC and Delta VOC with only few mutations

(e.g., 501N- > Y) moving into high IR, low FR clusters at later

time points (Figures S2 and S3).

Combined, these results capture the striking VOC divergence

in allele phenotype landscape features in the context of the
Figure 2. Time lapse of viral genome allele phenotype landscapes

(A) Alpha VOC showing six tri-monthly time points betweenMay 2020 and August

to a (0–1) scaled from 50 to 30 of the RNA sequence encompassing �30,000 bp

boundaries between SARS-CoV-2 proteins, annotated on the top of each figure. In

of the mutations. Contour lines are drawn at 10% and 25% percentile of global v

(B and C) (Left) Average distance between Alpha VOC signature mutations defi

Figure 1B for each of the six time points shown in (A). The gray ribbon marks the 9

Alpha signature mutations defined by x axis ‘Genome position’ and y axis coordin

The gray ribbon marks the 95% confidence interval.
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global pandemic. They suggest that these VOCs are progres-

sively channeled into unique collectives of SCV relationships in

the context of an increasingly more combative host response

environment, limiting their capacity to achieve further promi-

nence on a worldwide scale.

Temporal co-occurrence patterns give a way of tracking
VOC emergence
To provide an alternative approach to the patterns of emergence

captured through GP analyses and to augment and validate our

GP approach, we generated a comprehensive view of mutation

co-occurrence across the entire arc of the SARS-CoV-2

pandemic. For each virus isolate, sequence alignment against

the reference SARS-CoV-2 genome reports the mutations called

on that particular sequence. Such alignments can be mined sys-

tematically for co-occurrence of mutations over time, where co-

occurrence is simply the count of mutations occurring together

on the same viral sequence (see methods). Co-occurrence ana-

lyses let us track evolvability, reflecting increasing mutational

burden in genome variation events, events that likely contribute

to lineage focus on spread and pathology.

To highlight co-occurrences driving emergence of VOCs

Alpha, Beta, Gamma, and Delta, we first tracked cumulative

co-occurrences among the defining mutations for every day

starting 9/15/21 up to 8/22/21 and computed a daily average

co-occurrence by averaging all cumulative co-occurrence

values available daily for each of the VOCs. Average co-occur-

rence over time for the four VOCs is shown (Figure 4A, left panel;

zoom of Beta/Gamma/Delta VOC timeline plots shown in the

right panel). Differences between VOCs are further evident in

the patterning of their representative co-occurrence matrices

(Figure 4B). The first VOC to emerge, Alpha, has a uniform distri-

bution of co-occurrences across the signature mutations of this

viral strain, suggestive of an opportunistic break in its evolving

host-pathogen encounters. This is not the case for later emer-

gent VOCs. See supplementary results for more details.

To track the actual number of co-occurrences between signa-

ture mutations of a VOC versus all possible co-occurrences at a

specific time point, we defined VOC co-occurrence density as

the ratio between the number of non-zero co-occurrences in

the VOC co-occurrence matrix (Figure 5, lower panels in each

VOC) over the total number of possible co-occurrences. Here,

an empty VOC co-occurrence matrix has a density of 0, and

one with no zeroes has a density of 1. As an example, we

computed co-occurrence density for each of the four VOCs be-

tween September 2020 and August 2021 (Figure 5, lower panel

for each VOC). Analysis of co-occurrence density curves for

each VOC over time reveals that for the two early-onset VOCs

(Alpha and Beta), the VOC co-occurrence density has an ‘‘all
2021. IR (y axis) and FR (z axis) are log-transformed, genomic position is scaled

with 50-end located at the origin of the x axis. Vertical dotted blue lines are

put variants are in shaded color, with dot sizes proportional to allele frequency

ariance estimated for model predictions (Figure 1C).

ned by x axis (genomic position) and y axis coordinates (IR) as described in

5% confidence interval. (Right) Average spatial variance of FR (z axis) between

ates (IR) as described in Figure 1B for each of the six time points shown in (C).
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or none’’ behavior—going from near zero to one in a single day

(Figure 5, lower panels for Alpha and Beta VOC). This event is

many weeks ahead of the time where VOC average co-occur-

rences enter a fast growth phase (Figure 5, upper panels Alpha

and Beta, green curves).

In contrast, for the later VOCs (Gamma and Delta), co-occur-

rence densities exhibit an exploratory behavior where in the early

phase few co-occurrence options are explored for a longer time

interval before the jump to the full spectrumof co-occurrences, re-

flecting its predatory behavior. Here, the time at which the jump is

observed is nearly proximal to the beginning of the sustained

growth phase where the increasing slope of the co-occurrence

average curve starts (Figure 4A, e.g., green curve, Gamma). This

contrasts with the ‘‘all or none’’ VOC co-occurrence densities

for Alpha and Beta (Figure 5, lower Gamma and Delta panels).

An intermediate level of acquisition of co-occurrence is particu-

larly evident within the Delta VOC capturing co-occurrence links

for months up to 0.4–0.5 (40%–50%) of co-occurrence discov-

ered prior to the jump to the full co-occurrence set. To track the

spread and pathology of each VOC in the context of evolving

host responses, we performed a joint analysis of all VOCs by

tracking their signature mutations through their genomic co-oc-

currences to provide detailed insight into the convergence of

co-occurrence for each possible co-occurrence seen in the

pandemic (Figure S5). These results suggest that the virus WGA

is evolving improved search strategies over time across a seem-

ingly intractable number of mutation-sensitive co-occurrences

influenced by the supporting variant dark matter. Thus, evolving

VOC co-occurrence relationships highlight potential pathogen

fitness strategies that likely contribute to evolutionary success

or failure. These potential strategies aremissing from existing per-

spectives of viral spread and pathology.

GP residuals provide a clear early warning of VOC
emergence
Because the co-occurrence analysis alone is not linked to the

real-world infection and fatality features, it is not enough to

informwhether a certain combination ofmutations will eventually

result in a VOC that challenges the evolved/evolving host re-

sponses that, as a covariant collective, ultimately dictates virus

spread.

To track the spread and pathology of each VOC in the context

of evolving host responses, we performed a joint analysis of all

VOCs by tracking their signature mutations through their

genomic co-occurrences (Figure S5) over time in conjunction

with GP-based IR and FR SCV relationships (Figures 2 and 3).

Specifically, we examined whether allele phenotype landscapes

could be used as an EWAD51 system for the emergence of VOCs

reflected in GP principled relationships dictating global spread
Figure 3. Time lapse of viral genome allele phenotype landscapes

(A) Delta VOC showing six tri-monthly time points betweenMay 2020 and August 2

to a (0–1) scaled from 50 to 30 of the RNA sequence encompassing �30,000 bp

boundaries between SARS-CoV-2 proteins, annotated on the top of each figure. In

of the mutations. Contour lines are drawn at 10% and 25% percentile of global v

(B) (Left) Average distance between Delta VOC signature mutations defined by x a

each of the six time points shown in (A). The gray ribbonmarks the 95%confidence

mutations defined by x axis ‘Genome position’ and y axis coordinates (IR) as des

marks the 95% confidence interval.

8 Patterns 4, 100800, August 11, 2023
and pathology. An EWAD system for spread and pathology is

looking for a signal that ideally changes significantly during the

early phase of the transition, reaches a maximum, and then

quenches when the phenomenon enters a steady state, reflect-

ing accomplishment of the optimized goal across the population,

often leading to its diminution in the host population due to the

Red Queen effect.52

To assess the potential of an emergent EWAD signal as the

SARS-CoV-2 evolves in response to host countermeasures,

we focused on ‘‘FR residuals.’’ In GP modeling at a given time

point in the pandemic (Figure 6A, x axis), FR residuals are defined

as the difference between the observed and predicted FR values

(Figure 6A, y axis, observed FR minus predicted FR). The

observed FR for amutation is the explicit assigned FR of thatmu-

tation used for the input data in GP that does not incorporate the

impact of other mutations, while the predicted FR for the muta-

tion generated by GP is a proximity weighted average of the

observed FR value in the context of its surrounding mutations

in the phenotype landscape that includes the hidden relation-

ships driven by the variant dark matter. If the observed FR is

lower than the predicted FR for a mutation (i.e., a negative GP re-

sidual value [Figure 6A, left panel]), it indicates that the FR for the

mutation is lower than the FR of surrounding mutations in the

phenotype landscape, therefore underperforming relative to

the surrounding VOC/variant dark matter in terms of FR. In

contrast, if the observed FR is higher than the predicted FR for

a mutation (i.e., a positive GP residual value [Figure 6A, left

panel]), it indicates that this mutation has a higher FR than its sur-

rounding mutations—therefore overperforming in its pathology

as defined by FR relative to the surrounding VOC/variant dark

matter. Overperformance is consistent with the interpretation

that is emerging as a prominent player in disease pathology as

measured by FR. These relationships we take as our definitions

of under- or overperformance, reflecting how a variant’s actual

pathology (FR) compares with its GP-based pathology as pre-

dicted by the surrounding variant dark matter. In addition, the

mean FR residual’s location above/below the baseline can tell

us something about the nature of the impending cluster of vari-

ants reflecting their potential impact on pandemic progression.

Therefore, the GP-based FR residual value represents a real-

time monitor of the collective behavior of the global virus system

versus the actual sparse measurements defined by a VOCmuta-

tion designated at the 75% frequency level used by the epidemi-

ological community to track strain importance.

EWAD residuals reveal striking real-time signals of
pathology, codified in pathology alert levels
By using as input the defining mutations of the Alpha, Beta,

Gamma, and Delta VOCs as our sparse collection of measured
021. IR (y axis) and FR (z axis) are log-transformed, genomic position is scaled

with 50-end located at the origin of the x axis. Vertical dotted blue lines are

put variants are in shaded color, with dot sizes proportional to allele frequency

ariance estimated for model predictions (Figure 1C).

xis (genomic position) and y axis coordinates (IR) as described in Figure 1B for

interval. (Right) Average spatial variance of FR (z axis) between Delta signature

cribed in Figure 1B for each of the six time points shown in (A). The gray ribbon
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B

(legend on next page)
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values for GP-based analyses, we reasoned that the calculated

mean of FR residuals, where the mean is the averaged value of

the FR residuals for a given time frame (see methods), could

be used as output across the entire pandemic time line to detect

potential features in advance reflecting the emergence of VOC

from the variant dark matter. Because mean FR residuals high-

light coordinated changes in real time in the observed FR versus

the predicted FR based on the SCV relationships within the

evolving variant darkmatter, they provide an EWAD for emerging

VOCs.

We first examined the mean FR residuals for all the mutations

defining Alpha, Beta, Gamma, and Delta VOCs at weekly time

points, and plotted the mean FR residual value for each VOC

as a measure of their changing GP-based relationships to define

globally the emergent evolution of SARS-CoV-2 lineages. Initial

efforts focused on the average co-occurrence cumulative counts

over the time interval between September 2020 and May 2021.

We selected six representative time points covering the flat,

early, and sustained growth phases for each of the VOCs Alpha,

Beta, Gamma, and Delta VOCs for co-occurrence (Figures 6B,

6D, 6F, and 6H) and their mean FR residuals (Figures 6C, 6E,

6G, and 6I, blue line) for analyses. We first assign a zero baseline

that is set to 0 ± 0.05 by empirical randomization where any over-

lap of the mean FR residuals with the baseline reflects the high

probability that the calculated mean relationships are unrelated

to the emergent VOC under consideration (Figures 6C, 6E, 6G,

and 6I, red dashed line).

To assess potential EWAD signals, we defined two pathology

alert levels (PAL): PAL1 (Figures 6C, 6D, 6G, and 6I; light red

shade) and PAL2 (Figures 6C, 6D, 6G, and 6I; dark red shade),

which considers the degree of change over time, the magnitude

of change, and the persistence over time—detailed as follows.

PAL1 is defined either as (1) two consecutive points (Figure 6B,

x axis) whose combined change inmean FR residuals (Figure 6B,

y axis) is more than 0.05, and/or (2) both mean residual and its

95% confidence interval above or below the zero baseline.

PAL2 is defined as three consecutive points whose combined

change in mean FR residuals is above 0.1. Two empirical alert

levels were chosen as they seemed a reasonable trade-off be-

tween an overly simplistic single-alert model, and the additional

complexity of multiple alert levels (where PAL1 is an invite to

watch closely, whereas PAL2 incites to possible action).51 These

alert levels were chosen to show significant deviations from the

basal state that could have more rigorous definitions, as our un-

derstanding of their root cause evolves in future work. We next

examined EWAD development over time for Alpha and Omicron

as examples at the extreme ends of the pandemic, with Beta,

Gamma, and Delta explained in detail in the supplementary

results.

To test the statistical significance of the EWADPAL system, 15

mutations similar to the size of signature mutations for Alpha and

Gamma VOC were randomly chosen and monitored over seven

tri-weekly time points between 11/17/20 and 5/18/21. Whereas
Figure 4. Co-occurrence over time for VOCs

(A) Timeline plots showing average cumulative co-occurrence (co-occurrence) ov

VOCs (Beta, Gamma, Delta).

(B) Representative co-occurrencematrices showing co-occurrence counts betwe

Beta VOC, blue; Gamma VOC, green; Delta VOC, brown.
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the mean FR residuals corresponding to VOC signature muta-

tions show a coordinated, EWAD signal of potential use for

variant surveillance (see the bar plots in Figures S6 and S7), re-

siduals for these randomly chosen mutations show a rather

random behavior over time, not correlatedwith specific temporal

events. The full analysis was repeated with thousands of random

sets of mutations whose set size is the same as the VOC signa-

turemutations considered here (10–15mutations) to determine if

the EWAD results were statistically significant and unique to

VOC, or if they were just a map-wide property that could be

observed for any random set of mutations. Remarkably, a great

majority of randomly selected mutations did not present any co-

ordinated behavior at the level of FR residuals across the

selected time window (empirical p values <10�3 for all VOCs),

providing evidence that the observed EWAD patterns are specif-

ically associated with distinctive VOC mutations. The mutation

sets for Alpha, Beta, Gamma, and Delta VOCs were compared

with five randomly selected sets of mutations from the data in or-

der to validate the significance of the differences between the

VOC mutations and randomly chosen mutation sets. These re-

sults showed conclusive differences, as described in full in Fig-

ure S8. These results have important implications for the future

prediction of unknown VOCs prior to their emergence by

focusing on emerging variants in the variant dark matter

comprising high spread with either low or high pathology.

An EWAD example: Predicting the Alpha VOC
Alpha VOC was first detected in November 2020 from a sample

collected in the United Kingdom in September 202053 and

declared a VOC on 12/15/20 (Figures 6B and 6C; star). Although

our co-occurrence data track down precisely this first Alpha

isolate as seen in the co-occurrence density plot for Alpha (Fig-

ure 5, transition to full co-occurrence density on 9/16/20 due to a

single isolate), co-occurrence data alone at that time point does

not reveal that this event would turn into a widespread VOC, as

we have few detections and almost no growth indicated by the

flat average co-occurrence (Figure 6B; time point #1, 10/15/

20). Strikingly, we note on the EWAD plot (Figure 6C) that this

point is already marked as PAL1, being significantly below the

baseline but with a broad confidence interval, which was acti-

vated just 2 weeks after the discovery of the first isolate. Being

below the baseline suggests that the mean FR residual for the

Alpha VOC is below what we might otherwise expect, consistent

with an EWAD signal of PAL1. By underperforming relative to

surrounding variant dark matter, this suggests the emergent

cluster is hidden from view, having a lower fatality rate than ex-

pected, but by triggering PAL1 it reveals itself as a potential

VOC (Figure 6C).

On 11/14/20 (Figure 6B, time point #2), we see a change in the

growth regime, with a rapidly increasing slope transitioning from

flat to consistent growth while the number of worldwide

detections remains low (Figure 6B, �200). The EWAD plot (Fig-

ure 6C) reveals a remarkable change with a steep decrease in
er time for the four VOCs on the same scale (left), and zoom view on the later

en the signaturemutations of each VOC. For both (A) and (B): Alpha VOC, black;



Figure 5. For each VOC (Alpha, Beta, Gamma, Delta), the upper panel reports min co-occurrence, max co-occurrence, average co-occur-
rence, and range (max co-occurrence minus min co-occurrence) between 9/15 and 8/22

The lower panel shows co-occurrence density, which is the number of non-zero co-occurrences over all possible co-occurrences, standardized for the range of

0–1, for the same time interval. To characterize more precisely co-occurrence patterns emerging for the four VOCs, we tracked max co-occurrence, min co-

occurrence, and co-occurrence range over time instead of solely the average co-occurrence described above (upper panel of each). For Beta and Gamma, we

observe a ‘‘high range’’ pattern where the difference between max and min co-occurrence (range co-occurrence: red line) increases over time and is above the

curve for average co-occurrence (green line). Conversely, Alpha and Delta VOCs show a low range (red line) that is consistently below the average co-occurrence

curve (green line) after co-occurrences begin accumulating at a steady pace. Beta and Gamma lineages are thought to boost the immune escape capabilities of

the virus, while Alpha and Delta variants are more efficient in enhancing infectivity and spread. Thus, based on the detailed co-occurrence profiles, we can

discriminate between different functional classes of VOCs.
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mean FR residuals exceeding 0.1 and a more compact confi-

dence interval resulting in PAL2 activation beginning on 10/16/

20. Looking at the individual FR residuals in the allele phenotype

landscape (Figure S6), we see that the change is driven by mu-

tations on the map that are compacting in both the 50 and 30 re-
gions where the average distances of Alpha VOC mutations

decrease between 8/15/20 and 2/15/21 (Figure 3A). The mean

FR residuals consistently fall to more negative values, suggest-

ing that the Alpha VOC is seeking to optimize covariance rela-

tionships between these underperforming driver mutations rela-

tive to the supporting passenger variant dark matter. Hence,
even with a very low number of detections, the mean FR resid-

uals appear to respond quite sensitively to changes in the entire

growth regime in a coordinated fashion across the worldwide

population. The change would appear negligible and overlooked

if examined at the level of hierarchical clustering (mutation

counts) or co-occurrences alone, whereas the stark, coordi-

nated change seen within mean FR residuals based on GP

modeling induces a solid early warning for this set of variants.

The 11/20/21 time point (Figure 6B, time point #3) captures the

increasing co-occurrence growth rate with �800 more detec-

tions within 8 days, further showing a coordinated decrease in
Patterns 4, 100800, August 11, 2023 11
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the mean FR residuals (Figure 6C) and accompanied by

compaction of mutations on the allele phenotype landscape in

the 50 cluster (Figure 3A). The EWAD signal (Figure 6C) keeps

increasing steadily and stays in PAL2, confirming the trend of a

strong early warning signal revealed at the previous time point.

Again, at this early stage of spread for Alpha VOC, counts alone

could be easily overlooked; in contrast, monitoring of mean FR

residuals provides a clear EWAD signal many weeks ahead of

the official (and after-the-fact) designation of these mutations

as a VOC.

After an additional 1.5 months (Figure 6B, time point #4, 1/12/

21), when the co-occurrence is entering a steady, quasi-expo-

nential growth phase (with over 50,000 viral genomes sequenced

bearing the Alpha co-occurrence signature), the average dis-

tance betweenmutations in the 50 cluster is smaller and at higher

values of IR in the map corresponding to lower FR (Figure S6;

panel 4). The mean FR residuals exhibit the same consistent

pattern of negative values as the previous time point but are

more uniform and at a lower magnitude (Figures 7C and S6,

panel 4, bar plot). On the EWAD plot (Figure 7C, blue line),

mean FR residuals are steadily increasing with confidence inter-

val compaction, reflecting improving accuracy of the prediction

by GP, still in PAL2. Hence, the collective signal defined by the

mean FR residuals begin attenuating after reaching the maxima

observed in the EWAD phase given its sensitivity to (1) growth

rate change and (2) the fact that detections are now in a steady

growth regime reflecting balance with supporting variant dark

matter in the absence of new competition.

Finally, for the time points #5 and #6 (Figure 6B, sampled on

2/16/21 and 4/5/21, respectively) during the steady growth

phase, mean FR residuals show no further compaction of the

defining Alpha VOC (Figure S6; panels 5 and 6, allele phenotype

landscape and bar plots), but rather a collective migration to a

higher IR and lower FR region in both 30 and 50 clusters (Fig-

ure 6C, blue line; Figure S6, panels 5 and 6, allele phenotype

landscape). The mean FR residuals modestly increase their

magnitude while keeping their uniform, sign pattern (Figure S6;

panels 5 and 6, bar plots), thus confirming the attenuated signal

configuration initially observed at the previous time point. On the

EWAD plot (Figure 6C, blue line), this translates to an approxi-

mately flat progression with a narrow 95% confidence interval

still in PAL1 since both are well below the baseline. These results
Figure 6. EWAD analysis of Alpha, Beta, Gamma, and Delta VOCs

(A) Graphical explanation of GP regression residuals. GP predictions are covariance

is a point comprising the proximity weighted information of its surrounding observed

valueminus the predicted value reports the difference between themean observed

variants. As illustrated, a positiveGP residual indicates that the observedmeanFR o

variants,while a negativeGP residual indicates the predictedmeanFR of that variant

residual values represent a real-time monitor for the differences of predicted varian

(B–I) For each VOC (B and C, Alpha; D and E, Beta; F and G, Gamma; H and I, De

together with the mean FR residuals for its signature mutations (mean, blue line; 9

interval (EWAD plots: C, E, G, and I). We examined the time interval between Sept

representative time points covering the flat, early, and sustained co-occurrence

baseline for EWAD is set to 0 ± 0.05 obtained by empirical randomization (dashed

mutations, we computed themean FR residuals of thousands of random sets of nm

defined two alert levels, pathology alert level 1 (PAL1) (light red shades: C, E, G, an

a heuristic that takes into account the degree of change over time, the magnitude

points whose combined change in mean FR residual is above 0.05, and/or where

PAL2 includes three consecutive points whose combined change in mean FR resi

by the WHO.
suggest a still underperforming variant that could reflect an un-

derestimate of the pathology at this time point, although these

results also suggest that Alpha has reached a steady-state equi-

librium with the existing supporting variant dark matter and a

more effective host environment response to its restricted covar-

iant cluster of mutations.

While we focused on Alpha VOC, EWAD plots can be

described that illustrate that different GP-based tactical strate-

gies seen for Beta, Gamma, and Delta VOCs (Figures 6D–6I,

see supplemental results). Interestingly, for Beta VOC, the VOC

call was made well before PAL1 (Figure 6E) suggesting it was

premature, consistent with the fact from a global perspective it

remained highly regionalized and fizzled out quickly (outbrea-

k.info/25), questioning the utility of the 75% VOC designation

as a reliable tool for designating a VOC in the absence of

appreciation of the global covariance dictating host-pathogen

balance.

Thus, mean FR residuals extracted from allele phenotype

landscapes have many desirable traits of an EWAD system.

The results are statistically significant and unique to each of

the VOCs. Importantly, they are not just map-wide properties

that could be observed for any random set of mutations, given

that if we repeat the analysis with thousands of random sets of

mutations whose set size is the same as the Alpha, Beta,

Gamma, and Delta VOCs, the majority of the randomly selected

mutations will not present any coordinated behavior at the

level of mean FR residuals across the selected time window

(Figures S9 and S10; empirical p value <10�4). Consistent with

this view, we performed ablation studies for the four VOCs—

where the signature mutations of each VOC were removed

from the training set prior to GP regression and EWAD analysis.

Importantly, for all four ablated sets, we discovered no signifi-

cant differences between the ablated and the original models

in terms of EWAD signal (Figure S11), thus highlighting the

robustness of an early warning system with respect to the pres-

ence of specific sets of mutations.

These results provide strong evidence that the observed pat-

terns are generated systematically in response to GP-based se-

lection and unknown fitness rules enabling the emergence of a

VOC in the context of the large variant dark matter background,

providing evidence that the observed EWAD patterns are specif-

ically associated with distinctive VOC mutations. The results
-matrix weighted averages of the observed values, so a GP regression prediction

values in the variant dark matter. The GP residual, calculated by using observed

FR of that variant and the predicted FR—theweighted average of its surrounding

f that variant is higher than themeanweighted averaging of theFR for surrounding

is lower than themeanweightedaveraging of theFR for surrounding variants.GP

t FR based on SCV analysis.

lta), we report its average co-occurrence (co-occurrence plots: B, D, F, and H)

5% confidence interval, gray shade) computed weekly along the selected time

ember 20 and May 21, and based on average co-occurrences, we selected six

growth phases for each of the VOCs (see numbered points in graphs B–I). The

red line at 0 in EWAD plots) (C, E, G, and I) where for a VOC including n signature

utations yielding the interval near zero the random (null) EWAD signal. We then

d I) and pathology alert level 2 (PAL2) (dark red shades: C, E, G, and I) based on

of change, and the persistence over time where PAL1 includes two consecutive

both mean FR residual and its 95% confidence interval are above/below zero.

dual is above 0.1. Stars show the date that each variant was designated a VOC
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Figure 7. Omicron VOC co-occurrence and EWAD spanning 8/15/21 to 3/20/22

(A) Time line plot showing average cumulative co-occurrence over time for combined Alpha, Beta, Gamma, and Omicron VOC defining mutations (Delta is out of

range with values near 1M and is therefore omitted).

(B) EWAD plot for combined Omicron where mean FR residuals (blue line with 95% confidence interval, gray shade) for Omicron signature mutations computed

weekly along the selected time intervals. The baseline for EWAD is set to 0 ± 0.05 by empirical randomization (dashed red line at 0; details as in Figure 6). Alert

levels defined as in Figure 6.

(C) Time line plot showing average cumulative co-occurrence over time for Omicron 1.1.529 and sub-lineages BA.1 and BA.2 for defining mutations.

(D and E) Omicron sub-lineages BA.1 and BA.2 sub-lineages with co-occurrence over time and EWAD analysis between 1/17/22 and 3/20/22. EWAD plots for

BA.1 and E. BA.2 where mean of FR residuals (blue line; 95% confidence interval, gray shade) signature mutations computed weekly along the selected time

interval. The baseline for EWAD is set to 0 ± 0.05 by empirical randomization (dashed red line at 0; details as in Figure 6). PAL defined as in Figure 6.
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have important implications for the future prediction of unknown

VOCs prior to their emergence by focusing on emerging variants

in the variant dark matter comprising high spread with either low

or high pathology (Figures S9 and 10). Can this EWAD behavior

also be observed with VOCs emergent at the latest stage of the

spread and pathology?

A second EWAD example: Predicting the Omicron VOC
To capture the most recent phase of spread and pathology, we

updated the GP map from 8/15/20 to 3/20/22 to include emer-

gence of Omicron variants with the peak in cases in January

2021 almost entirely driven by BA.1 and its sub-lineage BA.1.1

where the VOC call was made on 11/26/21 (Figure 7A, star).

Here, the Omicron VOC refers to the mutations common to all

Omicron lineages found during this time frame22,24,25 (Figure 7A).

When tracking the co-occurrence density for Omicron defining

mutations (Figure 7B), we detect a jump in Omicron VOCdefining

mutations at 10/23/20 (Figure 7B, time point #1) consistent with

its robust surge across the worldwide population. An EWAD plot

of mean FR residuals (Figure 7C, blue line, 95%confidence inter-

val, gray shade) at this time point detects emergence and a rapid

transition from PAL1 to PAL2 with the mean FR residuals at 10/

23/22 to 11/01/22 going above the zero baseline—well before

its emergence as a dominant strain in 12/23/22 to 1/20/21 (Fig-

ure 7B, time point #2). Not only do we have exceptionally strong

EWAD signal, but a rise above the baseline suggests that the

observed VOC FR data is overperforming the prediction—that

is, the observed VOC FR data are above what we might other-

wise expect in response to the surrounding variant dark matter.

These results suggest that FR is now being challenged by

evolving host responses reflecting the Omicron’s ‘‘marauder’’

mode in the face of increasing competition from the host. How-

ever, this changes rapidly with the emergence of BA.1 and

BA.1.1.1, with a rapid drop in FR residuals indicating a rapid evo-

lution to fitness that allows it to dominate the pandemic land-

scape in the context of the supporting variant dark matter back-

ground. A similar sensitivity in early stages of Omicron diffusion

is observed on the allele phenotype landscape (Figure S12), full

details in the supplementary text.

To gain insight into the evolution of just the emergent Omicron

sub-lineages BA.1-BA.2, we added an additional 1.6 M viral se-

quences between 1/17/22 and 3/20/22 (for a total of over 5.4 M

sequences processed) where spread remained a prominent

feature in the evolution of SARS-CoV-2 Omicron strains relative

to fatality—likely reflecting gains in host immune response and

more effective clinical/social management of virus pathology

(Figures 7D and 7E).54–57 The BA.1 sub-lineage, identified on

11/15/21 and becoming dominant worldwide by 1/17/22, was

the first VOC suggested to be able to completely escape from

neutralizing antibodies induced by vaccination,57 in essence

resetting the host immune response balance. Subsequently,

the BA.2 sub-lineage sharply increased heading into February

and March of 2022.55,56 As of March 2022, Omicron BA.2 was

the dominant sub-lineage in most countries. BA.1 and BA.2

have many mutations in common (both being sub-lineages of

the original Omicron B.1.1.529) but with 21 mutations in the

Spike protein, differentiating the two sub-lineages.

We focused on sets of characteristic signature mutations for

BA.1 and BA.2 (43 and 49, respectively) that are non-synony-
mous substitutions or deletions in their encoded viral proteins

that occur in >75% of sequences within the overall Omicron line-

age22 (Figure 7C). Once again, co-occurrence counts alone offer

limited information regarding the progression and potential risk

of the new sub-lineages. We performed separate EWAD ana-

lyses for Omicron sub-lineages BA.1 and BA.2 weekly between

1/17/22 and 3/20/22 (Figures 7D and 7E; blue lines, 95% confi-

dence interval [gray shade]) for signature mutations. During this

interval, BA.1 and BA.2 sub-lineages already have higher cumu-

lative co-occurrence counts (Figure 7C) compared with the var-

iants common to all Omicron (Figures 7A and 7B), with an accu-

mulation rate increasingwith BA.2>BA.1>Omicron. Interestingly,

mean FR residuals for each of the BA.1 and BA.2 sub-lineages

show similar EWAD signals at the early stages of the evolution,

but then differentiate suggesting different evolutionary paths

are evoked by the change in mutation load in the evolving

BA.2. For BA.1, new activity between 1/24/22 and 1/31/22 in-

duces another brief PAL1 (Figure 7D), but then the signal sub-

sides to no-alert with a broadmean FR residuals for the following

weeks (up to 3/20/22) above the baseline. The mean of the

observed values are overperforming our prediction—that is,

the predicted VOC fatality rate is above what we might expect,

suggesting that the host is gaining the upper hand in mitigating

impact, a conjecture supported by the fact that BA.1 counts

reach a plateau (Figure 7C, blue line), marking the time point

where it begins to lose influence in response to the rising domi-

nance of BA.2 (Figure 7C, orange line). Intriguingly, BA.2 EWAD

(Figure 7E) is already in PAL1 during the first week (1/17–1/24)

and rapidly escalates to PAL2. These results indicate that the

observed data are overperforming our prediction and that the

predicted VOC fatality rate is above what we might otherwise

expect based on the surrounding variant dark matter, reflecting

a stealth/marauder search mode.58 This rise above baseline

quickly drops back to below the baseline, indicating that the

observed data are now underperforming our prediction and

that the predicted VOC fatality rate is below what we would

expect based on surrounding variant dark matter, suggesting a

change in response by the host population that challenges fatal-

ity. Remarkably, the alerts for BA.2 are triggered in mid-January,

again weeks before more official warnings such as the official

World Health Organization (WHO) VOC designation in late

February.

The overall EWAD pattern for BA.2 (Figure 7D) strikingly re-

sembles the one seen for the originating collection of Omicron

variants (Figure 7B). This indicates that EWAD has value not

only for newly emerging lineages represented by the strikingly

different VOCs, but also for tracking the subsequent evolution

of VOC sub-lineages, a current concern of health agencies.59,60

These results suggest that the integration of genotypic and

phenotypic data through GP-based residual analysis provides

a temporal and sensitive EWAD output for pandemic perfor-

mance to anticipate its trajectory across the worldwide

population.

DISCUSSION

We have introduced a system-based GP spatial covariance plat-

form32–34,38 (Figure 8) to plot the role of natural selection and

global population fitness in driving host-pathogen relationships.
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Figure 8. Flow diagram for modeling EWAD and performance using GP

Starting from the GP-based predicted allele phenotype landscape for each VOC (leftmost panel) in combination with the co-occurrences at different time points

(second panel from left), GP residuals can be calculated to assign PAL1 and PAL2 danger alerts (third panel from left) predicting the host-pathogen responses

weeks tomonths ahead of the official WHOVOC assignation. The performance characteristics in terms of impact on VOCpandemic features can be estimated by

the position of the mean FR residuals below or above baseline (dotted line). Shown as an example is the result for Omicron emergence (Figure 7B).
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Not only do we capture the distinctive patterns of evolution of

each of the VOCs through IR and FR coordinates in allele pheno-

type landscapes, but we have shown that tracking these

changes through GP reveals a hidden and largely uncharacter-

ized agenda involving the supportive variant dark matter in

pandemic progression. GP-based analyses suggest that suc-

cessful allele changes found in emergent VOCs are using rules

defined by covariant weighted proximity that evolves with time

and that are predictable based on SCV relationships encom-

passing the entire collective. This is evidence of the potential

for GP-based SCV to provide insights from a high-confidence

natural selection view that are rooted in global biological

variation.32–34,38

It is now apparent that the ‘‘collective’’ strategy defined by our

GP-based covariant predictions reveals the ability of the VOCs to

differentiate themselves from one another and from the whole in

response to the more slowly evolving host genome. These range

from the ‘‘opportunistic’’ Alpha VOC trajectory to the ‘‘preda-

tory’’ Delta VOC to the ‘‘stealth/marauder’’ modes of Omicron

trajectories. For example, from Alpha VOC onward, the time

spent searching for optimal covariant combinations to enhance

viral spread increases because of emergent immunological

host responses to pathogen aggression. Delta stands out as

the first predator VOC, performing a successful extensive GP

principled grid search by using a dominant 30 SCV cluster—
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one that includes mutations in the Spike protein affecting resis-

tance to immune surveillance, binding, and uptake—as well as

the nucleocapsid (NC) protein involved in packaging the virus,

contributing to viral load.50,61 This compact SCV cluster is then

extended by the stealth/marauder state of Omicron VOC

involving specific mutations not only in Spike and NC, but to

additional mutations in viral proteases and envelope proteins,

indicating that successive surges may involve increasingly com-

plex covariant search strategies using different viral components

to increase spread and thus contribute to the changes in host pa-

thology that may become better targets for therapeutic manage-

ment. For example, newly emergent strains of Omicron, such as

BQ.1, BQ.1.1, and BQ1.5, have gained significant ground with

the Omicron subvariant Arcturus (XBB.16) now taking the lead.

It is interesting to note that by tracking the differing search stra-

tegies, it is the Omicron’s ‘‘marauder’’ mode, in the face of

increasing competition from the host, that has dominated and

become the baseline from which subsequent sub-lineages are

emerging, particularly in China as of June 2023. The spread of

these sub-lineages, it has been argued, is largely driven by im-

mune response evasion in the Spike protein.62–64 However,

this alone may not be the answer. Covariance across the entire

genome is something that will need to be considered in future

work by incorporating what is hidden from view (i.e., the emer-

gent features of the variant dark matter such as Q556K in the



Table 1. Table of VOCassignation showing EWADPAL raisedwell

in advance

VOC

Date of VOC

assignation

Date of first

PAL1

Date of first

PAL2

a 18 Dec 2020 23 Sep 2020 16 Oct 2020

b 18 Dec 2020 5 Jan 2021 27 Jan 2021

g 11 Jan 2021 26 Oct 2020 12 Dec 2020

d 11 May 2021 10 Sep 2020 7 Nov 2020

o 26 Nov 2021 23 Oct 2021 30 Oct 2021
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ORF1a protein and Y264H in the ORF1b protein that are present

in BQ.1 and BQ.1.1 but not BA.1 or BA.5). This can be done

through the prism of GP-based SCV and EWAD to advance

understanding of viral pathology and/or advancing new thera-

peutics,63,65,66 as our GP analysis treats the virus as whole (the

collective sum of its covariate parts) in driving the rapid evolution

of the pandemic.

The EWAD system showcased here builds upon the SCV

method we developed for inherited genetic disease.32 Instead

of focusing on polypeptide sequence changes, it focuses GP-

based modeling of allele changes for all �30,000 bp comprising

the SARS-CoV-2 genome, which raises the possibility that in the

future could be applied to both coding and non-coding se-

quences. In addition, it adds the use of co-occurrences and re-

siduals to the analysis allowing for not only the identification of

possible VOCs well in advance of their WHO assignation (as

can be seen in Table 1), but also giving a covariant-based

description of the qualitative/quantitative behavior of those

emerging variants. For example, representative heatmaps

showing the mutation co-occurrence matrices during the early,

mid, and late stages of the pandemic can be seen in

Figures S13–S21, and for Delta specifically in Figures S22 and

S23. Thus, computational analysis, merging the insights from

GP-based mean FR residuals with co-occurrence maps, can

provide an EWAD framework, where the averaged residuals

are the difference between predicted and observed values, to

account for host fitness relative to the emergent pathogen

aggression. EWAD provides the ability to forecast the emer-

gence of a VOC through both the slope dynamics of the mean

FR residuals and the spatial-temporal compaction of the cluster

reflected in co-occurrence densities. As a novel application of

the GP-based SCV approach, the mean FR residuals also pro-

vide a performance index relative to the EWAD baseline—indi-

cating the status of the VOC collective in response to the

evolving (and largely hidden from view) variant dark matter—

the evolution of which, for example, can be seen for nsp12

(Figure S24).

While other models have been proposed that attempt to pre-

dict the spread of specific SARS-CoV-2 mutations,67,68 to the

best of our knowledge they do not link spread to fatality, or

attempt to give qualitative/quantitative information about the po-

tential features of a particular variant. Thus, these features allow

us to see in advance the emergence of mutational clusters that

could contribute to both spread and/or pathology before the vi-

rus advances to clinically stamped VOC status (Figure 8)—a

result that does not appear to be tied to the presence of specific

sets of signature VOC mutations as the ablation studies
confirmed. This illustrates the usefulness of framing the

pandemic evolution in terms of SCV relationships defined by

the evolving worldwide viral genome as a collective—a view

that expands on more traditional approaches such as hierarchi-

cal clustering. As such, GP-based SCV analyses of global allele

distributions may provide a new way to address the dynamics of

spread and fatality in pandemics. For example, Omicron had a

strong EWAD signal harboring VOCs a full month before the line-

age officially designated a VOC. Here, the lack of compaction of

residuals suggests that this lineage is well-tuned to continue to

evolve within its strain to succeed in successive waves, as has

been captured byGP-based SCV for its sub-lineages highlighted

above.59,60

Besides the small sets of mostly non-overlapping signature

mutations for each VOC lineage, the larger sets of all mutations

that comprise the variant darkmatter required for the full GPanal-

ysis are not generally considered as part of a VOC assignation

when defining impact. In contrast, by tracing EWAD potential in

terms of performance in the GP residual plots, we learn about

the dynamics of viral evolution impacting their trajectory in the

worldwide population. Here, the under- or over-powered feature

of theprediction cangiveusa senseof howagivenVOCachieved

its current position in the context of downstream global spread

and pathology. These results suggest that tracking via GP desig-

nated ‘‘variants beingmonitored,’’ variants of interest (VOIs), or a

larger group of cluster subsets we refer to as covariant clusters

with co-evolving high y axis IR values linked with FR, could pro-

vide a more quantitative tool to assess risk management of dis-

ease from both virus and host perspectives. In general, our GP

analysis attests to the need to expand our understanding of the

variant dark matter in viral disease to fully appreciate the impact

of variation in achieving fitness in host-pathogen race for

dominance,69 particularly the countermoves of the host adaptive

and innate immune responses and/or social/clinical/political

practices contributing to spread and fatality, particularly of the vi-

rus-sensitive aged population (Figure 8). The recently discovered

ability to detect emerging variants in sewagemayprovide abroad

and more consistent covariant collective of population behavior

in each locale that is amenable to GP-based EWAD analysis.70

Themethod introduced here for VOC early warning and variant

surveillance has several features that are worth noting. It is a

purely computational method for variant surveillance, using

data from publicly available repositories (viral sequences, infec-

tivity, and fatality data updated daily). In its early stage, it applies

a novel multimodal data fusion approach across time-resolved

genotypic and phenotypic data to obtain the input composite

variables for GP modeling. The ML workflow implemented in

the method differs from standard supervised ML methods (i.e.,

classification/regression) since it uses supervised ML (in the

form of GP regression) as an intermediate step to generate

data instead of an endpoint for the prediction, sharing similarities

with generative modeling. Importantly, GP regression acts as an

amplifier for small but robust differences through weighted prox-

imity occurring in the phenotypic data over time, that are then ex-

ploited for the purpose of VOC anomaly detection.

The limitations in our method lie currently in its reliance on

already identified variants in the population to pioneer the SCV

framework. It is currently computationally prohibitive to examine

all combinations of mutations seen in the SARS-CoV-2 data for
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Additional Supplemental

Items are available from

Mendeley Data

https://doi.org/10.17632/

69zm32zvmn.1

Software and algorithms

Original code https://doi.org/10.5281/

zenodo.8000486

Other

CNCB publicly available

individual sequence data

ftp://download.big.ac.cn/

GVM/Coronavirus/gff3

CNCB publicly available

individual meta data

https://bigd.big.ac.cn/

ncov/release_genome

Johns Hopkins publicly

available data

https://github.com/

CSSEGISandData/

COVID-19
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their potential to become a VOC, although emergent variants be-

ing monitored and VOIs, as indicated above, provide a focused

starting point in evaluating variant dark matter. Given the univer-

sal applicability of SCV,32–38,48 capturing emergence from the to-

tal viral variant load may be possible in other settings, including

for example, influenza and HIV, where current collections of

variant genotypes and associated phenotypes could serve as a

collective for GP-based landscape descriptions.32–38,48,71

In terms of computational resources, pattern generation by the

GP method is highly efficient. Only 10 compute nodes and a few

hours were used to image SCV maps for 700+ days of the

pandemic. On the other hand, computation of co-occurrences

can, in principle, be challenging both in terms of time and mem-

ory as the number of known viral mutations grew near-exponen-

tially over time given the massive tracking efforts (for example,

see Omicron co-occurrences in Figures S25 and S26). However,

adopting a few strategies (detailed in methods) such as sparse

data structures, and a cutoff on very low allele frequencies,

computation of co-occurrences can be completed in a reason-

able time frame on a moderately sized compute resource (e.g.,

a few days on 20 compute nodes). Code and examples

for both GP and co-occurrence calculations is available at

the GitHub public repository: https://github.com/balchlab/

VSPsnap or Zenodo archival https://doi.org/10.5281/zenodo.

8000486. Over recent months, the data coverage and quality

of SARS-CoV-2 (such as the mutation frequencies tracked by

outbreak.info [Figure S27]) has waned for many reasons—tech-

nical, social, and political. As such, our approach will be more

challenging to apply. However, the strength of the GP model

lies in its versatility and broader applicability given its use of

only a sparse collection of variants such has already been

applied to multiple human rare diseases.21,34–37,48 These efforts

provide a new paradigm for development of therapeutics im-

pacting genome-encoded sequence-function-structure relation-

ships71 that can now be applied to viral genomes.

There is a fundamental dichotomy between the pandemic ef-

forts focused on the ‘‘microscopic’’ (genes, mutations, proteins,

biochemical and biophysics of virus life cycle, host cell biology)

and ‘‘macroscopic’’ (cases, masks, vaccination, hospitaliza-

tions, deaths, social behavior, healthcare policies, politics, etc.)

issues. Unfortunately, the necessarily integrated rules dictating

these diverse covariant relationships remain largely unknown

and hidden from view in the simple hierarchical clustering

maps used to currently describe spread and pathology progres-

sion and guide health policy.22 In contrast, our GP-based SCV

method can integrate both the micro- and macro- at atomic res-

olution.32–34,38 For example, the migration to low FR regions in

Alpha, Delta, andOmicron VOC lineages found at the top of allele

phenotype landscapes is strongly correlated with the beginning

of vaccination policies across many countries (not shown), indi-

cating improvement in host fitness responses. Moreover,

because even a simple estimator extracted from the modeling

of GP-based FR residuals displays an unanticipated coordinated

pattern of future relationships, there might be a number of addi-

tional properties that can be extracted that are more actionable

than those revealed by simple hierarchical clustering.

In more general terms, we posit that GP-based features could

help to elucidate the role of WGA in the context of micro- and

macro-complexity observed at the host-pathogen interface à la
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the Red Queen challenge. These relationships are hidden within

the variant dark matter and ignored as a collective except as a

means of tracking evolutionary trajectories.69 In contrast, GP-

based WGA offers a starting point to begin to understand the

complexity of coupled genomic and proteomic architectures,

and how evolution uses this coupling through covariance to

shape biological function.32–38,48 As host-pathogen biology

moves into a new, rapid phase of management where molecular

analysis, designer vaccines, and novel therapeutics can address

the immediate need to lower human fatality, particularly in the

aging population,2–14 an understanding of GP-based SCV rela-

tionships could allow for a more rapid and expansive exploration

of disease at the level of the individual.32–34,38 GP-based SCV

principled ML insights could provide a more generalized

approach for understanding pathogen fitness relative to host

response (or vice versa) for management of risk in the clinic,

given the versatility of phenotype landscapes to quantitatively

frame the emergent Red Queen challenge.72

EXPERIMENTAL PROCEDURES

Resource availability
Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, William E. Balch

(webalch@scripps.edu).

Materials availability

All data are available in the main text or the supplementary materials.

Data and code availability

This paper analyzes existing, publicly available data. These accession

numbers for the datasets are listed in the Resource availability table.

All original code has been deposited at Zenodo and is publicly available as

of the date of publication. DOIs are listed in the Resource availability table.

Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
Method details

Data generation and description

SARS-CoV-2 genomemutations are collected from the Chinese National Cen-
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CNCB resource, at the time of the last update (3/16/22), utilizes 3,864,334 ge-

nomes from the GISAID database.24 The CNCB team aligns the sequences to

the reference NC_045512 also known as Wuhan-Hu-1 with Muscle (3.8.31) to

identify and extract variants. These variants are provided to the public in gff3

file format for each genome and available for download through an ftp server.

In total, after parsing all 3,864,334 gff3 files, there are a total of 104,952 unique

mutation identifiers. These identifiers include both single nucleotide polymor-

phisms (SNPs) and insertions/deletions. The SNP mutations follow the IUPAC

degenerate base symbol when describing the replacement base. This creates

some ambiguity in determining what themutation is, due to some cases having

multiple possible alternatives. However, these degenerate base occurrences

are not frequent nor widespread across countries. Mutations are filtered by se-

lecting ones that are found in more than three countries and mask genome po-

sitions 1–55 and 29,804–29,903 since these terminal regions are likely to

contain sequencing artifacts.

Country-level case/infection rate (IR) and death/fatality rate (FR) counts are

collected from the John Hopkins COVID-19 GitHub Data Repository, which

provides time series documentation of country-level case and death counts

in csv file format.73 The counts are then used to calculate % cases per 100k

people and pathology percentage (deaths/cases) per country.

Generating GP-based SCV landscapes

We began with two host-related features of pathology, IR, and FR, the latter

impact largely defined by the aging population, particularly in early stages of

the pandemic.2–14 We then considered two composite variables, allele fre-

quency-weighted infectivity rate (IR ðVÞ) and allele frequency-weighted pathol-

ogy rate (FR ðVÞ) (abbreviated as IR and FR in text). IR ðVÞ reports on spread/

cases and (FRÞ ðVÞ reports on deaths/fatality in the worldwide population for a

variant ‘‘ðVÞ.’’ By composite variable we mean a variable made up of two or

more variables ormeasures that are related to one another conceptually or sta-

tistically. These allele frequency-weighted

IRðVÞ =

P
country

countsðV ;CtriÞ
countsðAllSeq;CtriÞ3casesðCtriÞ

P
country

populationðV ;CtriÞ

FRðVÞ =

P
country

countsðV ;CtriÞ
countsðAllSeq;CtriÞ3deathsðCtriÞ

P
country

casesðV ;CtriÞ

composite variables keep the structure of IR and FR that report on infections

over population and deaths over cases, respectively, where the weighting term

of allele frequency for a specific variant is summed over countries (as indicated

in the numerator). Similarly, denominators are summed over countries where

the variant is detected to achieve a balanced worldwide comprehensive

view of mutation distribution and density. When analyzed in the context of

GP, the IR and FR allow us to define the relationships between global pathogen

and host fitness, capturing the balance defined by the Red Queen effect where

the pathogen or host population must continually evolve new adaptations to

secure dominance.69

The above metrics are essentially weighted sums of IR and FR across coun-

tries where the weighting factors are allele frequencies per country. The choice

of allele frequency as weighting factors was motivated by the fact that there is

a large imbalance among reporting countries, with the top five countries mak-

ing up for more than 70% of all sequences provided. The imbalance in se-

quenceswould result in a skew in theweighted average of cases per 100k peo-

ple and pathology percentage, heavily favoring countries with the most cases

reported.

Formost countries, there is a lag of several days between reported deaths and

actual deaths, as could be estimated by cross-correlation between daily cases

and daily deaths. To correct for the lag factor, first estimate lags for each country

are generated by running a cross-correlation function between daily cases and

daily deaths—where the optimal lag is the value that maximizes correlation be-

tween the two time series (Figure S1). Countries suitable for lag correction were

required to have reasonably high cross-correlation and smooth distributions—

filtered for cases with cross-correlation at least 0.4 and |3| % lag < �30. Sixty-

four countries, including the major contributors like the United States and the

United Kingdom, passed the criteria. Most common lags found were 10–
15 days. For the countries for which computed empirical lags were available,

compute the lag-adjusted FR according to the following:

FRðV ; tÞ =

P
country

countsðV ;Ctri ; tÞ
countsðAllSeq;Ctri ; tÞ3deathsðCtri ; t+lÞ

P
country

CasesðV;Ctri ; tÞ

essentially dividing deaths occurring at time t+l (lag) by cases at time t.

To build allele phenotype landscapes, we regress the input genomic posi-

tion of each allele found in three or more countries (x axis) against the corre-

sponding input IR (y axis) reporting on allele frequency with the input z axis

FR values (Figure 1A). Regression prediction of the z axis pathology value

across the entire genome in the context of spread here is not the end

goal, but rather a tool for unsupervised learning of clustering where pheno-

type landscapes are used as output to mechanistically define patterns

inherent to the covariance between spread and pathology. The IR (Figure 1B,

y axis) and FR (Figure 1B, z axis) for each mutation are first positioned in

the 2D phenotype landscape defined by their genomic allele positions (Fig-

ure 1B, x axis). This is followed by a second step where pairwise distances

are computed for all mutations (Figure 1B), and the relationship between

pairwise distance and variation in FR is codified in a variogram32,34

(Figure 1C). The variogram quantifies the covarying relationships between

all pairwise distances incorporating IR (Figure 1C, x axis) and their spatial

variance with FR (Figure 1C, y axis). The data modeling provided by the var-

iogram is used to build the allele phenotype landscape, where FR for all

points in the landscape is predicted according the the variogram function

(Figures 1D and 1E) so that the landscape describes known and unknown

IR and FR SCV relationships for every allele position defined explicitly by

the evolving the SARS-CoV-2 genome.32,34

Mutation co-occurrence

All Gff3 files available for the time arc studied were downloaded from the

CNCB ftp server, resulting in a collection of 3,864,334 unique gff3 files ob-

tained from sequenced viral genomes, covering over 2 years of pandemic in

142 countries. For each day, all binary co-occurrences were recorded in a

square matrix whose root is the number of unique mutations—thus obtaining

a collection of daily co-occurrence cumulative counts.

The pseudocode used to generate the daily cumulative co-occurrence

matrices was the following for each date in the pandemic.

(1) read in all unique mutation descriptors M,

(2) build a squared matrix, M X M for gff3 files in collection,

(3) read all co-occurring mutations,

(4) generate all pairwise combinations 2

�
c
2

�
,

(5) add each to co-occurrence matrix,

(6) save co-occurrence matrix for that date.

Since pairwise co-occurrence counts are symmetrical (cc(mut1,mut2) equal

to cc(mut2,mut1)), only a half triangular matrix was saved at each iteration.

Two key solutions allowed this computation to be carried out within reasonable

time and storage requirements. The first was to implement sparse data struc-

tures (python/pandas: pd.SparseDtype). This step implied a size reduction of

up to 1,000x (from �1 Gb to �4 Mb) for each matrix, bringing down the time

required to save each object significantly. However, sparse data structures

do not support cell-wise editing (i.e., adding a co-occurrence value to a spe-

cific cell (df.loc[x,y] + = 1 type of operation)). The second key workaround

was to convert only the specific column to be updated to dense, then sparse

again at each update.

Variants of concern

Mutation lists for the main VOC (Alpha: B.1.1.7; Beta: B.1.351; Gamma: P.1;

Delta: B.1.617.2; Omicron: B.1.1.529, BA.1, BA.2, BA.3) were obtained from

PANGO lineages online resource.74 Alpha VOC (B.1.1.7) was first detected

in September 2020 in southeast England and rapidly became the dominant

variant in the United Kingdom, possibly owing to its enhanced transmissi-

bility.53 This strain spread rapidly to more than 50 countries75 and dominated

the early phase of the pandemic with substantial pathology. Subsequently,

Beta (B.1.351) and Gamma (P.1) emerged in more localized patterns of domi-

nance.76 Delta VOC (B.1.617.2) was first identified in India in December

2020.77 Within a matter of months, this particular variant spread to >200
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countries around the world, becoming the dominant variant.78 Delta was

responsible for 99% of COVID-19 cases being reported worldwide

by November 2021 (https://outbreak.info/),25 again with substantial pathology,

when it was supplanted by the highly transmissible Omicron VOC BA.1 and its

derivative strain BA.2,78 and more recently by BA.5 strains.22,24,25,54–57,68,78–80

The Omicron VOC is recognized to be considerably more transmissible than

the Alpha and Delta VOCs.41 The Omicron BA.5 VOC now constitutes a large

and growing proportion of cases as of August 2022 with seemingly higher

transmissibility, but apparent lower pathology rates requiring hospitalization,

likely reflecting changes in host-pathogen balance in immune response and

social/clinical management. These results have led to consideration of the

pandemic transitioning to an endemic state, albeit one with remaining fatality

for the aging population reflecting a lack of immune robustness.16–21 Under-

standing what mechanistically drives variant emergence in the context of

SARS-CoV-2WGA and host responses is key to understanding and controlling

the trajectory of host-pathogen balance going forward.68,80

GP regression

Filtering for mutations observed in three or more countries gave infectivity and

pathology rates for 4,663 mutations across the SARS-CoV-2 genome. This set

was used to build SCV maps for the full viral genome, and individual proteins.

While maps for single proteins had issues related to variable number of muta-

tions and variable (low) accuracy, the whole genome map was more robust in

terms of number of input mutations and overall accuracy. Consequently, the

strategy was to optimize the whole genome map, obtaining an accuracy in

the 0.47 range (Pearson r, predicted versus observed). The model was

expanded on a grid approximately x 3 1,000, where x equals the number of

nucleotides in SARS-CoV-2 genome, thus obtaining single nucleotide resolu-

tion on the x axis. GP regression was performed in R 3.2.8 using the gstat li-

brary for geostatistical computing and rendering of the maps was obtained

with ggplot. Cross-validation was performed as standard leave-one-out

cross-validation. Trained GP models were used to obtain predicted FR values

corresponding to minimum uncertainty. For each protein, the value corre-

sponding to each residue was evaluated as the middle nucleotide of each

triplet. An RGB color value matching the same value in the allele phenotype

landscape was obtained using a color ramp function using the same palette

as the map (R library RColorBrewer).

Once the whole genome GP model was available, maps for single CoV-2

proteins were obtained as slices of the whole genome map, by subsetting

the corresponding kriged output table and replotting the map in R/ggplot.

Local estimates of accuracy (protein-specific) were obtained by cross-valida-

tion limited to sets of protein-specific mutations.

GP residuals

Residuals are defined as the difference between the observed and predicted

values of a variable at an input sample point. The observed FR for a mutation

is the explicit assigned FR of that mutation used for the input data in GP that

does not incorporate the impact of other mutations, while the predicted FR

for the mutation generated by GP is a proximity weighted average of the

observed FR value of its surrounding mutations in the phenotype landscape

as generated through the SCV process. So, if the observed sample value of

a variable is 7, for example, and the predicted value is 3, then the residual

would be 4.

residual = observed � predicted

In our context, we are comparing the observed allele frequency-weighted fa-

tality rate FR, at a given point in the SCV landscape—as defined by genomic

location and allele frequency-weighted infectivity rate associated with a partic-

ular mutation—with the FR predicted for that location by our GP SCV protocol.

We calculated the FR residuals for all the mutations in each different VOC at

different time points. Then for each time point we calculated the mean of all

the VOC residues and plotted the mean for each VOC over time (Figures 6

and 7).

Time lapses

Daily resolved datasets for infectivity and pathology rate were built in a cu-

mulative fashion, i.e., for a specific day d, values were added from the begin-

ning of the data collection (2/1/20) up to day d. Filtering parameters were the

same as described before (e.g., three or more countries, etc.). Data were

scaled locally, with respect to the current dataset. To automate GP model

generation, variogram parameters were automatically fitted through the auto-
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fit routine available in gstat, with the exception of nmin/nmax (set to 5/30)

and model type—set to ‘‘Exponential’’ to avoid flat variance across all pre-

dicted FR values.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
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ACKNOWLEDGMENTS

We thank Thomas Stoeger for helpful comments and discussion.

Funding was provided by National Institutes of Health grant HL095524

(W.E.B.); National Institutes of Health grant AG049665 (W.E.B.); and National

Institutes of Health grant AG070209 (W.E.B.).

AUTHOR CONTRIBUTIONS

Conceptualization: S.L., W.E.B., C.W., and D.S. Methodology: S.L., B.C.C.,

C.W., P.Z., S.S., and D.S. Software: S.L., D.S., C.W., and B.C.C. Investigation:

S.L., B.C.C., and W.E.B. Supervision: W.E.B. Writing – original draft: S.L.,

C.W., B.C.C., and W.E.B. Writing – review & editing: B.C.C., S.L., C.W.,

S.B., and W.E.B. Project administration: W.E.B. Funding acquisition: S.B.

and W.E.B.

DECLARATION OF INTERESTS

The authors declare no competing interests. The authors declare no advisory,

management or consulting positions. C.W. and W.E.B. have filed a patent

application for the SCV methodology (serial no. US2021/0324474). C.W. and

W.E.B. have filed a PCT application (serial no. PCT/US2022/039594) for

VarC methodology.

INCLUSION AND DIVERSITY

One or more of the authors of this paper self-identifies as an underrepresented

ethnic minority in their field of research or within their geographical location.

One or more of the authors of this paper self-identifies as a member of the

LGBTQIA+ community.

Received: December 7, 2022

Revised: February 22, 2023

Accepted: June 22, 2023

Published: July 21, 2023

REFERENCES

1. WHO Coronavirus (COVID-19) Dashboard. (2022). https://covid19.

who.int.

2. Levin, A.T., Hanage,W.P., Owusu-Boaitey, N., Cochran, K.B.,Walsh, S.P.,

and Meyerowitz-Katz, G. (2020). Assessing the age specificity of infection

fatality rates for COVID-19: systematic review, meta-analysis, and public

policy implications. Eur. J. Epidemiol. 35, 1123–1138. https://doi.org/10.

1007/s10654-020-00698-1.

3. Channappanavar, R., and Perlman, S. (2020). Age-related susceptibility to

coronavirus infections: role of impaired and dysregulated host immunity.

J. Clin. Invest. 130, 6204–6213. https://doi.org/10.1172/JCI144115.

4. Niemi, M.E.K., Karjalainen, J., Liao, R.G., Neale, B.M., Daly, M., Ganna, A.,

Pathak, G.A., Andrews, S.J., Kanai, M., Veerapen, K., et al. (2021).

Mapping the human genetic architecture of COVID-19. Nature 600,

472–477. https://doi.org/10.1038/s41586-021-03767-x.
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SUPPLEMENTARY MATERIALS 1 

Supplementary text 2 

SCV analysis of the whole genome architecture (WGA) of SARS-CoV-2  3 

To define the 𝐼𝐼𝐼𝐼 and 𝐹𝐹𝐼𝐼 composite variables for all variants contributing to the evolving spread 4 

and pathology, we first considered the number of cases reflecting spread in the population, 5 

fatalities, mutation counts and viral sequences on a per-country basis. Given the unprecedented 6 

availability of data in response to the world-wide cooperation in understanding onset and 7 

progression of the SARS-CoV-2 spread and pathology, as of 3/20/22 the dataset included 8 

189,873 unique variants with 110,876 that had a prevalence in 3 or more countries spanning 9 

over twenty-three months of data recorded daily sequences (02/01/2020- 03/20/2022) across 10 

152 countries. Allele frequency-weighted 𝐼𝐼𝐼𝐼 and 𝐹𝐹𝐼𝐼 (Eq. 1, 2 in Results) were calculated for 11 

each variant through a weighted averaging across country-specific measurements where the 12 

weighting was determined by the number of variant counts found in a country (see Methods). 13 

SARS-CoV-2 genome-wide Gaussian process (GP) 14 

(Note: unless otherwise indicated, figure numbers refer to order of Results figures) 15 

Traditional phylogenetic tree methods based on genome sequencing used in viral epidemiology 16 

1 have led to considerable progress in mapping the progression of diversity contributing to viral 17 

spread 2. However, they focus on single mutations at a time as branching points, not considering 18 

the entirety of the WGA as a collection of coordinated spatial units of functionality in the context 19 

of their genomic position that potentially contribute as a collective to viral spread and pathology. 20 

When considering 𝐼𝐼𝐼𝐼 and 𝐹𝐹𝐼𝐼, this view is indeed supported by lack of correlation between these 21 

variables (Fig. S1).  22 
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Methodologically, to generate allele phenotype landscapes, data are first pre-processed to 23 

obtain 𝐼𝐼𝐼𝐼 and 𝐹𝐹𝐼𝐼 for each mutation (Fig. 1A). Mutations are positioned in a 2D phenotype 24 

landscape defined by their genomic allelic positions (Fig. 1D, x-axis) and calculated (y-axis) (Fig. 25 

1A, x- and y-axis and Fig. 1A, colored z-axis). Pairwise distances are computed for all mutations 26 

(Fig. 1B). In the second step of GP-based SCV modelling, a variogram is computed 3,4 27 

quantifying the covarying relationships between the pairwise distances incorporating 𝐼𝐼𝐼𝐼 (Fig. 28 

1B, x-axis) and their spatial variance with 𝐹𝐹𝐼𝐼 (Fig. 1C, y-axis) and used to build the allele 29 

phenotype landscape in the third step which describes known and unknown 𝐼𝐼𝐼𝐼 and 𝐹𝐹𝐼𝐼 SCV 30 

relationships for every sequence position in the SARS-CoV-2 genome 3,4. 31 

Besides the application of GP-based SCV to human rare disease for protein fold architecture for 32 

discovery of therapeutics 3, addressing the impact of protein folding proteostasis pathways 5, 33 

and the role of epigenetics in proteome architecture6, GP has also been used in navigating the 34 

fitness landscape in directed evolution experiments to guide protein engineering 7-9. In general, 35 

because GP estimates model uncertainty, providing a rigorous and unbiased computational 36 

framework lacking the concern of overfitting to assess confidence in the function of a residue 37 

encoded by the genome in response to the environment 4. 38 

Examples of allele phenotype landscapes 39 

An example of an allele phenotype landscape for a specific date (9/15/20) is shown (Fig. 1D), 40 

where we trained our GP regression model on 11,120 mutations present in 3 or more countries 41 

at this time-point (Pearson r = 0.5, predicted vs. observed, leave-one-out cross-validation (LCV)). 42 

In Fig. 1D all input mutations used to generate the model are shown as circles with their 43 

frequency proportional to their abundance in the population as reported by 𝐼𝐼𝐼𝐼 (Fig. 1D, 𝑦𝑦-axis). 44 

Vertical dotted lines highlight boundaries of the indicated genes encoded in the SARS-CoV-2 45 

genome. These boundaries, for example, illustrate a higher-than-average density of mutations 46 

at this time-point in Spike, ORF3a, ORF7a/ns8, and NC found at the 3’-end of the sequence, 47 
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whereas the polymerase nsp12 (Fig. 1D, Pol) has a lower-than-average density of mutations 10. 48 

The color scale (Fig. 1D, z-axis) illustrates whether the predicted response of the genome results 49 

in lower (Fig. 1D, blue-green) or higher (Fig. 1D, increasing yellow-red) pathology predictions 50 

based on the surrounding residues, hidden information which we refer to as the variant dark 51 

matter that contributes substantially to allele phenotype landscape features. In Fig. 1E (right 52 

panel), we show the model now annotated with the signature mutations and uncertainty contours 53 

of the covariant relationships of the four VOCs driving early stages of spread and pathology 54 

including Alpha, Beta, Gamma, and Delta. Here, the large number input variant dark matter 55 

mutations driving the construction of the allele phenotype landscape are made transparent in 56 

order to focus on map structure relevant to VOCs, their defining mutations being those in at least 57 

75% of a designated VOC 1 (see Supplemental Methods). The structure of the map shows the 58 

distribution of predicted 𝐹𝐹𝐼𝐼 where some of the VOCs are localized in, for example, high-𝐹𝐹𝐼𝐼 areas 59 

(Fig. 1D-E, red color) while others are not (Fig. 1D-E, blue-green color) such as the VOCs found 60 

at the 3' end of the genome (Fig. 1E, zoom inset). The contours define relationships of VOCs to 61 

undesignated variant dark matter alleles that provide the supporting background to interpret 62 

covariance in evolving VOC designations. We have documented these evolving relationships for 63 

every day since the beginning of the pandemic (Movie S1). 64 

In general, GP-based SCV using allele frequency weighted infection rate (𝐼𝐼𝐼𝐼) and pathology (as 65 

reported by 𝐹𝐹𝐼𝐼) provides an SCV optimized interpolation of allele frequency variation in SARS-66 

CoV-2 WGA that allows us to focus in an unbiased way on all the covariant relationships 67 

contributing to evolving viral fitness in the context of evolving host countermeasures. Because 68 

these SCV relationships cannot be captured by simple correlation alone (Fig. S1), the GP 69 

principled map reveals for the first time SCV relationships hidden within the viral WGA that could 70 

globally shape global disease dynamics. 71 

The expanding timeframe of SCV relationships 72 
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The example above highlights only a specific time point (9/15/20) where mutation data was 73 

collected and 𝐼𝐼𝐼𝐼 / 𝐹𝐹𝐼𝐼 cumulatively computed across the world-wide population. To better dissect 74 

the differences in allele appearance over the time-span that contributes to the changing face of 75 

the spread and pathology, we generated comprehensive time-lapse GP-based SCV maps 76 

highlighting as a collective all current VOCs being monitored by the CDC for every day between 77 

2/1/2020, to 3/20/2022 (Movie S1) as well as individual VOCs defining distinct Alpha, Beta, 78 

Gamma, and Delta lineages (Movies S2-S5). 79 

Pairwise relationships dictating Alpha and Delta VOC evolution 80 

To follow the collective evolution of VOC mutations contributing to the allele phenotype 81 

landscape over time, we considered all pairwise distances between these mutations (Fig. 82 

2B,3B) and reported the average of all distances, together with its 95% confidence interval for 83 

Alpha VOC (Fig. 2B1) and Delta VOC (Fig. 3B1). Analogously, we reported the average 84 

predicted and 95% confidence interval for 𝐹𝐹𝐼𝐼 for Alpha VOC (Fig. 3B1) and Delta VOC (Fig. 85 

3B2) for the same mutations as a quantitative way to assess SCV relationships on the z-axis 𝐹𝐹𝐼𝐼 86 

prediction over time. These line plots provide a convenient way to track the overall relative 87 

movements of each of the VOC clusters of high interest (see Fig. S2, S3 for Beta, Gamma 88 

VOCs) illustrating whether their relative positions contract or expand (Fig 2. B1-2, D1-2) as the 89 

pandemic progresses (Fig. 2A, 3A; panels 1-6).  90 

At the first time point all VOC mutations are within the high confidence region (lower 10% total 91 

variance) marked by contour lines in the map (Fig. 2A, B1, Alpha VOC; C, D1, Delta VOC) 92 

(5/15/20 date). The high confidence region is where the majority of input mutations are located. 93 

Subsequently, the average distance in both the Alpha VOC (Fig. 2B1, 5/15/20->8/15/20 dates) 94 

and Delta VOC map (Fig. 3B1, 5/15/20->8/15/20 dates) increases along with the average SCV 95 

for 𝐹𝐹𝐼𝐼 for Alpha VOC (Fig. 2B2) and Delta VOC (Fig. 3B2). This is largely in response to the 96 
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detection of two new mutations (1001T>I (nsp3) and 501N>Y in Spike) distant from the main 97 

group, thus adding to the average distance and SCV defining 𝐹𝐹𝐼𝐼, and increasing their spread 98 

revealed by the broader confidence interval for both Alpha VOC and Delta VOC at the 8/15/20 99 

date. These results foreshadow that these variants are potentially prominent driver mutations. 100 

By the next time point (Fig. 2B1, 3B1; 11/15/20), both average distance (Fig. 2B1, 3B1) and 101 

average SCV (Fig. 2B2, 3B2) are going down as the Alpha and Delta VOC mutations exit the 102 

central, dense region of the evolving allele phenotype landscapes and migrate to higher values 103 

of 𝐼𝐼𝐼𝐼 reflecting their increased abundance in the population. Notably, their pairwise distances 104 

have decreased and have also become more uniform as reported by their lower 95% confidence 105 

interval in average distribution (Fig. 2B1, 3B1). A similar pattern is observed for average SCV 106 

for 𝐹𝐹𝐼𝐼 (Fig. 2B2, 3B2), illustrating what can visually be seen on the allele phenotype landscapes 107 

(Fig. 2A, 3A) as compaction of the VOCs over time. Such compaction becomes particularly 108 

pronounced in the next time-points where average distance (Fig. 2B1, 3B1) and average SCV 109 

for 𝐹𝐹𝐼𝐼 (Fig. 2B2, 3B2) strongly decreases as Alpha VOC and Delta VOC signature mutations 110 

settle into high 𝐼𝐼𝐼𝐼 / low 𝐹𝐹𝐼𝐼 regions.  111 

In general, pairwise relationships detected in the allele phenotype landscapes reveal VOC and 112 

variant dark matter coupled SCV relationships defined by 𝐼𝐼𝐼𝐼 and 𝐹𝐹𝐼𝐼, highlighting the potential 113 

of GP to capture the evolvability of the SARS-CoV-2 WGA as a matrix of spatial-temporal 114 

covariant relationships dictating host-pathogen fitness balance across the entire sequence. 115 

Temporal co-occurrence (co-occurrence) patterns of emergent VOC mutations 116 

Starting with a reference set of 16K missense mutations, we first counted cumulative pairwise 117 

co-occurrences among them with daily frequency between February 2020 and August 2021. For 118 

any given pair of mutations (A and B) their cumulative co-occurrence count (co-occurrence (A, 119 

B)) the co-occurrence is increased by one if A and B were found to co-occur on a viral isolate. 120 
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Extending this counting to all pairs of mutations considered, for each day we generated a matrix 121 

of cumulative co-occurrence counts and a heatmap visualization as a matrix. For example, on 122 

3-15-2020 (Fig. S13), the most common mutations are D614G in Spike and P471L in the 123 

catalytic subunit of the RNA-dependent RNA polymerase (RdRp / nsp12). These mutations were 124 

established early and co-occur with almost every other SARS-CoV-2 mutation, thus appearing 125 

as horizontal/vertical bands on the matrix, which otherwise exhibits a rather sparse structure with 126 

occasional co-occurrence hotspots. co-occurrence sparsity is not uniform across the viral 127 

genome, although as the pandemic proceeds, co-occurrence becomes very noticeable across 128 

the entire genome (Fig. S17-S21).  129 

To highlight co-occurrences driving emergence of VOCs Alpha, Beta, Gamma, and Delta, we 130 

first tracked cumulative co-occurrences among the defining mutations for every day starting 131 

9/15/2021 up to 8/22/2021, and computed a daily average co-occurrence by averaging all 132 

cumulative co-occurrence values available daily for each of the VOCs. Average co-occurrence 133 

over time for the four VOCs is shown (Fig. 4A, left panel; zoom of Beta/Gamma/Delta VOC 134 

timeline plots shown in the right panel). All curves enter a quasi-exponential growth phase at 135 

different time-points along the timeline. Looking at more quantitative parameters to characterize 136 

such behavior, such as initial slope and maximal slope range, we see how the Alpha VOC 137 

emerges first with the highest magnitude and range; Beta, Gamma, and Delta VOCs have much 138 

smaller ranges that become evident at later times, starting around mid-December 2020 (Fig. 4A, 139 

right panel zoom). Gamma and Delta have similar, steeper slopes in their quasi-exponential 140 

initial growth phase, whereas Alpha and Beta slopes are much less pronounced.  141 

Differences between VOCs are further evident in the patterning of their representative co-142 

occurrence matrices (Fig. 4B). The first VOC to emerge, Alpha, has a uniform distribution of co-143 

occurrences across the signature mutations of this viral strain – suggestive of an opportunistic 144 

break in its evolving host-pathogen encounters. This is not the case for later emergent VOCs. 145 
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For example, Gamma has one variant (501N>Y on Spike) with a co-occurrence 10x higher than 146 

average while the nsp3 variant 18L>F is 5X more than average co-occurrence and comparable 147 

to Spike’s 484E>K. Moreover, 174G>C (Orf3a) shows zero or lower-than-average co-148 

occurrence against most Gamma variants. Beta also shows significant co-occurrence hotspots: 149 

Spike (501N>Y, 701A>V) and NC (205T>Y) showing 2x, 2x and 1.5x co-occurrence increase in 150 

average co-occurrence, respectively. Given that 501N>Y is common across Alpha, Beta and 151 

Gamma VOCs, and 484E>K is shared between Beta and Gamma, higher co-occurrence values 152 

for these variants can be partly explained by their commonality. Finally, Delta, the latest VOC to 153 

appear in this time frame, shows a more varied pattern suggestive of a predatory behavior – 154 

possibly exploring at the atomic level for a breakthrough where four variants including Spike 155 

(681P>R), Orf3a (26S>L), NC (203R>M, 377D>Y) have between 2.5x and 3x higher than 156 

average co-occurrence counts. 157 

Evolution of the co-occurrence search strategies of Alpha, Beta, Gamma, Delta VOCs 158 

The co-occurrence matrix for Alpha on 9/22/20 (Fig. S5B) has few viral isolates with the full set 159 

of Alpha signature mutations and associated co-occurrences (Fig. S5B, black dots). These 160 

mutations belong to three genes: nsp3 (3), Spike (6) and NC (3) all occurring together. Overall, 161 

the 3’ quadrant (Fig. S5B, quadrant II) is more populated, with a cluster between middle- and C-162 

terminal Spike and another covering the beginning and end of NC. The 5’ quadrant (Fig. S5B, 163 

quadrant I) has only three mutations in nsp3 leading to the three vertical co-occurrence bands 164 

in the cross-talk quadrant (Fig. S5B, quadrant III). Most co-occurrences (Fig. S5, nsp3 and 165 

Spike) are located in relatively empty areas of the global co-occurrence matrix (Fig. S16). At this 166 

early point in time, the remaining VOC are present with at least one co-occurrence. For example, 167 

for Beta, along the horizontal band at ~29K bp (Fig. S5B, quadrant III, intersecting at 5500 bp), 168 

and Delta at (25.7K, 29K bp) – near the intersection of two co-occurrence bands. Gamma is 169 

present with few co-occurrences in the region near the 5’ end of Spike (not overlapping with 170 
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Alpha co-occurrence) and one nsp3 mutation in the crosstalk quadrant (Fig. S5B, quadrant III). 171 

Hence, co-occurrences from different VOCs are generally non-overlapping, with few exceptions. 172 

While mutations in Spike and NC have received considerable attention compared to those in 173 

nsp3, we now note at this early stage of VOC evolution, the first co-occurrences recorded for 174 

Beta and Gamma VOCs involve mutations in nsp3. This protein is a key component of the viral 175 

replication and transcription complex11. GP suggests it may play an unanticipated key role in the 176 

generation of new lineages of concern. 177 

At 10/20/20 (Fig. S5C), we first observe a full set of co-occurrences for Beta. Notably, Beta co-178 

occurrences explore additional regions in co-occurrence space compared to Alpha. These 179 

include a new region of the Spike gene that complements the region covered by Alpha co-180 

occurrences as well as the end of the E gene (Fig. S5C, ~26,500 bp). Both cover relatively 181 

depleted areas of the co-occurrence matrix. Only three Beta co-occurrences are near Alpha co-182 

occurrences. In particular, an intra-Spike co-occurrence (Fig. S5C, ~23,000 bp and ~23,500 bp) 183 

will be a co-occurrence hub for all four VOCs. Gamma added two co-occurrences in the first half 184 

of the Spike gene, and Delta added one co-occurrence in a rather uncharted area at the top of 185 

quadrant II (Fig. S5C). It is interesting to see how, even at this early stage in VOC evolution, 186 

initial co-occurrences for each of the VOC tend to sample different regions of the co-occurrence 187 

space with minimal overlap, thus favoring exploration versus exploitation which could be an 188 

unanticipated mechanism in driving host-pathogen relationships according to the Red Queen 189 

concept 12 (Fig. 8 main text) in which you need to continually evolve to avoid extinction in multiple 190 

directions defined by the WGA captured by GP-based SCV relationships. 191 

Two months later, on 12/22/2020 (Fig. S5D) we start observing a near-full set of co-occurrences 192 

for the Gamma VOC. We notice additional co-occurrences added in the middle to the 3’ section 193 

of the Spike gene which weren’t observed in Alpha or Beta co-occurrence in their debut. In the 194 

NC region, two Gamma mutations are placed in between Alpha and Beta VOC defining 195 
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mutations, generating co-occurrences non-overlapping with any of the previous VOC. Overall, 196 

Gamma co-occurrences appear to cover larger areas in co-occurrence space compared to Alpha 197 

and Beta. As previously pointed out (Fig. 4,5), co-occurrences for Gamma follow an exploratory 198 

phase before acquiring the full spectrum of co-occurrences available at saturation in the spread 199 

(Fig. S5D). The longer exploratory phase compared to Alpha and Beta VOC could be related to 200 

a more extensive field testing of the co-occurrence space reflecting the local environments of 201 

the hosts and/or challenges arising from previous infections now accruing in the population 202 

limiting its success as a takeover VOC.  203 

Interestingly, even by 12/22/2020 (Fig. S5D) Delta VOC is incomplete and continues to sample 204 

co-occurrence space by adding co-occurrences at the 3’ NC near the top of the 3’ quadrant (Fig. 205 

S5D, quadrant II; 28,000 bp, 29,000 bp, 29,500 bp). The most interesting location in the 3’ 206 

quadrant (II) (Fig. S5D) is a dense and narrow cluster at 23,000 bp and 23,500 bp where we see 207 

co-occurrences from all VOC lineages almost overlapping. This is quite unique since we have 208 

seen that co-occurrences in different VOCs tend to explore alternative solutions to achieve a 209 

higher fitness state. The co-occurrence in this cluster is largely between mutations in the RBD 210 

domain and mutations in the furin cleavage site of Spike including 501N>Y, 570A>D, 681P>H 211 

and 716T>I for Alpha, 484E>K, 501N>Y and 701A>V for Beta, 484E>K, 501N>Y and 655H>Y 212 

for Gamma and 452L>R, 478T>K and 681P>R for Delta. These results highlight the evolutionary 213 

advantage of keeping this specific co-occurrence solution while exploring broader areas of co-214 

occurrence space.  215 

By 03/02/2021 (Fig. S5E) we witness a full set of co-occurrences between Delta VOC defining 216 

mutations. The Delta VOC spends the longest time in exploratory phase of intermediate 217 

acquisition of co-occurrences, lasting several months, where only a few co-occurring variants 218 

are found on viral isolates before saturating all its co-occurrence space (Fig. S5E, inset). Delta 219 

is the only VOC of the four that has completely dropped signature mutations in the nsp3 regions, 220 
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thus focusing exclusively on the 3’ region of the genome for gain of functional fitness (Fig. S5E, 221 

quadrant II). Strikingly, Delta co-occurrence pattern looks as if it is running a systematic grid-222 

search 13 over the co-occurrence space by sampling the entire space at regularly spaced 223 

intervals, perhaps reflecting additional challenges in the environment reflected in increased 224 

vaccine prevalence and/or ‘herd’ immunity in the population.  225 

While some Delta co-occurrences, especially on Spike, are recapitulating successful co-226 

occurrence solutions previously discovered by the other VOCs (Fig. S5E) (including Beta and 227 

Gamma co-occurrence located between the 5’ end to the middle of the Spike gene; the RBM-228 

Furin cleavage co-occurrence cluster; Alpha and Gamma co-occurrence located between the 229 

middle to the 3’ end of the Spike gene; and co-occurrences in NC gene at ~29,000 bp), other 230 

Delta co-occurrences are charting previously unexplored regions in a methodic, grid-like fashion 231 

illustrated by the co-occurrences at the 3’end of NC gene, the 3’ end of ORF7a, the M gene and 232 

the ORF3a gene. Interestingly, the full grid-search result of Delta VOC co-occurrences is 233 

preceded in the long exploratory phase (Fig. S22-23, co-occurrence matrices for 1/19/21 and 234 

2/16/21) by a L-shaped configuration of regularly spaced Delta co-occurrences with one 235 

horizontal sequence of co-occurrence at the 3’ end of NC and one vertical at 23,000 bp. These 236 

results suggest the possibility that Delta is running a systematic preliminary exploration of the 237 

co-occurrence space prior to settling on the final stage for the full grid VOC configuration that 238 

marks the beginning of the wide-spread predatory behavior of the Delta variant. 239 

Integrating VOC co-occurrences with GP residuals: an early warning anomaly detection 240 

(EWAD) system 241 

For each VOC we report its average co-occurrence (Fig. 6B, D, F, H; co-occurrence plots) 242 

together with the mean of 𝐹𝐹𝐼𝐼 residuals for its signature mutations reported as the mean ± 95% 243 

confidence interval computed weekly along the selected time interval (Fig. 6C, E, G, I; EWAD 244 

plots). More detailed figures showing how these data are generated are available (Fig. S6, Alpha 245 
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and Beta; Fig. S7, Gamma and Delta) where for each of the above temporal points we report 246 

the corresponding allele phenotype landscape with VOC mutations highlighted (Fig. S6-7; 247 

panels 1-6, upper allele phenotype landscape and lower bar plots) showing the 𝐹𝐹𝐼𝐼 residuals for 248 

the signature mutations of the VOC whose average is reported in the EWAD plot. The baseline 249 

for this EWAD experiment was set by empirical randomization to 0 +-0.05 (Fig. 6C, E, E, I; 250 

dashed red line) where for a VOC including n signature mutations, we computed the mean 𝐹𝐹𝐼𝐼 251 

residuals of thousands of random sets of n mutations. Hence, the interval near zero corresponds 252 

to a random (null) EWAD signal. 253 

Evolution of the co-occurrence search strategies for Alpha, Beta, Gamma, Delta VOCs 254 

To focus on the emergence of each VOC, we generated a genome-wide co-occurrence matrix 255 

spanning the encompassing 30,000 alleles (Fig. S5A). To focus on the most prominent 256 

emergent viral search strategies, we considered only the genomic ranges in which the majority 257 

of sets defining VOCs can be found – primarily in the 5’ region (3000 to 11,000 bp) and the 3’ 258 

region (22,000 to 29,000 bp), although their emergence is contingent on the co-occurrence data 259 

for the entire genome (Fig. S5A). These broad ranges were further delimited by three smaller 260 

subsections – namely, co-occurrences of VOC mutations concentrated within the 5’ region (I), 261 

those within the 3’ region (II) and the ‘crosstalk’ between the two (III) (Fig. S5A). We annotated 262 

this subset of the genome-wide co-occurrence matrix with different colors and shapes for the 263 

four VOCs (Fig. S5A; Alpha (black), Beta (magenta), Gamma (green), and Delta (red)).  264 

We selected four representative time-points, each near the time at which a VOC discovers the 265 

full (or near-full) set of possible co-occurrences – i.e., when co-occurrence density nears a value 266 

of 1 (Fig. S5B-E, lower right panel, dashed red line marking the date of each quadrant). Each 267 

panel focuses on the regions of the global co-occurrence matrix that are relevant for the 268 

designated VOC signature mutations considered to be drivers of SARS-CoV-2 WGA in spread 269 

and pathology in the context of background variant dark matter. Temporal analysis of these 270 
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regional signature mutations reveals the evolving search strategies influencing the WGA 271 

structure of the Alpha, Beta, Gamma, and Delta VOCs (Fig. S5A-D, lower right panels). 272 

Strikingly, different VOCs tend to sample different regions of the co-occurrence space with 273 

minimal overlap. The few exceptions that occur can be found in the co-occurrence hubs such as 274 

the RBD-furin cleavage co-occurrence hub (Fig. S5C-D) that appears to be critical for all VOCs. 275 

The efficiency and coverage in exploring the space of possible mutational co-occurrences 276 

appears to be correlated with the time spent for intermediate acquisition of co-occurrences, with 277 

(Alpha, Beta) < Gamma << Delta. Delta in particular displays a systematic, grid-like exploration 278 

of mutational co-occurrence space in the crucial Spike-NC region. This is likely related to the 279 

capacity of this region to elevate Spike penetration of host cells and/or achieve immune superior 280 

evasion with NC region promoting more efficient viral assembly and load reflecting replication 281 

activity and packaging for release of mature virus particles. In addition, a GP-based analysis of 282 

the nsp12 polymerase subunit reveals that G671S may play an unanticipated role in creating a 283 

Delta VOC fitness configuration 10 (Fig. S5A-D, G671S; Fig. S24) 10. 284 

Age-related EWAD for Beta 285 

Analysis for Beta is shown in Fig. 6D-E. Beta was first detected on 12-18-2020 in South Africa. 286 

However, our co-occurrence screening shows evidence of an originating genome with all co-287 

occurrences in place by 8/15/2020 (Fig. 5, jump to 1 in the co-occurrence density plot). The first 288 

two time-points for Beta (Fig. 6D, time-points #1 and 2) show a progression near the baseline 289 

with broad confidence interval (Fig. 6E, EWAD) indicative of a random distribution of 𝐹𝐹𝐼𝐼 290 

residuals across positive and negative values (Fig. S6, Beta, panels 1-2). However, the EWAD 291 

signal gains a PAL1 already by 1-19-21. By 2-9-2021 (Fig. 6D, time-point #3) detections for Beta 292 

are still below 500, but the co-occurrence counts are switching toward faster growth rates; this 293 

is readily captured in the EWAD plot where mean 𝐹𝐹𝐼𝐼 residuals start increasing steadily (PAL2) 294 

with narrower spread of the confidence interval (Fig. 6D, EWAD). Looking at individual residuals, 295 
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time point #3 corresponds to a flipping point where almost all residuals are near zero (Fig. S6, 296 

Beta, panel 3 (bagplot)). By 3-2-21 (Fig. 6D, time-point #4) growth is steady with ~2K detections 297 

and the EWAD signal is still positive, reaching a plateau in PAL2, reflecting the fact that 𝐹𝐹𝐼𝐼 298 

residuals that are moderately positive for nearly all Beta mutations (Fig. S6; panel 4, bar plot). 299 

The pattern flattens across the last two time-points (Fig. 6D, time-points #5 and #6), thereby de-300 

escalating to PAL1 (Fig. 6E, EWAD). The EWAD signal for Beta is less early and less 301 

pronounced than the one seen with Alpha, possibly because the number of detections for this 302 

VOC is almost two orders of magnitude smaller than Alpha yet reveal a coordinated behavior. 303 

As seen with Alpha, this behavior is unlikely to be obtained with a random set of mutations of 304 

the same size (Fig. S9-10, empirical p-value <10-3). These results reveal, as described for the 305 

Alpha (see Results), the performance of the EWAD as an anomaly detection system and the 306 

performance of different phases of the VOC affecting its role in the pandemic. 307 

Age-related EWAD for Gamma and Delta 308 

The late VOCs Gamma (Fig. 6F-G) and Delta (Fig. 6H-I) again reveal a coordinated, early 309 

change in mean 𝐹𝐹𝐼𝐼 residuals – thus triggering appropriate EWAD levels - before increased 310 

number of detections are measured through a change in slope of the average co-occurrence 311 

curve (Fig. 6E,H, respectively). However, for these two later VOCs both the mean (Fig. 6G,I) 312 

and individual 𝐹𝐹𝐼𝐼 residuals (Fig. S7A,B; panels 1-6) switch to negative (i.e., predicted 𝐹𝐹𝐼𝐼 values 313 

< observed 𝐹𝐹𝐼𝐼 values), instead of the positive values seen in the early Alpha/Beta VOCs (Fig. 314 

S6A,B, panels 1-6). One possibility could reflect the later time-points at which the EWAD signal 315 

(reflecting 𝐹𝐹𝐼𝐼 residuals) is observed for these VOCs. Since the later landscapes (Fig. S7A, B; 316 

panels 4-6) show less high-𝐹𝐹𝐼𝐼 (red) clusters, most predicted 𝐹𝐹𝐼𝐼𝑠𝑠 for VOC defining mutations 317 

have lower values to start with - hence the predicted < observed 𝐹𝐹𝐼𝐼 values result in negative 318 

residuals. For Gamma VOCs, first detected early in 01/01/2021, we see early sequences with 319 

full co-occurrences already in mid-December 2020 (Fig. 5, lower panel). Early tracking for 320 
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Gamma mutations shows a near-random distribution (near the zero baseline) with considerable 321 

range (Fig. 6F,G). The system however raises an PAL1 by time point #1 (Fig. 6F, G; time-point 322 

#1, 11/17/20), and a PAL2 by time point #2 (Fig. 6F, G; time-point 12/15/20). The steep decrease 323 

in mean 𝐹𝐹𝐼𝐼 residual continues down to 1/26/21 at time point #3) (Fig. 6F, 1/26/21) while the 324 

number of detections is still low (around 200), then plateaus. Again, as seen for Beta, the 325 

transition to flat EWAD signal corresponds to a switch in the distribution of the mean 𝐹𝐹𝐼𝐼 residuals 326 

(Fig. S7A; panel 3, bar plot) to mostly negative values. The flat pattern is then conserved at 327 

successive time-points (Fig. 6F, time-points #5 and #6) but keeping a PAL1 since both the mean 328 

signal and its confidence interval (Fig. 6G) are significantly different from the baseline following 329 

the trend observed in Alpha and Beta VOC (Fig. 6C, E).  330 

Of importance, given its impact on human health world-wide, Delta was declared a VOC on 331 

05/06/2021, but co-occurrence data shows gradual accumulation of co-occurring variants for a 332 

prolonged period of time preceding this date by several months (Fig. 5, lower panel; since 333 

October 2020) with a full set of co-occurrences recorded in mid-February 2021 (Fig. 5, lower 334 

panel). Interestingly, many Alerts (both PAL1 and PAL2) are raised by our EWAD system during 335 

this time (Fig. 6I), suggesting that EWAD was able to capture (and flag as concerning) this 336 

accumulation phase - otherwise hidden in plain sight. Importantly, EWAD was able to raise very 337 

early PAL2 warnings even with very low number of detections (i.e., time-points #1, #2, #4). By 338 

time point #4, corresponding to the switch point to high co-occurrence accumulation rate (Fig. 339 

6G), the PAL2 signal has been seen for a month, and persists in alert mode (switching between 340 

PAL1 and PAL2) for the successive time-points. These results reveal, as described for the Alpha 341 

(see Results), the performance of the EWAD as an anomaly detection system and the 342 

performance of different phases of the VOC affecting its role pandemic. 343 

Age-related EWAD for Omicron BA1: an emergent victor in the Red Queen competition 344 

for fitness 345 
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Omicron (B.1.1.529) was first reported to WHO from South Africa on 24 November 2021, and 346 

classified as VOC on 11/26/202114. To simplify analysis, we focused on a set of 48 characteristic 347 

mutations for Omicron defined as nonsynonymous substitutions or deletions that occur in > 75% 348 

of sequences within the Omicron BA.1 lineage2. We monitored the characteristic mutations for 349 

Omicron BA.1 as cumulative count of co-occurrence mutations (Fig. 7A) and mean 𝐹𝐹𝐼𝐼 residuals 350 

for EWAD (Fig. 7B).  351 

As seen before for previous VOCs, while co-occurrence count alone increases monotonically up 352 

to mid-December 2021 (Fig. 7A), 𝐹𝐹𝐼𝐼 residuals provide a striking EWAD signal for the ascent of 353 

Omicron BA.1 to a global VOC threat (Fig. 7B). On 10/21/21, the characteristic mutations for 354 

Omicron leaps in the EWAD diagram (Fig. 7B) where it enters PAL1 on the same week, and 355 

PAL2 on the following week. Notably, the alert is raised one month before Omicron is officially 356 

designated as a VOC by the WHO 14. A similar sensitivity in early stages of Omicron diffusion is 357 

observed on the allele phenotype landscape (Fig. S12A), and the average distance of mutations 358 

on the landscape where in correspondence of the above dates, a sharp decrease in average 359 

distance is observed (Fig. S12B). Interestingly, the EWAD signal pattern for Omicron consists 360 

of an initial dip to negative 𝐹𝐹𝐼𝐼 residual values where predicted 𝐹𝐹𝐼𝐼 values are less than observed 361 

𝐹𝐹𝐼𝐼 values since most mutations are in regions of high 𝐹𝐹𝐼𝐼 (see Fig. S12A, allele phenotype 362 

landscape at 11/15/21). This is followed by a sudden jump to positive 𝐹𝐹𝐼𝐼 residual values 363 

corresponding to most Omicron defining mutations on the allele phenotype landscape migrating 364 

to low 𝐹𝐹𝐼𝐼 regions. 365 

In order to precisely map the co-occurring Omicron mutations associated with the anomalous 366 

EWAD signal observed around mid-October, we built genome-wide co-occurrence matrices for 367 

Omicron characteristic mutations at four time-points using the mid-October mark (Fig. S25). In 368 

particular, we highlighted the specific co-occurrence mutations added at each time point with red 369 

markers. Fig. S26 shows the co-occurrence matrix for 11/15/21, highlighting the co-occurrence 370 
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mutations associated with the leap in 𝐹𝐹𝐼𝐼 residuals (Fig. 7B). It is interesting to note that these 371 

co-occurrence mutations involve a very narrow and specific set of SARS-CoV-2 proteins, namely 372 

Spike, the structural proteins E, M and NC, the two proteases (nsp3 and 3CLpro), and nsp6. For 373 

Spike, there are 18 missense mutation and one deletion including both mutations seen 374 

previously and novel ones specific to Omicron. The clusters of added co-occurrences involve 375 

mostly mutations around the ACE2 domain including E484A associated with immune evasion 10, 376 

Q498R increasing binding affinity to ACE2, and the furin cleavage site H655Y, P681H associated 377 

with increased transmissibility and the FP domain15. Both nsp3 and 3CLpro proteases have two 378 

mutations co-occurring with most of the Spike and envelope mutations including the N-terminal 379 

K856R and the C-terminal A2710T for nsp3 and P3395H and I3758V for 3CLPro. Structural 380 

envelope proteins are present with three, two and one mutation each (M, NC and, respectively). 381 

Notably, only E and M appear to co-occur extensively with Spike and protease mutations. NC 382 

has two ancestral mutations that are not new to Omicron but are linked to increased sub-genomic 383 

RNA expression including R203K and G204R that selectively co-occur only with protease 384 

mutations, M and one Spike mutation including N856K generating an alternative cleavage site 385 

for host SKI-1/S1P serine protease. Finally, there are two mutations presenting an exclusive co-386 

occurrence pattern, T3255I on nsp4 that co-occurs only with the Spike/ACE2 G496S mutation, 387 

Spike T95I co-occurring with the same ACE2 mutation (G496S), and N501Y in nsp6 only co-388 

occurring with protease mutations, Spike N856K and Q19E in M. The implications of these 389 

exclusive co-occurrence patterns are presently unclear and need further investigation. 390 

Overall, the emerging pattern of co-occurrences for Omicron BA.1 combined with EWAD 391 

predictions suggest that this unique combination of variants provides the basis for a coordinated 392 

attack on the host to improve spread in the population with an associated risk of increased 393 

pathology where the emergent pattern is more complex and mutation-rich than previous VOCs. 394 

It shows clear regularities that include 1) the selective association of the cluster of Spike 395 

mutations with protease and envelope mutations, and 2) the presence of selective co-occurrence 396 
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sub-patterns involving specific mutations in different components contributing to the viral 397 

lifecycle. 398 

New mutations in BA.4, BA.5, and BA.2.75 399 

At time of submission, BA.1 and BA.2, the most recent dominant strains considered in this paper, 400 

have been largely supplanted by two new Omicron sub-lineages; BA.4 and BA.5. It has been 401 

suggested that these VOCs are more transmissible and have higher immune evasion capabilities 402 

16, although new lineages of BA.2 – namely BA.2.75 – are gaining attention 17. In Fig. S27, we 403 

can see a comparison of the prevalence of all mutations (with > 75% prevalence in at least one 404 

of the sub-lineages) in the six main Omicron sub-lineages. In these mutations, and their relations 405 

to the host-pathogen response, lies the answer to where the spread and pathology turns next, 406 

something EWAD can be an important tool in discovering. See Discussion. 407 

Supplementary figure legends 408 

Fig. S1 409 

Linear correlations. A-B. Linear correlation composite variables IR and FR with genomic 410 

position of variants (A, B). C-D. Linear correlation of composite variables IR and FR with 411 

themselves (C, scaled IR and FR; D, log-transformed IR and FR). Summary: We focused on two 412 

important indicators of the pandemic to derive two composite variables, allele frequency (AF)-413 

weighted IR and FR, that can be estimated for each viral variant and serve as input for genome-414 

wide SCV analysis (WGA) as output (see Results). A linear correlation analysis between the IR 415 

and FR variables and genomic position shows that there is no detectable correlation between 416 

allele frequency-weighted IR and FR with genomic position or between themselves. These 417 

results indicate that a basic linear correlation fails to provide a meaningful description of genome 418 

architecture features contributing to either spread or pathology driving the pandemic. 419 

Fig. S2 420 
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Allele phenotype landscapes across the pandemic timeline for all VOCs. Select images 421 

annotated with Beta VOC signature mutations from Movie S3. A. Six tri-monthly time-points 422 

between May 2020 and August 2021 detailed as in Results (Fig. 2A). B-C. Average distance in 423 

the x,y-axis coordinates and average spatial variance of FR (z-axis) coordinate between Beta 424 

VOC signature mutations for the six time-points shown in (A). Grey ribbons mark the 95% 425 

confidence interval. 426 

Fig. S3 427 

Allele phenotype landscapes across the pandemic timeline for all VOCs annotated with 428 

Gamma signature mutations from Movie S4. A. Six tri-monthly time-points between May 2020 429 

and August 2021 detailed as in Results (Fig. 4A). B-C. Average distance in the x,y-axis 430 

coordinates and average spatial variance of FR (z-axis) coordinate between Gamma VOC 431 

signature mutations for the six time-points shown in (A). Grey ribbons mark the 95% confidence 432 

interval. Summary: For Beta and Gamma VOCs we observe more of a mixed behavior over time 433 

compared to the trajectories of Alpha and Delta (see Results Fig. 2,3) with only few mutations 434 

(e.g., 501N->Y) moving in high IR, low FR clusters at later time-points. 435 

Fig. S4 436 

Distribution of VOC frequencies. A. VOC relative frequencies between 9/27/20 and 9/13/21 437 

(colored by VOC and normalized to 100% at each time point with 4000 sequences randomly 438 

sampled from the full distribution). Alpha VOC, Beta VOC, Gamma VOC, Delta VOC. Lower red 439 

bands on the right side of graph are Delta sub-lineages (B.1.617.2.x or AY.x). B. Cumulative 440 

sequence count over time for the four VOCs indicated in (A). Bars show the number of new 441 

sequences on GISAID over time, binned by epi-week. The line shows the cumulative number of 442 

sequences over time. 443 

Fig. S5 444 
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Genome-wide co-occurrence matrix enriched in VOCS. A. A co-occurrence matrix was 445 

generated for all ~30,000 bp positions in the SARS-CoV-2 genome as described in Methods. 446 

Values on the axes are genomic coordinates (in nucleotide positions, NT) for the reference 447 

SARS-CoV-2 genome. Cumulative co-occurrence counts (in log10 scale) are reported at each 448 

location in blue gradient scale. Regions corresponding to viral genes are labeled on top (blue). 449 

Locations of VOC co-occurrences observed at this time point are highlighted as colored empty 450 

shapes: black circles for Alpha, magenta hexagons for Beta, green squares for Gamma and red 451 

diamonds for Delta. Highlighted in red are regions highly relevant for the VOCs: Region I 452 

(centered around nsp3), Region II (Spike to NC), Region III (“crosstalk”: co-occurrences between 453 

genomic positions in Region I and II). Regions I-III include only the genomic ranges in which the 454 

sets of defining VOCs occur giving us a more focused insight on the emergence. The co-455 

occurrence matrix shown is for Nov 15, 2020.Reported are four time-points, each corresponding 456 

to the first time a full set of co-occurrences is observed for each VOC (B, 9/22/20 (Alpha); C, 457 

10/20/20 (Beta); D, 12/22/20 (Gamma); ED, 3/2/21 (Delta)). For each quadrant, we report three 458 

subsets of the full co-occurrence matrix that represent regions relevant for the VOCs: Region I 459 

(centered around nsp3), Region II (Spike to NC), Region III (“crosstalk”: co-occurrences between 460 

I and II). The line plots in the lower right corner of each panel are the same as in (Fig. 4,5) that 461 

show cumulative co-occurrence counts and co-occurrence density over time for the four VOCs 462 

and are reported here for temporal reference, with the dashed red line over the line plots marking 463 

the date corresponding to each quadrant. Summary of results: Temporal analysis of the global 464 

co-occurrence matrix yields many insights for the evolving search strategy developed by current 465 

VOCs. In particular, different VOCs tend to sample different regions of the co-occurrence space 466 

at different times and in unique temporal patterns with minimal overlap. The few exceptions that 467 

occur include the co-occurrence hubs like the RBM-furin cleavage co-occurrence hub (indicated 468 

by the star in the figure) are key co-occurring mutations that appear to be critical for all VOCs. 469 

The efficiency and coverage in exploring the space of all possible mutational co-occurrences 470 
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appear to be correlated with the time spent for intermediate acquisition of co-occurrence, with 471 

Alpha-Beta VOCs < Gamma VOC << Delta VOC where the Delta VOC displays a systematic, 472 

grid-like predatory exploration of mutational co-occurrences in the crucial Spike-NC region, 473 

possibly related to its overwhelming success driving an early stage of the SARS-CoV-2 spread 474 

and pathology. 475 

Fig. S6 476 

EWAD analysis for Alpha and Beta VOCs. A. A line plot reporting the average co-occurrence 477 

of Alpha VOC signature mutations is shown in the upper left corner, together with numbers (1-478 

6) highlighting the time-points discussed in the Results and Supplementary Results. A zoom 479 

inset (A) shows the expanded time window between 10/10 and 11/14/20 (points 1-3). For each 480 

of the six time-points, a corresponding allele phenotype landscape with signature Alpha VOC 481 

mutations is reported together with a bar plot showing FR residuals for the same mutations (1-482 

6). FR residuals for a specific mutation are the difference between the observed and predicted 483 

FR values (see Results Fig. 6). B. Beta follows the same layout as in (A) with a line plot of 484 

average co-occurrence for Beta VOC signature mutations on top and relevant time-points (1-6) 485 

highlighted. For each of the time-points, an allele phenotype landscape annotated with Beta 486 

signature mutations and a bagplot of FR residuals for the same mutations is shown. For both (A, 487 

Alpha VOC) and (B, Beta VOC), details for generation of the allele phenotype landscapes are 488 

the same as described in Results Fig. 2,3. Summary of results: Co-occurrence analysis alone 489 

(Fig. 8 legend) is not able to inform whether a certain combination of mutations will eventually 490 

result in a VOC. We performed a joint analysis of the indicated Alpha and Beta VOCs (see Fig. 491 

S7 for Gamma and Delta VOCs) by tracking their mutations simultaneously through allele 492 

phenotype landscapes over time to assess whether GP-based SCV relationships defined in the 493 

context of co-occurrences (see Results section ‘Integrating VOC co-occurrences with GP 494 

residuals: an early warning anomaly detection (EWAD) system’) could be used as an early 495 
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warning anomaly detection (EWAD) monitoring system for variant change surveillance. The 6 496 

time-points selected cover the flat, early, and sustained co-occurrence growth phases for each 497 

VOC. For Alpha VOC, even with a low number of detections, mean FR residuals appear to 498 

respond quite sensitively to changes in the growth regime, with the collective signal defined by 499 

the mean FR residuals changing significantly during the early phase of the transition (inset, upper 500 

left corner, numbers 1, 2), reaching a maximum (inset, upper left corner, 3) then attenuating 501 

when the variation enters a steady state. The pattern observed for Alpha VOC is specific and 502 

statistically significant. A similar statistically significant EWAD for the Beta VOC is observed (B), 503 

although less early and less pronounced than with Alpha VOC. Residuals reveal a coordinated 504 

behavior which does not occur by chance based on empirical randomization. 505 

Fig. S7 506 

EWAD analysis for Gamma and Delta VOCs. A, B. A line plot reporting the average co-507 

occurrence of signature mutations is shown in the inset in the upper left corner (A, Gamma VOC; 508 

B, Delta VOC), together with numbers (1-6) highlighting the time-points that correspond to the 509 

flat, early, and sustained co-occurrence growth phases discussed in the Results and 510 

Supplementary Results. For each of the 6 time-points, corresponding allele phenotype 511 

landscapes with signature VOC mutations are reported, together with a bar plot showing FR 512 

residuals for the same mutations. For both (A, Gamma VOC) and (B, Delta VOC), details for 513 

generation of the allele phenotype landscapes are the same as described in Results Fig. 2,3. 514 

Figure layout and details are the same as for Results Fig. 6. Summary of results: The later 515 

Gamma and Delta VOCs show a coordinated, early change in signs and magnitude of mean FR 516 

residuals corresponding to increased number of detections as measured through a change in 517 

slope of the average co-occurrence curve (inset, upper left corner (A, B). For these 2 later VOCs, 518 

the mean FR residuals switch to negative where predicted < observed FR values, instead of 519 

positive values seen in the early Alpha and Beta VOCs. One possibility could reflect the later 520 
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time-points at which the EWAD signal reflecting mean FR residuals is detected for these VOCs. 521 

Since the later allele phenotype landscapes show fewer high-FR (red) clusters most predicted 522 

FRs for VOC mutations start with lower values giving rise to the predicted < observed FR values 523 

and negative residuals. The combined analysis using GP-based SCV relationships residuals in 524 

the context of co-occurrences is an effective EWAD for each the VOCs. Such a system could be 525 

implemented into real- time monitoring applications for variant surveillance. 526 

Fig. S8 527 

Comparison of mutation sets for Alpha, Beta, Gamma, and Delta VOCs to five randomly 528 

selected sets of mutations. (A) We compared each of 5 randomly selected groups of mutations 529 

(labelled ‘RND[a-e]’ on the horizontal axis) against the 4 VOCs (labelled ‘VOC-[a-d]’ for Alpha, 530 

Beta, Gamma, Delta respectively along the horizontal axis). The vertical axis counts how often 531 

the FR residues for each mutation set change significantly (>0.1 absolute change in residuals, 532 

in line with the PAL definition heuristics) from time point to time point, over the time period 533 

examined. This total is calculated for each mutation within the five groups, and their distribution 534 

plotted in a boxplot. Statistically, the VOC FR residuals (VOC-[a-d]) change more often than the 535 

randomly chosen mutation sets (RND-[a-e]) – with a Welch two sample t-test showing that their 536 

median number of significant residual changes per mutation across the time period are 537 

significantly higher (p = 0.00282) with median VOCs number of changes being 6.125 in contrast 538 

to median RNDs being 2.600. These results indicate that the VOC mutations display strong 539 

signals as they emerge over time, with consistently higher shifts in the residuals – a key part of 540 

the PALs defined here. A random set of mutations does not display the same behavior, with the 541 

residuals changing less severely over time. (B-C) To assess how the mutation sets differ at each 542 

time point across mutations, we examined the variance in FR residuals across the mutations 543 

within each mutation set. Shown are two plots quantitating time points along the x-axis and FR-544 

residual variance on the y-axis for the four VOCs (B) and for the five random mutation sets (C). 545 
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We can see a clear difference in the qualitative pattern of point distribution where the variance 546 

for the VOCs decreases over time (B) as the variants emerge, in striking contrast to a lack of a 547 

distinguishable pattern for the randomly chosen mutation sets (C) with the exception of RND-a, 548 

where a high variance is produced initially by mutants that do not appear in the data until later 549 

in the time points, thus a lower n. The differences clearly indicate that the residuals of a VOC 550 

are markedly different in their behavior from randomly chosen mutations – demonstrating the 551 

utility of FR residuals as the foundation for the PALs defined here.  552 

Fig. S9 553 

Bar plots of mean 𝐅𝐅𝐅𝐅 residuals used in EWAD analyses (see Results Fig. 6,7). Shown are 554 

representative sets of 15 randomly chosen mutations that are similar to the size of signature 555 

mutations for Alpha and Gamma VOC. Seven tri-weekly time-points between 11/17/20 and 556 

5/18/21 are reported. Summary: Unlike the mean FR residuals corresponding to VOC signature 557 

mutations that show a coordinated, early warning anomaly detection signal of potential use for 558 

variant surveillance, residuals here show a rather random behavior over time, not correlated with 559 

specific temporal events. The full analysis was repeated with thousands of random sets of 560 

mutations whose set size is the same as the VOC signature mutations considered here (10-15 561 

mutations) to determine if the EWAD results were statistically significant and unique to VOC, or 562 

if they were just a map-wide property that could be observed for any random set of mutations. 563 

Remarkably, a great majority of randomly selected mutations did not present any coordinated 564 

behavior at the level of FR residuals across the selected time window (empirical p-values < 10-3 565 

for all VOCs), providing evidence that the observed EWAD patterns are specifically associated 566 

with distinctive VOC mutations. These results have important implications for the future 567 

prediction of unknown VOCs prior to their emergence by focusing on emerging variants in the 568 

variant dark matter comprising high spread with either low or high pathology. 569 

Fig. S10 570 
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Bar plots of mean 𝐅𝐅𝐅𝐅 residuals used in EWAD analyses (see Results Fig. 6,7). Shown are 571 

representative sets of 10 randomly chosen mutations that are similar to the size of signature 572 

mutations for Beta and Delta VOC. Seven tri-weekly time-points between 11/17/20 and 5/18/21 573 

are reported. Summary: Unlike the mean FR residuals corresponding to VOC signature 574 

mutations that show a coordinated, early warning anomaly detection signal of potential use for 575 

variant surveillance, residuals here show a rather random behavior over time, not correlated with 576 

specific temporal events. The full analysis was repeated with thousands of random sets of 577 

mutations whose set size is the same as the VOC signature mutations considered here (10-15 578 

mutations) to determine if the EWAD results were statistically significant and unique to VOC, or 579 

if they were just a map-wide property that could be observed for any random set of mutations. 580 

Remarkably, a great majority of randomly selected mutations did not present any coordinated 581 

behavior at the level of FR residuals across the selected time window (empirical p-values < 10-3 582 

for all VOCs), providing evidence that the observed EWAD patterns are specifically associated 583 

with distinctive VOC mutations. These results have important implications for the future 584 

prediction of unknown VOCs prior to their emergence by focusing on emerging variants in the 585 

variant dark matter comprising high spread with either low or high pathology. 586 

Fig. S11 587 

EWAD analysis of ablated Alpha, Beta, Gamma, and Delta VOCs. Legend and details for this 588 

figure are identical to the EWAD profile panels (C,E,G,I) in Fig. 6. In each case, the mutations 589 

for the VOC in question are ablated or removed from the data set, and then the SCV analysis 590 

performed, residuals calculated, plotted, and compared to the results generated in the presence 591 

of the VOC mutations (Fig. 6). For the ablation study of Alpha, all Alpha VOC were omitted from 592 

the training set; for Beta, all Alpha and Beta VOC were removed; for Gamma, the VOC 593 

corresponding to Alpha, Beta and Gamma were omitted; finally, for Delta, Alpha, beta, Gamma, 594 

and Delta were removed from the training set. As can be seen by comparison with Fig. 6, the 595 
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results are near-identical. This shows that the inclusion of a particular VOC does not affect the 596 

predictions and that the model is capable of making valuable early warning predictions for VOCs. 597 

Indeed, the strength of the EWAD model lies in its use of all of the data at hand to predict the 598 

single – the trajectory of the emergent VOC. 599 

Fig. S12 600 

Time-lapse snapshots of viral genome allele phenotype landscapes between 8/15/21 and 601 

1/15/22, annotated with Omicron BA.1 signature mutations. A. 6 bi-monthly time-points 602 

between August 2021 and January 2022 are shown. IR and FR are log-transformed, genomic 603 

position is scaled to a 0-1 interval. Vertical dotted blue lines are boundaries between SARS CoV-604 

2 proteins annotated on the top axis. Input variants are in shaded color with dot sizes proportional 605 

to allele frequency of the mutations. Contour lines are drawn at the 10% and 25% of global 606 

variance estimated for model predictions. B. (left panel). Average distance between Omicron 607 

signature mutations where distance in the x,y-axis coordinates is defined as in Results Fig. 1B 608 

for the 6 time-points shown in (A). The grey ribbon marks the 95% confidence interval. B. (right 609 

panel). Average spatial variance of FR (z-axis) coordinate between Omicron BA.1 signature 610 

mutations for the same time-points. Grey ribbon marks the 95% confidence interval. 611 

Fig. S13 612 

Genome-wide co-occurrence (co-occurrence) matrices across the entire SARS-CoV-2 613 

pandemic timeline, reported on 3/15/20. For each co-occurrence matrix heatmap, values on 614 

the axes are genomic coordinates (in bps) for the reference Wuhan SARS-CoV-2 genome. 615 

Cumulative co-occurrence counts (in log10 scale) are reported at each location in blue gradient 616 

scale. Regions corresponding to viral genes are labeled on top (blue). Locations of VOC co-617 

occurrences observed at this time point are highlighted as colored empty shapes (Alpha, black 618 

circles; Beta, magenta hexagons; Gamma, green squares; Delta, red diamonds). Summary of 619 

results: The representative genome-wide co-occurrence matrices heatmaps show the mutation 620 
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co-occurrence landscape during the early, mid-, and late stages of the pandemic. For example, 621 

on 3-15-202, the most common mutations are allele changes encoding D614G in Spike and 622 

P471L in the catalytic subunit of the RNA-dependent RNA polymerase (RdRp/nsp12). These 623 

mutations were established early and co-occur with almost every other SARS-CoV-2 mutation, 624 

thus appearing as horizontal/vertical bands on the heatmap, which otherwise exhibits a rather 625 

sparse structure with occasional co-occurrence hotspots. Co-occurrence sparsity is not uniform 626 

across the viral genome, although as the pandemic proceeds, co-occurrence becomes very 627 

noticeable across the entire genome. 628 

Fig. S14. 629 

Genome-wide co-occurrence (co-occurrence) matrices across the entire SARS-CoV-2 630 

pandemic timeline, reported on 5/15/20. For each co-occurrence matrix heatmap, values on 631 

the axes are genomic coordinates (in bps) for the reference Wuhan SARS-CoV-2 genome. 632 

Cumulative co-occurrence counts (in log10 scale) are reported at each location in blue gradient 633 

scale. Regions corresponding to viral genes are labeled on top (blue). Locations of VOC co-634 

occurrences observed at this time point are highlighted as colored empty shapes (Alpha, black 635 

circles; Beta, magenta hexagons; Gamma, green squares; Delta, red diamonds). Summary of 636 

results: The representative genome-wide co-occurrence matrices heatmaps show the mutation 637 

co-occurrence landscape during the early, mid-, and late stages of the pandemic. For example, 638 

on 3-15-2020 (Fig. S13), the most common mutations are allele changes encoding D614G in 639 

Spike and P471L in the catalytic subunit of the RNA-dependent RNA polymerase (RdRp/nsp12). 640 

These mutations were established early and co-occur with almost every other SARS-CoV-2 641 

mutation, thus appearing as horizontal/vertical bands on the heatmap, which otherwise exhibits 642 

a rather sparse structure with occasional co-occurrence hotspots. Co-occurrence sparsity is not 643 

uniform across the viral genome, although as the pandemic proceeds, co-occurrence becomes 644 

very noticeable across the entire genome. 645 
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Fig. S15 646 

Genome-wide co-occurrence (co-occurrence) matrices across the entire SARS-CoV-2 647 

pandemic timeline, reported on 7/15/20. For each co-occurrence matrix heatmap, values on 648 

the axes are genomic coordinates (in bps) for the reference Wuhan SARS-CoV-2 genome. 649 

Cumulative co-occurrence counts (in log10 scale) are reported at each location in blue gradient 650 

scale. Regions corresponding to viral genes are labeled on top (blue). Locations of VOC co-651 

occurrences observed at this time point are highlighted as colored empty shapes (Alpha, black 652 

circles; Beta, magenta hexagons; Gamma, green squares; Delta, red diamonds). Summary of 653 

results: The representative genome-wide co-occurrence matrices heatmaps show the mutation 654 

co-occurrence landscape during the early, mid-, and late stages of the pandemic. For example, 655 

on 3-15-2020 (Fig. S13), the most common mutations are allele changes encoding D614G in 656 

Spike and P471L in the catalytic subunit of the RNA-dependent RNA polymerase (RdRp/nsp12). 657 

These mutations were established early and co-occur with almost every other SARS-CoV-2 658 

mutation, thus appearing as horizontal/vertical bands on the heatmap, which otherwise exhibits 659 

a rather sparse structure with occasional co-occurrence hotspots. Co-occurrence sparsity is not 660 

uniform across the viral genome, although as the pandemic proceeds, co-occurrence becomes 661 

very noticeable across the entire genome. 662 

Fig. S16 663 

Genome-wide co-occurrence (co-occurrence) matrices across the entire SARS-CoV-2 664 

pandemic timeline, reported on 9/15/20. For each co-occurrence matrix heatmap, values on 665 

the axes are genomic coordinates (in bps) for the reference Wuhan SARS-CoV-2 genome. 666 

Cumulative co-occurrence counts (in log10 scale) are reported at each location in blue gradient 667 

scale. Regions corresponding to viral genes are labeled on top (blue). Locations of VOC co-668 

occurrences observed at this time point are highlighted as colored empty shapes (Alpha, black 669 

circles; Beta, magenta hexagons; Gamma, green squares; Delta, red diamonds). Summary of 670 
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results: The representative genome-wide co-occurrence matrices heatmaps show the mutation 671 

co-occurrence landscape during the early, mid-, and late stages of the pandemic. For example, 672 

on 3-15-2020 (Fig. S3), the most common mutations are allele changes encoding D614G in 673 

Spike and P471L in the catalytic subunit of the RNA-dependent RNA polymerase (RdRp/nsp12). 674 

These mutations were established early and co-occur with almost every other SARS-CoV-2 675 

mutation, thus appearing as horizontal/vertical bands on the heatmap, which otherwise exhibits 676 

a rather sparse structure with occasional co-occurrence hotspots. Co-occurrence sparsity is not 677 

uniform across the viral genome, although as the pandemic proceeds, co-occurrence becomes 678 

very noticeable across the entire genome. 679 

Fig. S17 680 

Genome-wide co-occurrence (co-occurrence) matrices across the entire SARS-CoV-2 681 

pandemic timeline, reported on 11/15/20. For each co-occurrence matrix heatmap, values on 682 

the axes are genomic coordinates (in bps) for the reference Wuhan SARS-CoV-2 genome. 683 

Cumulative co-occurrence counts (in log10 scale) are reported at each location in blue gradient 684 

scale. Regions corresponding to viral genes are labeled on top (blue). Locations of VOC co-685 

occurrences observed at this time point are highlighted as colored empty shapes (Alpha, black 686 

circles; Beta, magenta hexagons; Gamma, green squares; Delta, red diamonds). Summary of 687 

results: The representative genome-wide co-occurrence matrices heatmaps show the mutation 688 

co-occurrence landscape during the early, mid-, and late stages of the pandemic. For example, 689 

on 3-15-2020 (Fig. S13), the most common mutations are allele changes encoding D614G in 690 

Spike and P471L in the catalytic subunit of the RNA-dependent RNA polymerase (RdRp/nsp12). 691 

These mutations were established early and co-occur with almost every other SARS-CoV-2 692 

mutation, thus appearing as horizontal/vertical bands on the heatmap, which otherwise exhibits 693 

a rather sparse structure with occasional co-occurrence hotspots. Co-occurrence sparsity is not 694 

uniform across the viral genome, although as the pandemic proceeds, co-occurrence becomes 695 

very noticeable across the entire genome. 696 
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Fig. S18 697 

Genome-wide co-occurrence (co-occurrence) matrices across the entire SARS-CoV-2 698 

pandemic timeline, reported on 1/15/21. For each co-occurrence matrix heatmap, values on 699 

the axes are genomic coordinates (in bps) for the reference Wuhan SARS-CoV-2 genome. 700 

Cumulative co-occurrence counts (in log10 scale) are reported at each location in blue gradient 701 

scale. Regions corresponding to viral genes are labeled on top (blue). Locations of VOC co-702 

occurrences observed at this time point are highlighted as colored empty shapes (Alpha, black 703 

circles; Beta, magenta hexagons; Gamma, green squares; Delta, red diamonds). Summary of 704 

results: The representative genome-wide co-occurrence matrices heatmaps show the mutation 705 

co-occurrence landscape during the early, mid-, and late stages of the pandemic. For example, 706 

on 3-15-2020 (Fig. S13), the most common mutations are allele changes encoding D614G in 707 

Spike and P471L in the catalytic subunit of the RNA-dependent RNA polymerase (RdRp/nsp12). 708 

These mutations were established early and co-occur with almost every other SARS-CoV-2 709 

mutation, thus appearing as horizontal/vertical bands on the heatmap, which otherwise exhibits 710 

a rather sparse structure with occasional co-occurrence hotspots. Co-occurrence sparsity is not 711 

uniform across the viral genome, although as the pandemic proceeds, co-occurrence becomes 712 

very noticeable across the entire genome. 713 

Fig. S19 714 

Genome-wide co-occurrence (co-occurrence) matrices across the entire SARS-CoV-2 715 

pandemic timeline, reported on 3/15/21. For each co-occurrence matrix heatmap, values on 716 

the axes are genomic coordinates (in bps) for the reference Wuhan SARS-CoV-2 genome. 717 

Cumulative co-occurrence counts (in log10 scale) are reported at each location in blue gradient 718 

scale. Regions corresponding to viral genes are labeled on top (blue). Locations of VOC co-719 

occurrences observed at this time point are highlighted as colored empty shapes (Alpha, black 720 

circles; Beta, magenta hexagons; Gamma, green squares; Delta, red diamonds). Summary of 721 
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results: The representative genome-wide co-occurrence matrices heatmaps show the mutation 722 

co-occurrence landscape during the early, mid-, and late stages of the pandemic. For example, 723 

on 3-15-2020 (Fig. S13), the most common mutations are allele changes encoding D614G in 724 

Spike and P471L in the catalytic subunit of the RNA-dependent RNA polymerase (RdRp/nsp12). 725 

These mutations were established early and co-occur with almost every other SARS-CoV-2 726 

mutation, thus appearing as horizontal/vertical bands on the heatmap, which otherwise exhibits 727 

a rather sparse structure with occasional co-occurrence hotspots. Co-occurrence sparsity is not 728 

uniform across the viral genome, although as the pandemic proceeds, co-occurrence becomes 729 

very noticeable across the entire genome. 730 

Fig. S20 731 

Genome-wide co-occurrence (co-occurrence) matrices across the entire SARS-CoV-2 732 

pandemic timeline, reported on 5/15/21. For each co-occurrence matrix heatmap, values on 733 

the axes are genomic coordinates (in bps) for the reference Wuhan SARS-CoV-2 genome. 734 

Cumulative co-occurrence counts (in log10 scale) are reported at each location in blue gradient 735 

scale. Regions corresponding to viral genes are labeled on top (blue). Locations of VOC co-736 

occurrences observed at this time point are highlighted as colored empty shapes (Alpha, black 737 

circles; Beta, magenta hexagons; Gamma, green squares; Delta, red diamonds). Summary of 738 

results: The representative genome-wide co-occurrence matrices heatmaps show the mutation 739 

co-occurrence landscape during the early, mid-, and late stages of the pandemic. For example, 740 

on 3-15-2020 (Fig. S13), the most common mutations are allele changes encoding D614G in 741 

Spike and P471L in the catalytic subunit of the RNA-dependent RNA polymerase (RdRp/nsp12). 742 

These mutations were established early and co-occur with almost every other SARS-CoV-2 743 

mutation, thus appearing as horizontal/vertical bands on the heatmap, which otherwise exhibits 744 

a rather sparse structure with occasional co-occurrence hotspots. Co-occurrence sparsity is not 745 

uniform across the viral genome, although as the pandemic proceeds, co-occurrence becomes 746 

very noticeable across the entire genome. 747 
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Fig. S21 748 

Genome-wide co-occurrence (co-occurrence) matrices across the entire SARS-CoV-2 749 

pandemic timeline, reported on 8/15/21. For each co-occurrence matrix heatmap, values on 750 

the axes are genomic coordinates (in bps) for the reference Wuhan SARS-CoV-2 genome. 751 

Cumulative co-occurrence counts (in log10 scale) are reported at each location in blue gradient 752 

scale. Regions corresponding to viral genes are labeled on top (blue). Locations of VOC co-753 

occurrences observed at this time point are highlighted as colored empty shapes (Alpha, black 754 

circles; Beta, magenta hexagons; Gamma, green squares; Delta, red diamonds). Summary of 755 

results: The representative genome-wide co-occurrence matrices heatmaps show the mutation 756 

co-occurrence landscape during the early, mid-, and late stages of the pandemic. For example, 757 

on 3-15-2020 (Fig. S13), the most common mutations are allele changes encoding D614G in 758 

Spike and P471L in the catalytic subunit of the RNA-dependent RNA polymerase (RdRp/nsp12). 759 

These mutations were established early and co-occur with almost every other SARS-CoV-2 760 

mutation, thus appearing as horizontal/vertical bands on the heatmap, which otherwise exhibits 761 

a rather sparse structure with occasional co-occurrence hotspots. Co-occurrence sparsity is not 762 

uniform across the viral genome, although as the pandemic proceeds, co-occurrence becomes 763 

very noticeable across the entire genome. 764 

Fig. S22 765 

Evolution of the co-occurrence search strategies of the Delta VOC. Co-occurrence patterns 766 

for Delta highlighted within genome-wide co-occurrence matrices at additional time-point 767 

1/19/2021. Figure layout as in Results Fig. S13-21 with details and legend as described in 768 

legends therein). Summary: The full grid of Delta VOC co-occurrences is preceded, during the 769 

long exploratory phase by a L-shaped configuration of regularly spaced Delta co-occurrences 770 

with one horizontal sequence of co-occurrence at the 3’ end of NC and one vertical at ~23,000 771 

bp. These results suggest the possibility that the Delta VOC is running a systematic preliminary 772 
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exploration of the co-occurrence space prior to settling on the final stage for the full grid VOC 773 

configuration - marking the beginning of the wide-spread predatory behavior of the Delta variant. 774 

Fig. S23 775 

Evolution of the co-occurrence search strategies of the Delta VOC. Co-occurrence patterns 776 

for Delta highlighted within genome-wide co-occurrence matrices at additional time-point 777 

2/16/2021. Figure layout as in Results Fig. S13-21 with details and legend as described in 778 

legends therein. Summary: The full grid of Delta VOC co-occurrences observed is preceded, 779 

during the long exploratory phase by a L-shaped configuration of regularly spaced Delta co-780 

occurrences with one horizontal sequence of co-occurrence at the 3’ end of NC and one vertical 781 

at ~23,000 bp. These results suggest the possibility that the Delta VOC is running a systematic 782 

preliminary exploration of the co-occurrence space prior to settling on the final stage for the full 783 

grid VOC configuration - marking the beginning of the wide-spread predatory behavior of the 784 

Delta variant. 785 

Fig. S24 786 

Time lapse of viral genome GP maps across the pandemic timeline, annotated with 787 

signature mutations for the viral polymerase nsp12. Shown are six tri-monthly time-points 788 

between 5/15/2020 and 8/15/2021. IR and FR are log-transformed, genomic position is scaled to 789 

a 0-1 interval. Vertical dotted blue lines are boundaries between SARS CoV-2 proteins, 790 

annotated on the top axis. Input variants are in shaded color, with dot sizes proportional to allele 791 

frequency of the mutations. A set of 45 distinctive Nsp12 mutations (see Methods) is annotated 792 

with black dots and labels on each GP-based allele phenotype landscape. Summary: GP 793 

analysis focusing on distinctive mutations affecting the nsp12 polymerase subunit reveals that 794 

G671S plays a prominent role in creating a Delta VOC reconfiguration over time. 795 

Fig. S25 796 
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Co-occurrence patterns for Omicron BA.1 highlighted within genome-wide co-occurrence 797 

matrices heatmaps. A-D. Reported are 4 time-points: (A) 8/15/21 (beginning of Omicron co-798 

occurrence data analysis); (B) 10/15/21 (before the leap in co-occurrence density as in Results 799 

Fig. 7B); (C) 11/15/21 (after the leap in co-occurrence density, Results Fig. 7B); (D) 1/15/22 800 

(last time point available). Values on the axes are genomic positions (bps) for the reference 801 

Wuhan SARS-CoV-2 genome. Cumulative co-occurrence counts (in log10 scale) are reported at 802 

each location in the blue gradient scale. Regions corresponding to viral genes are labeled on 803 

top (blue). For each co-occurrence matrix heatmap, red markers highlight co-occurring mutations 804 

that are new with respect to the previous date examined (e.g., the red markers on 10/15/21 805 

matrix are co-occurring mutations whose count is above zero as of 10/15/21 but were zero in 806 

the previous iteration (8/15/21)). Black markers highlight co-occurrences that were already 807 

present on the previous date. 808 

Fig. S26 809 

Co-occurrence patterns for combined Omicron VOC highlighted over the genome-wide 810 

co-occurrence matrix, as of 11/15/21. A. Values on the axes are genomic coordinates (in 811 

genomic positions (bp)) for the reference Wuhan SARS-CoV-2 genome. Cumulative co-812 

occurrence counts (in log10 scale) are reported at each location in blue gradient scale. Regions 813 

corresponding to viral genes are labeled on top (blue). Locations of Omicron co-occurrences 814 

observed up to 10/15/21 are marked as black diamonds; Omicron co-occurrences added 815 

between 10/15/21 and 11/15/21 are highlighted as red diamonds. B. Representative co-816 

occurrence matrix showing co-occurrence counts between Omicron VOC signature mutations 817 

added between 10/15/21 and 11/15/21 (corresponding to red diamonds in the global co-818 

occurrence visualization in (A)). 819 

Fig. S27 820 
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Mutation comparison across Omicron lineages Figures (adapted from outbreak.info22). 821 

Showing all mutations in all SARS-CoV-2 proteins with > 75% prevalence in at least one of BA.1, 822 

BA.2, BA.3, BA.4, BA.5, or BA.2.75 Omicron lineages. Note new mutations between the earlier 823 

(BA.1-3) and later (BA.4-5, BA.2.75) in mutations – Spike L452R is present in both BA.4 and 824 

BA.5 but not in BA.1, for example, and is the only mutation designated a VOI or VOC in the BA.4 825 

and BA.5 sublineages. This points to a less than obvious reason why these two sub-lineages 826 

have dominated cases, but with a lower fatality, something that EWAD can investigate by 827 

focusing on the GP-based mean 𝑰𝑰𝑰𝑰 and 𝑭𝑭𝑰𝑰 residuals being capture in response to the 828 

surrounding residues impacting, for instance, Spike function. There are 39 mutations in total that 829 

are absent in one or both of BA.1 and BA.2, but present in one or more of BA.4, BA.5, and 830 

BA.2.75 (outlined in red). Notably, a higher proportion of mutations (when compared to the 831 

prevalence of all Omicron mutations) in the three newer sublineages occur in ORF1ab, 832 

responsible for transcription and replication (https://www.ncbi.nlm.nih.gov/gene/43740578), 833 

suggesting a possible reasons for that these sub-lineages’ have higher transmissibility. 834 

https://www.ncbi.nlm.nih.gov/gene/43740578
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