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ABSTRACT

Mental health disorders (MHDs) have significant medical and financial impacts on patients and society. Despite the potential opportunities for artifi-
cial intelligence (AI) in the mental health field, there are no noticeable roles of these systems in real medical environments. The main reason for these 
limitations is the lack of trust by domain experts in the decisions of AI-based systems. Recently, trustworthy AI (TAI) guidelines have been proposed 
to support the building of responsible AI (RAI) systems that are robust, fair, and transparent. This review aims to investigate the literature of TAI for 
machine learning (ML) and deep learning (DL) architectures in the MHD domain. To the best of our knowledge, this is the first study that analyzes 
the literature of trustworthiness of ML and DL models in the MHD domain. The review identifies the advances in the literature of RAI models in 
the MHD domain and investigates how this is related to the current limitations of the applicability of these models in real medical environments. 
We discover that the current literature on AI-based models in MHD has severe limitations compared to other domains regarding TAI standards and 
implementations. We discuss these limitations and suggest possible future research directions that could handle these challenges.
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INTRODUCTION

Mental health disorders (MHDs) are conditions that have 
a clinically significant disturbance, distress, or impairment 
in a patient’s functioning, thinking, personality, cognition, 
emotional regulation, feeling, behavior, or mood (WHO, 
2021). World Health Organization (WHO) estimated that 
MHDs will become the second leading cause of disability 
in the future (Alghadeer et al., 2018). In 2010, MHDs were 
the worldwide leading causes of years lived with disability, 
especially depression and anxiety (Garcia-Ceja et al., 2018). 
In 2017, MHDs represented 14.4% of the disabilities world-
wide (Christensen et al., 2020). A 2017 US report stated that 
46.6 million adults were affected by an MHD, which was 
nearly 20% of the US population (Thieme et al., 2020). Also, 
38.2% of the European population suffers from some form 
of mental disorder (Rivera et al., 2022). In 2019, 970 mil-
lion patients, i.e. one in every eight persons, had at least one 

mental disorder, and the disorders were especially anxiety 
and depression (Institute for Health Metrics and Evaluation, 
2023). In 2019, 301 million patients were living with an 
 anxiety disorder, 280 million patients had depression, 40 
million patients had bipolar disorder, 14 million patients had 
eating disorders, and 40 million patients had conduct-disso-
cial disorder (Institute for Health Metrics and Evaluation, 
2023). In 2020 and because of COVID-19, the number of 
anxiety and depressive patients increased significantly 
(WHO, 2022). In 2019 and based on the global burden of 
diseases, MHDs are considered among the top 10 causes of 
burden globally (GBD, 2019 Mental Disorder Collaborators, 
2022). In 2020, 51.2% of females and 37.4% of males in 
the United States received mental health services (National 
Institute of Mental Illness, 2023). The percentage of US 
adults receiving mental health treatment increased from 
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19.2% in 2019 to 21.6% in 2021 (National Center for Health 
Statistics, 2022). Notably, depression is estimated to affect 
350 million people worldwide (Abd Rahman et al., 2020). 
Depression (280 million people) and anxiety (301 million 
people) have an estimated global economic impact of $1 tril-
lion every year (National Alliance in Mental Illness, 2023). 
In the Arab region, approximately 200 million Arab youth 
live with MHDs (Maalouf et al., 2019). Studies reported that 
some MHDs are highly prevalent in Saudi Arabia (Altwaijri 
et al., 2023). It is estimated that 12 billion productive work-
days are lost yearly because of depression and anxiety alone 
(Cuijpers et al., 2023). The global spending on poor quality 
mental health services amounted to an estimated $2.5 trillion 
in 2010, with projections showing a surge to $6 trillion by 
2030 (The Lancet Global Health, 2020).

There are many types of MHD including mental disor-
ders and psychosocial disabilities. These disorders include 
neurodevelopmental, disruptive behavior and dissocial, 
schizophrenia, stress, personality (e.g. bipolar), mood (e.g. 
depression), delusional, and anxiety disorders, to name a 
few. Due to patient mortality that occurs prior to diagnosis, 
treatment, and management of illnesses, there is a substan-
tial lag in the identification and management of MHDs (Tan 
et al., 2022). These MHDs have serious consequences not 
just for patients, but also for their families, friends, and soci-
ety. There are effective prevention and treatment options 
for MHDs; however, patients usually do not have access to 
effective care, especially in Arab countries (Altwaijri et al., 
2023). So, more effective mental healthcare is urgently 
needed. The WHO’s comprehensive mental health action 
plan 2013-2030 recognizes the critical role of information 
systems and data analysis in the management of mental 
disorders.

MHDs are highly prevalent and have enormous burden 
and huge economic costs; however, globally, the mental 
health services fail to meet the needs of an average of 29% 
of patients (70% in high-income and 12% in low-income 
countries) (Cuijpers et al., 2023). Information and commu-
nication technologies including artificial intelligence (AI) 
technologies have excellent potential to fill the gap in the 
current MHD management (Thieme et  al., 2020). These 
tools can support the early and accurate diagnosis of MHDs 
which could improve the quality of life of patients (Su et al., 
2020; Rivera et al., 2022). Diagnosis of MHDs is different 
from that of other chronic diseases because the diagnosis 
process is mainly based on the patient’s self-report to spe-
cific questionnaires to detect specific patterns of feelings or 
social interactions. For handling these issues, Saudi Arabia 
developed a patient-centered model of care as a part of the 
Vision 2030 for national health which aims to develop people 
socially, mentally, and physically. The chronic care system of 
this model includes mental health. These systems support the 
availability of big data for individual’s mental health status 
which support the building of AI, machine learning (ML), 
and deep learning (DL) systems for improving the under-
standing of MHDs and assisting physicians for improved 
clinical decision-making. Meanwhile, ML/DL-based sys-
tems have been used in various domains.

There is huge literature on ML/DL models for mental 
disorder diagnosis, prediction, monitoring, and treatment 

(Garcia-Ceja et al., 2018; Chung and Teo, 2022; Garg, 2023). 
However, there is very little effect or use of these models 
in the real medical environments like hospitals and medical 
centers. The main reason for these limitations is model trust-
worthiness. AI-based systems were discovered to be vulner-
able to attacks, biased against sensitive groups, lacking user 
privacy, prone to instability, and suffering from stochasticity 
which degrade user experience and reduce society’s trust in 
these systems. In addition, the recent ML/DL models are 
black boxes where the user is not able to understand why 
a model has made specific decisions. ML/DL models learn 
medical knowledge from data that could be noisy, incomplete, 
inconsistent, and biased. As David Hume stated, there is no 
reason to expect the future to resemble the past (Stanford, 
2002), and interestingly we use historical data to predict the 
future. Medical decisions are mainly based on causality, but 
the principle of ML is to identify correlations, not causality. 
Medical experts are worried about their decreasing role in 
AI-based systems, and lack of human control over AI sys-
tems is a main concern for the experts. Moreover, ethical 
issues and accountability of AI decisions raise another sig-
nificant challenge (Ali et al., 2023). Although AI has great 
potential to solve real-world problems, applying these mod-
els in high-stakes domains like medicine poses significant 
risks for patients and physicians. Domain experts do not trust 
AI-based systems to make medical decisions because trust 
in the AI systems is not only about the model’s performance 
but also about the model’s robustness, fairness, transparency, 
privacy, security, etc. Medical experts need responsible AI 
(RAI)-based systems to be utilized in real settings. The lack 
of trustworthiness results in slower adoption of AI-based sys-
tems in real life. Trustworthy AI (TAI) is an AI system that is 
lawful, ethically adherent, and technically robust (Liu et al., 
2022; Kaur et al., 2023). The ethical development of AI sys-
tems must be established in each stage of the system devel-
opment lifecycle, i.e. design, development, deployment, and 
use. Many ethical frameworks, principles, regulations, and 
guidelines have been published recently to offer a compre-
hensive approach to support AI ethics and assist companies 
in designing, developing, deploying, and operating TAI sys-
tems (Buruk et al., 2020; Shneiderman, 2020; Sovrano et al., 
2020; Wickramasinghe et  al., 2020; Crockett et  al., 2021; 
Serban et al., 2021; Han and Choi, 2022). The resulting sys-
tems are called RAI systems. RAI is critically designed to 
get the trust of users including physicians, patients, caregiv-
ers, and the government. TAI and RAI are used interchange-
ably in this study.

Studying the status of TAI in specific domains and 
highlighting the limitations and future research direc-
tions is critical because it is the starting point for building 
AI-based applications that are applicable and accepted in 
the real world. We have studied the literature on TAI in the 
Alzheimer’s domain and discovered that TAI is the main 
reason for the current limitations in applying AI-based sys-
tems in this domain (El-Sappagh et  al., 2023). Studying 
the literature of RAI in the mental disorders domain and 
comparing it with the standards and requirements of RAI 
and with the literature of RAI in other domains is critical. 
Currently, there is a growing number of studies that provide 
ML/DL methods for MHD prediction and management. 
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However, to the best of our knowledge, no study in the 
MHD domain has analyzed the literature of TAI. For this 
reason, this literature review aims to characterize the state-
of-the-art of TAI and RAI topics for ML/DL models in the 
mental disorder domain to clarify its status and highlight 
the current research gaps that could boost the research in 
this critical domain. The contributions of the study can be 
summarized as follows:
• The study provides a review of RAI and TAI concepts and 

the related dimensions including robustness, fairness, and 
transparency based on the recent guidelines and protocols.

• The study then concentrated on investigating the literature 
of RAI in MHD. We review the state-of-the-art ML/DL 
studies in MHD that focused on model robustness issues 
including performance, uncertainty quantification and 
mitigation, validation, and model security and adversarial 
training.

• The study provides extensive reviews of the recent ML/
DL studies in the MHD domain that focused on model 
fairness issues including data balancing, algorithmic bias, 
data bias, and the solutions to these issues.

• We studied the literature of explainable AI (XAI) in the 
MHD domain and highlighted the used XAI techniques 
to provide different types of explainability for model 
decisions.

• We further studied the role of multimodal data to improve 
the robustness of ML models in MHD and the role of 
data fusion to provide medically intuitive ML models that 
mimic domain experts.

• We finally explored the limitations of the ML/DL literature 
in the MHD domain and highlighted the possible research 
directions that extend this literature to be trustworthy and 
more responsible. The directions are expected to improve 
the trust of the MHD domain experts in AI-based applica-
tions which boosts the applicability of the ML/DL-based 
systems in real medical environments.

This paper is structured as follows. The Related Work sec-
tion presents the surveys about the role of ML and DL in 
MHD diagnosis, prediction, monitoring, and management. 
The Methodology section discusses the methods that we 
followed to complete the survey. The Responsible Artificial 
Intelligence section 4 introduces the concepts of TAI and 
RAI. The RAI in the Literature section discusses the role 
of RAI in the literature. The RAI in Mental Disorder sec-
tion discusses the role of RAI in MHDs. The Challenges and 
Future Research Directions section discusses the limitations 
and the future research directions, and the Conclusion sec-
tion concludes the paper.

RELATED WORK

RAI is a crucial requirement to produce suitable ML and DL 
techniques for sensitive domains such as medicine. In this 
section, we evaluate the existing surveys of ML and DL tech-
niques in the MHD domain. We concentrate on trustworthy 
and RAI directions such as robustness, fairness, uncertainty 
quantification and mitigation, and explainability. Table 1 

shows a comparison of the 19 existing surveys of ML and 
DL literature pertaining to MHDs. In this table, we com-
pare the existing survey papers by checking if the survey has 
handled/provided (i) the ML or DL methods, (ii) the RAI 
requirements including fairness, robustness, and XAI, (iii) 
the multimodality, (iv) the datasets, (v) the type of handled 
task [i.e. disease detection (diagnosis), prediction, monitor-
ing, and medication], (vi) a comparison with the previous 
surveys, (vii) a systematic research methodo logy, (viii) the 
future research directions, and (ix) the type of discussed 
mental disorders. The table highlighted the critical gap of 
these surveys regarding the RAI requirements. There is no 
survey that discusses the current research literature of RAI 
in mental disorders diagnosis, prediction, monitoring, and 
 management. Khare et al. (2023) concentrated on the detec-
tion of nine MHDs using classical ML and DL models and 
physiological electroencephalogram (EEG), electrocardio-
gram (ECG), magnetoencephalography, electromyogram 
(EMG), electrooculogram, heart rate variability, and arterial 
oxygen saturation signal  modalities only. The study concen-
trated on the detection of diseases in children. In addition, 
the authors did not discuss the RAI in the study; however, 
they highlighted the uncertainty quantification and XAI 
requirement as crucial domains that need further investi-
gation in the future. Moreover, the study noticed that mul-
timodal data fusion improved the performance of ML/DL 
algorithms, but the study did not concede other modalities 
like images, text, sound, or structured data. De Bardeci et al. 
(2021) surveyed the convolutional neural network (CNN) 
and long short-term memory (LSTM)-based DL models 
for EEG signal processing for diagnosis and prediction of 
psychiatric disorders. Sui et al. (2020) provided a survey of 
classical ML models to predict mental disorders based on 
the neuroimaging data. The study highlighted the important 
role of longitudinal multimodal data fusion in improving 
the performance of classical ML algorithms. Greco et  al. 
(2023) reviewed the transformer-based language models for 
solving mental health problems based on text data modality 
only. The study highlighted the challenges of text data pro-
cessing that need further exploration including the semantic 
understanding of data using ontologies and the explainabil-
ity of complex models like transformers. Arji et al. (2023) 
reviewed the recent DL techniques such as LSTM and CNN 
for mental disorders including depression and mood recog-
nition analysis. Moura et al. (2020) and Garcia-Ceja et al. 
(2018) reviewed the ubiquitous monitoring techniques for 
mental health based on context data collected from ubiqui-
tous devices. Cho et al. (2019) reviewed the role of five clas-
sical ML techniques including K-nearest neighbor (KNN), 
gradient boosting machine, random forest (RF), support 
vector machines (SVMs), and naïve Bayes for diagnosing 
mental disorders. Ahmed et al. (2022a) reviewed the ML/
DL models [e.g. AdaBoost, CNN, gated recurrent unit, 
KNN, logistic regression (LR), LSTM, multilayer percep-
tron (MLP), RF, decision tree (DT), visual geometry group, 
and XGBoost] to detect anxiety and depression using social 
media data (Twitter, Facebook, Instagram, Reddit, and Sina 
Weibo), especially during the COVID-19 pandemic (2019-
2020). The study highlighted the critical role of XAI in 
enhancing the interpretability of deep black-box models. 
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However, the study did not investigate the XAI methods in 
the mental disorders domain. Similarly, Abd Rahman et al. 
(2020) and Malhotra and Jindal (2022) surveyed the liter-
ature for analyzing social media data to detect mental dis-
orders using text analysis techniques. Thieme et al. (2020) 
reviewed the role of human–computer interaction and ML 
techniques to improve the quality of managing MHDs. The 
study mentioned the critical role of RAI and highlighted 
the issues of RAI pertaining to fairness, uncertainty, and 
algorithmic interpretability. Chung and Teo (2022) and 
Graham et al. (2019) reviewed the role of classical ML in 
predicting mental disorders such as anxiety and depression, 
schizophrenia, posttraumatic stress disorder (PTSD), bipo-
lar disorder, and mental health problems among children. 
The study highlighted the main limitations of the current 
literature pertaining to the dataset size and quality, the lim-
ited role of DL algorithms especially using transfer learn-
ing, and model trustworthy issues such as the ones related 
to XAI and robustness. Iyortsuun et  al. (2023) reviewed 
the recent ML/DL techniques to predict mental disorders 
including depression, anxiety, bipolar disorder, schizo-
phrenia, attention-deficit hyperactivity disorder (ADHD), 
PTSD, and anorexia nervosa. Rivera et al. (2022) reviewed 
the role of EEG data and DL algorithms to detect mental 
disorders. The study highlighted the limitations of the cur-
rent literature regarding model reproducibility and explaina-
bility and mentioned this as a hot research direction. Squires 
et  al. (2023) demonstrated the critical role of multimodal 
data fusion to enhance the performance of ML and DL algo-
rithms to diagnose and predict mental disorders. The study 
concentrated on depression detection and highlighted the 
limitations of the literature concerning uncertainty quanti-
fication, causal inference, data fusion of EEG, functional 
magnetic resonance imaging (fMRI) or MRI, and automatic 
ML. Su et al. (2020) conducted a comprehensive literature 
review regarding the use of DL techniques in mental issues. 
The study analyzed many types of data, including social 
media, genetics, clinical, and visual expression data.

As can be noticed in Table 1, there are no studies in the 
literature that evaluated the literature of RAI in the mental 
health domain. However, many studies (Thieme et al., 2020; 
Chung and Teo, 2022) have highlighted the severe limita-
tions of the current literature regarding this critical research 
direction. It is also noticed that old surveys concentrated 
much on ML, but recent surveys concentrated more on DL 
methods. Most surveys concentrated on more than one men-
tal disorder (Garcia-Ceja et  al., 2018; Rivera et  al., 2022; 
Greco et al., 2023; Khare et al., 2023), but some studies have 
concentrated on specific disorders, e.g. depression (Squires 
et  al., 2023) and anxiety and depression (Ahmed et  al., 
2022a). Even though RAI is a crucial requirement to build 
TAI models, there are no surveys in the literature that eval-
uated the current RAI research in the mental health domain. 
TAI gained the attention of researchers in other domains. For 
example, in El-Sappagh et al. (2023), the authors studied the 
literature on Alzheimer’s disease and TAI and highlighted 
the critical research directions to enhance the current liter-
ature of this disease. To the best of our knowledge, the use 
of RAI techniques for specifically addressing MHDs has not 
been deeply investigated so far. In our study, we target filling 

this literature gap by providing the first survey of methods 
using RAI for the detection, prediction, or monitoring of 
mental disorders.

METHODOLOGY

Search strategy

The selection of relevant studies was conducted by using 
precise candidate search terms. For the purpose of identi-
fying the most recent studies, the following search terms 
were used: {responsible, ethics, ethical, responsibility, 
trust, trusted, trustworthiness, trustworthy, robustness, fair-
ness, explainable, interpretable, transparent, transparency, 
explainability, reliability, reliable, safety, safe, privacy, pri-
vate, security, secure, biased, Trustworthy, trustworthiness, 
user-centric, human-centric, ethical, reproducibility, reli-
able, XAI, or accountability}, {Multimodal, images, text, 
time series, structured data}, {machine learning, deep learn-
ing, artificial intelligence, AI, model, ensemble, decision 
support, clinical decision support systems, CDSS, system, 
algorithm}, {mental health disorder, depression, anxiety, 
schizophrenia, stress, eating disorders, bipolar, addictive 
behaviors, disruptive behavior and dissocial disorders, neu-
rodevelopmental disorders, mental disability}, {diagnosis, 
prediction, detection, monitoring, management}.

For a more effective search strategy, the controlled terms 
and their synonyms were combined using “AND” and “OR.” 
An initial comprehensive search was conducted across five 
major electronic databases, namely Nature, ScienceDirect, 
SpringerLink, PubMed, and IEEE Xplore. Additionally, 
Google Scholar and Scopus were searched to verify the 
results. To compile the latest scholarly works, every publi-
cation that was uploaded to arXiv and medRxiv was consid-
ered. Duplicates have been eliminated from the arXiv and 
medRxiv publications. The search started by checking the 
titles, abstracts, and keywords of the papers. These papers 
were then reviewed manually. In the third step, the entire 
texts of the articles that satisfied our inclusion criteria were 
considered. Furthermore, to identify other important papers, 
the reference lists of the chosen articles were reviewed 
manually. The final compilation of articles was included 
in the review procedure. The Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) stand-
ards were employed to check these articles (Moher et  al., 
2009); see Figure 1. As shown in Table 1, PRISMA is the 
most popular methodology for making systematic surveys.

Eligibility criteria

This study focused on reviewing the recent literature on 
MHDs. We concentrate on reviewing recent ML and DL 
studies in the MHD domain and investigate the implemented 
trustworthy guidelines in these studies. The inclusion and 
exclusion criteria were as follows: inclusion criteria are (i) 
the study focused on developing, testing, and discussing 
classical ML, DL, trustworthiness, multimodality, ensem-
ble, or any other hybrid algorithms in the mental disorders 
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domain; (ii) only English language studies were considered; 
(iii) the studies published in the period of 2018-2023 were 
considered; and (iv) only MHD diagnosis, detection, predic-
tion, monitoring, and management studies were included. 
Articles that do not meet the included criteria are excluded 
from further processing. For example, incomplete studies, 
editorials, opinion papers, or reviews were considered out 
of scope. Furthermore, articles that could not be accessed 
in full text are excluded. Finally, the full texts of 100 papers 
were included in the full-text review.

Study selection

Figure 1 shows that 100 papers were ultimately selected for 
review and analysis in this study.

RESPONSIBLE ARTIFICIAL 
 INTELLIGENCE

AI has become essential across industries. It helps to boost 
the human decision-making process. However, in sensitive 
and high-stakes domains like medicine, we did not see the 
major effects of AI-based systems on patients and in phy-
sicians’ daily practice. The benefits of AI-based systems 
do not outweigh their potential negative impacts on soci-
ety because of the negative consequences of their underuse, 
misuse, and abuse. The main reason for this non-outweigh-
ing is the level of trustworthiness of the underlying ML 
models of these systems. TAI, RAI, lawful AI, or ethical 
AI is a new track in AI and ML research. Liu et al. (2022) 
discussed the relationship among these concepts. Dignum 
(2018, 2019) defined RAI as “Responsible AI is about 
human responsibility for the development of intelligent sys-
tems along with fundamental human principles and values, 

to ensure human flourishing and wellbeing in a sustaina-
ble world.” Trustworthiness has been defined by Ding et al. 
(2022) as “the degree of confidence to which the AI solu-
tion will behave as expected when encountering real-world 
problems.” RAI has the following seven main principles, as 
shown in Figure 2:
• Interpretability (explainability, transparency, and prov-

ability): where the AI system can explain its model 
decisions.

• Robustness (reliability, accuracy, and security): where AI 
systems can operate reliably, accurately, and safely over 
long periods and be able to prevent, detect, and recover 
from possible attacks using the right models and data-
sets. All sources of uncertainty must be quantified, and 

Figure 1: PRISMA flowchart for the study. Abbreviations: ML, machine learning; PRISMA, preferred reporting items for sys-
tematic reviews and meta-analyses; XAI, explainable AI.

Figure 2: The principles of responsible AI. Abbreviation: AI, 
artificial intelligence.
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suitable countermeasures must be set to mitigate these 
uncertainties.

• Fairness: where AI systems should prevent any possi-
ble discrimination or biases (e.g. algorithmic and data) 
against individuals within similar groups or against social 
groups based on their sensitive features like gender, color, 
religion, etc.

• Accountability: where the moral implications of the use 
and misuse of an AI system should be the responsibility 
of its stakeholders. A clearly identified accountable party 
of AI decisions must have effective oversight and control 
over these decisions.

• Data privacy: where individuals must have full con-
trol of their data when they are used to train and run AI 
solutions.

• Lawfulness and compliance: where the AI system’s stake-
holders must act according to the law and suitable regula-
tory regimes.

• Human agency: where human intervention in the opera-
tions of AI solution should be dictated by the level of per-
ceived ethical risk severity.

RAI principles should be used throughout the whole life 
cycle of ML models, including problem definition, system 
deployment, and performance monitoring. To implement 
these principles, a number of AI ethical frameworks outlin-
ing the optimal procedures for the whole lifecycle of AI sys-
tems have been released (Jobin et al., 2019). Notably, about 
100 fundamental AI ethical principles have been declared by 
corporations, governments, and organizations (Jobin et al., 
2019). In addition, RAI standards have been developed to 
govern the processes of developing and using AI systems 
(Shneiderman, 2020). Examples of these standards include 
(i) ISO/IEC 42001 IT-AI-Management System Standard 
(https://www.iso.org/standard/77304.html) released by 
ISO/IEC JTC 1/SC42 AI Technical Committee which facil-
itated AI systems’ certification and WG3 trustworthiness 
for risk management and bias (https://www.iso.org/com-
mittee/6794475.html), (ii) Architectural Framework and 
Implementation Guide for Federated Learning (https://
standards.ieee.org/ieee/3652.1/7453/), (iii) Technical 
Framework Standard and Trusted Execution Environment 
Requirements for Shared Machine Learning (https://stand-
ards.ieee.org/ieee/2830/10231/), and (iv) IEEE p7000 
IEEE Standards for Model Process for Addressing Ethical 
Concerns During System Design (https://ethicsinaction.
ieee.org/p7000/) released by IEEE. Moreover, leading AI 
organizations implemented codes of ethics which are sets 
of rules that employees should follow when building AI 
systems (Shneiderman, 2020), and many industrial com-
panies have committed to the principles of RAI (de Laat, 
2021).

Major industry players have provided tools to implement 
RAI requirements. These tools are mostly focused on the 
robustness, fairness, and explainability of AI models. For 
example, Microsoft (https://www.microsoft.com/en-us/ai/
responsible-ai) provided Human AI Interaction Toolkit, 
AI Trust Score, Fairness checklist, Fairlearn, InterpretML, 
Counterfeit, Conversational AI guidelines, SmartNoise, 
Presidio, Datasheet for Datasets, Confidential computing 

for ML, SEAL, and Responsible AI toolkit. Google (https://
ai.google/responsibility/responsible-ai-practices/) provided 
People + AI Guidebook (PAIR), Rules of Machine Learning, 
Human-Centered Machine Learning, Model cards, Data 
cards, Fairness indicators, know your data, ML-fairness-gym, 
Language Interpretability Tool, What-If tool, Explainable 
AI, Google Tensorflow Privacy, and Google TensorFlow 
Federated. IBM (https://www.ibm.com/impact/ai-ethics) 
provided AI Explainability 360, AI Fairness 360, AI Privacy 
360, Adversarial Robustness 360, AI FactSheets 360, 
Uncertainty Quantification 360, and Causal Inference 360. 
Meta (https://ai.meta.com/responsible-ai/) provided Fairness 
Flow, AI System Cards, Crypten, and Captum. Amazon 
(https://aws.amazon.com/machine-learning/responsible- 
machine-learning/) provided Amazon SageMaker Clarify, 
Amazon SageMaker Model Monitor, and Amazon 
Augmented AI. In the medical domain, the most practical 
ethical principles for AI system building are interpretability 
(XAI), robustness, and fairness (El-Sappagh et  al., 2023). 
The current study shows how the use of these crucial prin-
ciples can enhance the domain expert’s trust and reliance on 
an AI to build clinical decision support systems (CDSSs). 
RAI is discussed in the context of medical CDSS for mental 
disorders as a case study. These ethical principles have been 
defined by the High-Level Expert Group on AI, appointed 
by the European Commission, in the document “Ethics 
Guidelines for Trustworthy AI,” published in April 2019 
(Smuha, 2019).

Explainable AI

Model explainability (i.e. XAI) is crucial for the model 
trust from stakeholders (Ding et al., 2022; Ali et al., 2023). 
Arrieta et  al. (2020) defined XAI as “given an audience, 
an explainable Artificial Intelligence is one that produces 
details or reasons to make its functioning clear or easy to 
understand.” It is crucial for humans to comprehend, prop-
erly trust, and successfully control AI algorithms. XAI sup-
ports the discovery of deeper knowledge about the task, the 
justification of model decisions, the control of the AI system 
and adjusting for possible mistakes, and the debugging of the 
AI model (Arrieta et al., 2020). According to Miller (2019), 
the explainability of AI decisions is significant for two main 
reasons: (i) trust, because stakeholders cannot believe that AI 
decision is correct just from some statistics about the model 
performance, and (ii) ethics, because it should be proved that 
the system will not entertain discrimination of any kind in its 
functioning. As a result, XAI is very related to model trust-
worthiness (Albahri et al., 2023).

During the last decade, numerous XAI methods were 
proposed; see Figure 3. These methods have been divided 
according to many criteria. For example, model-based 
XAI divided XAI methods based on the transparency of 
the model, i.e. transparent models like rule-based, DT, 
KNN, etc., or opaque models like DL (CNN, recurrent 
neural network, transformer, and MLP), ensemble (bag-
ging, voting, boosting, and stacking), and SVM models. 
A variety of approaches have been proposed for each of 
these groups. To obtain a thorough and up-to-date list of 

https://www.iso.org/standard/77304.html
https://www.iso.org/committee/6794475.html
https://www.iso.org/committee/6794475.html
https://standards.ieee.org/ieee/3652.1/7453/
https://standards.ieee.org/ieee/3652.1/7453/
https://standards.ieee.org/ieee/2830/10231/
https://standards.ieee.org/ieee/2830/10231/
https://ethicsinaction.ieee.org/p7000/
https://ethicsinaction.ieee.org/p7000/
https://www.microsoft.com/en-us/ai/responsible-ai
https://www.microsoft.com/en-us/ai/responsible-ai
https://ai.google/responsibility/responsible-ai-practices/
https://ai.google/responsibility/responsible-ai-practices/
https://www.ibm.com/impact/ai-ethics
https://ai.meta.com/responsible-ai/
https://aws.amazon.com/machine-learning/responsible-machine-learning/
https://aws.amazon.com/machine-learning/responsible-machine-learning/
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these XAI approaches, readers are encouraged to read the 
following recent survey papers: Ding et  al. (2022) and 
Saranya and Subhashini (2023). Transparent models are 
explainable by design because they are white-box models. 
Their XAI is known to follow ante-hoc approaches. Other 
posthoc surrogate models, which could be model- specific 
or model-agnostic, are used to explain black-box models. 
Model-specific approaches are specific to the model at hand, 
whereas model-agnostic techniques, such as feature impor-
tance techniques such as local interpretable model-agnostic 

explanations (LIME) and SHapely additive exPlanations 
(SHAP), and visualization techniques such as saliency map 
and gradient-weighted class activation mapping, are inde-
pendent of any model (Ali et al., 2023). More formally, the 
architecture of XAI is shown in Figure 4 (Vilone and Longo, 
2021) for an opaque model M

o
 and dataset 1{ ,  }ND X Y=  of 

N  samples. Explanation of M
o
 is to find a mapping function 

f o: M
o
, D → M

w
 with M

o
 and D as the input, and M

w
 white-

box model as the output, such that M
w
 behaves similar to M

o
 

and has an XAI function f
w
: M

w
, X

i
 → e

i
 which can provide 
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Figure 3: TAI principles and their methods. Abbreviations: CNN, convolutional neural network; GNN, graph neural network; 
ML, machine learning; NLG, natural language generation; RNN, recurrent neural network; SVM, support vector machine; TAI, 
trustworthy AI; XAI, explainable AI.
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a human interpretable explanation e
i
 for the decision made 

for each sample X
i
. Data explainability is to understand the 

nature of the data through different exploratory data analy-
sis techniques. For space restrictions, we will not get into 
details of the theory and math behind each of these methods, 
but interested readers are advised to read our recent survey 
on XAI techniques (Ali et al., 2023). Other surveys for XAI 
techniques and tools are the ones like Arrieta et al. (2020) 
and Saeed and Omlin (2023). XAI research path is still in 
its early stage (Leichtmann et  al., 2023). The XAI evalu-
ation (Ding et  al., 2022), XAI stability, trustworthiness of 
XAI, XAI uncertainty quantification and mitigation (Zhang 
et al., 2022a; Lofstrom et al., 2023; Mehdiyev et al., 2023), 
multimodal XAI fusion including time series data (Joshi 
et al., 2021; Rojat et al., 2021; Lucieri et al., 2022), seman-
tic (ontology-based) XAI (Panigutti et  al., 2020; Rožanec 
and Mladenić, 2021; Adhikari et al., 2022), human- centric 
XAI (Kim et al., 2023), causality (Chou et al., 2022), con-
text-aware XAI (Jiang et  al., 2022), XAI-as-a-service and 
XAI embedding (Saeed and Omlin, 2023), machine-to-
machine explanation (Saeed and Omlin, 2023), knowledge 
graph-based rich XAI (Rožanec et  al., 2022), model secu-
rity and data privacy, interactive and dynamic XAI, and 
human–computer interaction-based XAI are crucial topics 
to consider in the future to enhance model trustworthiness 
(Schoonderwoerd et  al., 2021; Williams, 2021; Nyrup and 
Robinson, 2022; Rožanec et  al., 2022; Moulouel et  al., 
2023; Panigutti et  al., 2023). For example, XAI and secu-
rity must be discussed from two main viewpoints including 
model confidentiality and adversarial attacks (Arrieta et al., 
2020). The majority of XAI studies are focused on a single 
modality, such as image, text, structured data, or time series 
data. Domain specialists, on the other hand, always like to 
investigate why a model made a given decision from several 
perspectives.

As a result, it is critical to combine multimodal XAI 
capabilities and validate their consistency to confirm the 
stability and sufficiency of the offered XAI features. Since 
there is no widely acknowledged criterion for assessing the 
quality of generated explanations, XAI evaluation is a hot 
research topic. There are many proposed models for XAI 
evaluation including mental models, functional evaluation, 
effectiveness and satisfaction, confidence and dependence, 
and human–AI performance (Vilone and Longo, 2021; Ding 

et al., 2022). Generally, it is difficult to quantitatively eval-
uate the XAI features of a model. The trustworthiness, level 
of stability and consistency, and uncertainty quantification 
and mitigation of XAI results need further exploration (Ali 
et al., 2023; Ding et al., 2022). Explainability must be con-
text aware, where the provided explanations are based on the 
level of experience of the user (Jiang et al., 2022). Many lim-
itations of the current XAI literature can be found in Saeed 
and Omlin (2023).

Robustness and reliability

The ability of an algorithm to deal with execution failures, 
incorrect inputs, or unknown data is referred to as robust-
ness (Li et  al., 2023); see Figure 3. A lack of robustness 
may result in unanticipated or detrimental behavior in 
the system, reducing its safety and trustworthiness. The 
robustness principle deals with the system’s performance, 
generalizability, security, privacy, uncertainty, and repro-
ducibility. As shown in Figure 3, robustness has been dis-
cussed from different perspectives. The four dimensions of 
resilience defined by Leike et al. (2017) include self-modi-
fication, distributional shift, robustness to adversaries, and 
safe exploration. The ability of an AI system to adapt itself 
in response to the demands of new settings is referred to 
as self-modification. The ability of an AI system to adapt 
to its deployed environment is known as distributional or 
domain shift. The ability of AI systems to withstand adver-
sarial attacks is referred to as robustness to adversaries. 
Exploration of AI agent safety in both actual and learning 
contexts is called safe exploration. Brendel et  al. (2017) 
divided adversarial attacks into three types: gradient based, 
score based, and transfer based. Moustapha et  al. (2022) 
suggested an active learning-based robustness framework 
that included (i) a surrogate model, (ii) a reliability estima-
tion algorithm, (iii) a learning function, and (iv) a stopping 
condition.

In terms of performance, AI systems have to be accurate 
before even being deployed in the real world. Many metrics, 
including accuracy, precision, recall, F1-score, balanced 
accuracy, and area under the curve (AUC), can be used to 
assess the AI system performance. These metrics could be 
collected for cross-validation performance, internal testing, 

Methods for explainability

Construction approach Evaluation approaches

Output Y

Input X
Notions &

metrics

Knowledge X
Ante-hoc

Model

Post-hoc

Explanators

Figure 4: Main architecture of explainable artificial intelligence (Vilone and Longo, 2021).
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or external validation using a dataset from different distribu-
tions (El-Sappagh et al., 2023). The sizes of the training and 
testing data, the way of preparing these data, and the model’s 
external validation affect the model’s generalizability level. 
Information leakage is a problem where the testing data are 
like the training data. Designing an accurate ML pipeline 
could prevent this problem. Distributional shift is another 
critical problem that affects the performance of deployed 
systems. Training of AI models must consider the diversity 
in data distributions. First, AI models need to be trained on 
sufficient data from the same distribution of real-world sce-
narios. Second, after deployment, the system needs to be 
robust against distributional shifts. This could be done by 
periodically retraining the model with new data that reflect 
the current distributions.

Regarding security, AI systems are vulnerable to adver-
sarial attacks with malicious intentions for many reasons 
(Xue et  al., 2020). Figure 5 shows the vulnerabilities of 
the AI pipeline for various adversarial attacks on the stages 
of the learning pipeline (i.e. training and testing phases). 
For instance, data poisoning and backdoor attacks are the 
key vulnerabilities at the data preparation stage. As the AI 
model is trained and deployed to a real environment, model 
outputs can be exploited by the adversary to conduct sev-
eral attacks such as manipulating inputs to the model (i.e. 
generating an adversarial perturbed sample) to make the 
model generate bad output. Model theft, membership infer-
ence attacks, and training data recovery are among various 
security and privacy attacks that can be launched against the 
deployed model at the testing phase. The training technique, 
for example, can be outsourced, training data can originate 
from untrustworthy sources, and pre-trained models can 
come from third parties. However, the motivations behind 
these attacks are currently unclear. Security threats of AI 
systems are classified as follows: (i) training set poisoning, 
(ii) backdoor in the training data, (iii) adversarial example 
or evasion attacks, (iv) model shift, and (v) training data 
recovery (Xue et  al., 2020). The evasion attack generates 
perturbed samples to mislead the model, the poisoning 
attack inserts carefully designed training examples into 
the training dataset in order to change the model’s decision 
to specific samples or patterns, and the exploratory attack 
attempts to steal knowledge about the models. Threats of 
adversarial attack and various defense strategies have been 
well studied in the literature (Wang et  al., 2019; Qayyum 
et  al., 2021). Evasion attacks are divided into white-box 
and black-box attacks. White-box attacks include the auto 

projected gradient descent, shadow attack, Wasserstein 
attack, PE malware attacks, Brendel & Bethge attack, high 
confidence low uncertainty attack, iterative frame saliency, 
robust DPatch attacks, ShapeShifter attack, projected gra-
dient descent, NewtonFool, adversarial patch, basic iter-
ative method, Jacobian saliency map, DeepFool, virtual 
adversarial attack, fast gradient attack, etc. (Liu et al., 2018; 
Nicolae et  al., 2018). Black-box attacks include Square 
attack, HopSkipJump attack, threshold attack, pixel attack, 
spatial transformation, query-efficient black-box, zeroth 
order optimization, decision-based/boundary attack, and 
geometric decision-based attack (Liu et al., 2018; Nicolae 
et  al., 2018). Poisoning attacks include backdoor attack, 
clean-label backdoor attack, Bullseye Polytope, and BadDet 
attacks among others (Liu et al., 2018; Nicolae et al., 2018). 
Extraction attacks include functionally equivalent extrac-
tion, Copycat CNN, and KnockoffNets (Liu et  al., 2018; 
Nicolae et al., 2018). Every attack can target DL models or 
classical ML models, and each one has its corresponding 
countermeasure.

Data sanitization is a countermeasure to poisoning or 
backdoor attacks in which poisoned data are filtered out 
before the training process. Smoothing model outputs are 
countermeasures against hostile instances that lower the 
model’s sensitivity to small changes in the input. There are 
three types of defense techniques for sensitive information 
leakage: (i) distributed learning framework, (ii) classical 
cryptographic primitives-based approaches, and (iii) trusted 
platform-based approaches. Comprehensive information 
about adversarial attacks and their countermeasures may be 
found in Xue et al. (2020). Robustness tests like the monkey 
test (Exforsys, 2011) and security evaluation curves (Biggio 
and Roli, 2018) can be used to evaluate the security of the 
AI system. There are situations when the requirements for 
robustness conflict. For example, the training dataset as well 
as the code for model optimization and data preparation 
should be readily available for repeatability. This, however, 
will jeopardize the model and make it vulnerable to different 
attacks. Another example of the relationship between adver-
sarial robustness and generalization is that the algorithms 
that are resilient against small perturbations have higher gen-
eralization (Xu and Mannor, 2012). However, recent studies 
(Raghunathan et al., 2019) showed that improving adversar-
ial robustness through adversarial training could decrease 
test accuracy and hinder generalization. For recent advances 
in the robustness of ML models, readers are advised to refer 
to Xiong et al. (2022).

Figure 5: Different attacks on ML models (Xue et al., 2020). Abbreviation: ML, machine learning.
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Fairness and diversity

The avoidance or reduction of undesired discriminatory bias 
impacts on individuals and social groups is referred to as 
AI system fairness. Bias is defined as the unfair treatment 
of certain groups of individuals based on sensitive informa-
tion (e.g. gender, race, ethnicity, etc.). Carey and Wu (2022) 
defined bias as “the prejudice in favor of or against one 
thing, person, or group compared with another, usually in a 
way considered to be unfair.” This bias can be found in data 
(e.g. measurement bias, excluded variable bias, representa-
tion bias, accumulation bias, sampling bias, longitudinal data 
fallacy, and linking bias), algorithms (e.g. algorithmic bias, 
user interaction bias, popularity bias, emergent bias, and 
evaluation bias), user experiences (e.g. historical bias, pop-
ulation bias, self-selection bias, social bias, behavioral bias, 
and temporal bias), and evaluation (i.e. wrong evaluation 
metrics were used) (Caton and Haas, 2020; Mehrabi et al., 
2021). If training data contain biases, the ML model trained 
on these data learns these biases and reflects them in its deci-
sions. Existing data biases affect the models trained by these 
data and result in biased predictions. On the other hand, 
models could amplify the existing data biases. Moreover, 
algorithms could have biased behavior based on specific 
design choices, even if the data are unbiased. Decisions of 
the biased algorithms that are fed into real-world environ-
ments affect end users’ decisions, and this results in much 
more biased data that will be used to (re)train future mod-
els. There are four types of ML fairness techniques: (i) 
fairness based on process, (ii) fairness based on lossless 
de-biasing, (iii) fair learning, and (iv) procedural fairness 
(Wu et al., 2023). For processing-based fairness, as shown 

in Figure 6, IBM’s AI Fairness 360 package (Bellamy et al., 
2019) offers four preprocessing algorithms that transform 
training data to remove any discriminations: (i) re-weigh-
ing preprocessing, (ii) optimized preprocessing, (iii) learn-
ing fair  representations, and (iv) disparate-impact remover. 
The package also offers three in-processing algorithms that 
modify the algorithm to remove any discriminations: (i) 
adversarial debiasing, (ii) prejudice remover, and (iii) meta 
fair classifier. Furthermore, three postprocessing algorithms 
are also offered by the package that reassigns the model’s 
labels based on a function: (i) adversarial debiasing, (ii) prej-
udice remover, and (iii) meta fair classifier with (i) equalized 
odds, (ii) calibrated equalized odds, and (iii) classification 
of reject decisions (Liu et al., 2022). From Figure 6, it can 
be noticed that fairness can be implemented at many lev-
els. We can apply the fairness preprocessing techniques to 
the prepared training data to form transformed data. These 
data can be used directly to train an ML model, as shown in 
the orange path. We can apply the in-processing techniques 
to the learning algorithm and train it using the preprocessed 
data, as shown in the purple path. We can combine both pre-
processing and in-processing techniques as shown in the 
green path. We can combine all techniques as shown in the 
blue path of Figure 6, and this achieves complete fairness. As 
shown in Figure 3, Zhou et al. (2021) offered an information 
lossless approach for fairness. This approach oversampled 
the underrepresented group to balance the demographic pop-
ulation’s majority and minority. Grgić-Hlača et  al. (2018) 
introduced procedural fairness or fair learning, which took 
into account input attributes and moral judgments. The tech-
nique included three metrics of procedural fairness: feature 
apriori, feature accuracy, and feature disparity. These metrics 

Figure 6: A proposed pipeline for preprocessing, in-processing, and postprocessing fairness.
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eliminated binary discrimination. Metrics for evaluating fair-
ness are based on statistical evidence. Positive classification 
rates are measured using statistical parity. The equalized 
odds method uses false-positive and false-negative rates. 
Predictive parity uses true-positive rates. Any fairness metric 
must satisfy the three fairness criteria of independence, sep-
aration, and sufficiency (Carey and Wu, 2022). Fairkit-learn 
provided a Python-based framework for fairness evaluation 
and comparison (Johnson and Brun, 2022). The math behind 
the fairness ML algorithms, fairness evaluation metrics, and 
the challenges and future research directions of fair ML can 
be found in Bellamy et al. (2019), Ashokan and Haas (2021), 
Mehrabi et al. (2021), and Liu et al. (2022).

Building TAI systems requires the application of TAI prin-
ciples and guidelines at every step of the entire lifecycle of 
the AI systems. These principles are beyond traditional per-
formance metrics like accuracy and range from data acquisi-
tion to model development to model deployment and finally 
to the model’s continuous monitoring and governance. 
Other dimensions, such as fairness, explainability, adversar-
ial robustness, and distribution shift, must be evaluated to 
produce RAI models. Note that these are kinds of trade-offs 
among the dimensions (Singh et al., 2021; Li et al., 2023); 
for example, improving the explainability of a model needs 
to decrease its complexity which decreases its performance, 
and optimizing the fairness affects the model’s accuracy 
(Liu and Vicente, 2022). A formal analysis of the conflict 
between fairness and robustness can be found in Chang et al. 
(2020). Zhang et  al. (2022b) formulated the best practices 
for ML model testing regarding fairness, robustness, and 
correctness. For comprehensive surveys about TAI, readers 
are requested to refer to Li et al. (2023). As can be noticed 
from the previous discussion, there are three requirements 
for deploying a TAI system. For a survey of all TAI require-
ments, and their status, future research directions, tools, and 
theory behind, readers are guided to refer to Liu et al. (2022). 
In El-Sappagh et al. (2023), we proposed a comprehensive 
trustworthy ML pipeline which considered the measures of 
fairness, robustness, and explainability in every step of the 
pipeline. The framework covers the checklist defined by Han 
and Choi (2022) to achieve TAI systems. The framework was 
oriented toward Alzheimer’s domain, but there is nothing 
special about Alzheimer’s in this framework. The model can 
be customized for any medical problem including MHDs. 
Implementing this framework assures the handling of TAI 
requirements related to the three critical principles of fair-
ness, robustness, and explainability.

RAI IN THE LITERATURE

In this section, we briefly explore the TAI and RAI literature. 
Albahri et al. (2023) reviewed the role of XAI, data fusion, 
data quality, and bias analysis to improve the trustworthiness 
of the medical applications of AI. The study highlighted that 
respecting laws, ethics, and model robustness are the major 
challenges in modern AI applications. Improving the qual-
ity of the data engineering pipeline (i.e. data design, data 
sculpting, and data evaluation) to prepare suitable datasets 

is crucial to improve the trustworthiness of the resulting 
models (Liang et al., 2022). Ali et al. (2023) considered that 
the trustworthiness of AI systems can be achieved by model 
explainability only. They also provided a comprehensive 
review of XAI techniques in the medical domain. The stud-
ies in the review assumed that safe, robust, and TAI mod-
els could be implemented by concentrating on XAI features 
that could remove the lack of transparency of ML and DL 
models. On the other hand, Rasheed et al. (2022) surveyed 
the TAI principles and applications in the general healthcare 
domain and highlighted the role of XAI in improving the 
model’s trustworthiness. They discussed the relationship 
among the requirements of the model including the trade-off 
between accuracy, explainability, and robustness (Liu et al., 
2022). Many challenges have been discussed by Rasheed 
et al., to achieve RAI in the healthcare domain, including: 
(i) the quality of medical data such as imbalanced, biased, 
and noisy data, (ii) preserving the privacy of patients and 
the confidentiality of their data to prevent possible missuses 
and unprotected data sharing, and (iii) obtaining informed 
consent from patients before exposing them to any medi-
cal intervention, which is difficult because of the black-box 
nature of most ML models. Siala and Wang (2022) reviewed 
253 articles about TAI and AI ethics in healthcare. Siala and 
Wang reached the conclusion that implementing RAI in 
healthcare settings remains a challenge. The study proposed 
an RAI framework that encompasses the five themes of sus-
tainability, human-centeredness, inclusiveness, fairness, and 
transparency. The study also asserted the link among TAI 
principles.

Meanwhile, the literature on XAI explored the role of 
multimodal data and knowledge to enhance the level of 
explainability. Lucieri et  al. (2022) provided a multimodal 
XAI framework that provided multimodal concept-based 
and visual explanations for detecting malignancy of skin 
lesions based on dermoscopic image analysis. The study 
highlighted the importance of multimodal data for providing 
comprehensive XAI. Díaz-Rodríguez et al. (2022) proposed 
the eXplainable Neural-symbolic learning which fused 
DL representations with expert domain knowledge graph 
for monument façade image classification. Baniecki et  al. 
(2023) claimed that they implemented a TAI model for hos-
pital length of stay prediction based on multimodal data. The 
study only provided a few XAI features and neglected the 
other main TAI principles including fairness and robustness. 
Pessach and Shmueli (2021) concentrated only on the fair-
ness dimension of TAI by studying the algorithmic bias of 
AI-based fairness-aware hiring semi-supervised association 
learning system. The study proposed many in-process and 
preprocess techniques to overcome biases. Holzinger et al. 
(2022) mentioned that achieving TAI in the medical domain 
needs the combination of (i) complex DL models, (ii) graph 
causal models and expert knowledge, and (iii) verification 
and explainability methods. To achieve this objective, infor-
mation fusion can be used by integrating data from expert 
knowledge, AI-based models, and medical databases.

Kovalchuk et al. (2022) proposed a three-stage CDSS for 
the type 2 diabetes mellitus prediction process. The model 
integrated the predictive power of rule-based and data-driven 
approaches. The study extended the model by adding XAI 
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features using SHAP. González-Gonzalo et al. (2021) stud-
ied the literature of AI and TAI in ophthalmic practice. These 
authors noted that even though AI models achieved close or 
even superior performance to medical experts, there is a 
critical gap between the development and the real applica-
tion of AI systems in this domain. TAI can close this gap. 
TAI challenges (accuracy, resiliency, robustness, fairness, 
explainability, safety, and accountability) need to be consid-
ered along the AI design pipeline. González-Gonzalo et al. 
asserted that building TAI results from multi-stakeholder 
interaction including AI developers, healthcare providers, 
healthcare institutions, patients, regulatory bodies, etc. Zhou 
et al. (2023) surveyed the XAI and robustness measures for 
EEG-based systems, and Ma et al. (2022) reviewed the TAI, 
including explainability methods, in the dentistry domain.

Many studies in the literature in different domains focused 
on the fairness principle to improve the resulting model of 
responsibility and trustworthiness. Liefgreen et  al. (2023) 
discussed the role of fairness and transparency to improve 
the acceptance of AI systems in the medical domain. The 
study mentioned that an effective TAI solution requires 
human engagement. Chiu et al. (2023) built a dermatological 
disease diagnosis trustworthy model by focusing on fairness. 
The study discovered that deeper neural network (NN) layers 
result in higher accuracy, but fairness conditions deteriorate 
for the extracted features of the deeper layers. The study pro-
posed to use the fairness-oriented concept of multi-exit to 
enhance model fairness. Drukker et al. (2023) studied TAI in 
medical image analysis through the fairness principle. The 
study identified 29 sources of potential bias and mitigation 
strategies. Venugopal et  al. (2023) studied the concept of 
fairness in radiology by focusing on bias auditing using the 
Aequitas open-source toolkit. Kozodoi et al. (2021) studied 
the role of fairness in profit-oriented credit scoring systems. 
These authors extended the ML pipeline by some algorith-
mic processors to achieve the fairness goals. The authors 
also found that the in-processing techniques have achieved 
a good balance between profit and fairness. In addition, the 
study reduced algorithmic discrimination to a reasonable 
level at a relatively low cost. Pfohl et al. (2021) investigated 
the fairness of ML models for clinical risk prediction. The 
study investigated the impact of penalizing group fairness 
violations on a variety of model performance and group fair-
ness measures. According to the findings of the study, med-
ical evaluations of algorithmic fairness lack the contextual 
grounding and causal understanding required to understand 
the mechanisms that contribute to health disparities. Yang 
et al. (2022) studied the algorithmic fairness and bias miti-
gation techniques of ML models using COVID-19 diagnosis 
as the case study and based on the equalized odds metric. 
The study proposed an adversarial training framework for 
mitigating biases resulting from data collection or magnified 
during model development. The study improves the model 
fairness while keeping the performance not suffering much.

Robustness has been discussed from different angles. 
Most ML/DL studies considered a robust model as one that 
had high accuracy, and this is not right because robustness is 
also related to model security, privacy, certainty, generaliza-
bility, and reproducibility (Abuhmed et al., 2021; El-Ghany 
et al., 2023). The second major dimension of robustness is in 

security and adversarial training (Silva and Najafirad, 2020; 
Apostolidis and Papakostas, 2021). Meanwhile, privacy- 
preserving techniques in the medical domain have been 
studied in Torkzadehmahani et al. (2022). Zou et al. (2023) 
reviewed the uncertainty quantification techniques in the 
medical image domain. Model reproducibility for ML and 
DL models has been studied by McDermott et al. (2019) and 
Gundersen et  al. (2022). As it can be noticed, the current 
research literature of RAI is still in the developing phase 
(Kumar et  al., 2021). Hryniewska et  al. (2021) reviewed 
the RAI for DL modeling of medical images for COVID-
19 detection. All studies of these authors focused on one 
specific requirement and neglected the other tightly related 
requirements. As a result, there is no fully trustworthy AI 
application in the medical domain. This absence could be a 
suitable justification for the currently limited roles of AI in 
medical literature. Sivarajah et al. (2023) urge future research 
to examine RAI in medicine in a recent special issue on RAI 
in the medical arena. Liu et al. (2021) investigated the impact 
of RAI on businesses through the analysis of 25 in-depth 
interviews with healthcare experts. This investigation con-
cluded that RAI principles can enable healthcare businesses 
to fully utilize AI.

RAI IN MENTAL DISORDER

In the medical domain, Zhang and Zhang (2023) highlighted 
the following points that affect AI stakeholders: (i) data qual-
ity, (ii) data and algorithmic biases, (iii) opacity of algorithms, 
(iv) algorithmic safety and security, and (v) accountability of 
medical errors. Meanwhile, recently, RAI has become a hot 
research topic. Figure 7 shows that RAI research has got-
ten too much attention in recent years because the number 
of research papers is increasing exponentially. The research 
topics of these papers are mainly concentrated on TAI and 
RAI. In the mental health domain, the same observation can 
be noticed because the number of papers is increasing in dif-
ferent TAI domains including robustness, fairness, multimo-
dality, and XAI.

Taking into consideration the above-discussed RAI 
requirements, we investigate the literature on ML and DL 
in the field of MHDs in this section. We concentrate on the 
state-of-the-art crucial problems such as multimodal data 
fusion (Multimodal-based Applications section), model fair-
ness (Fairness Applications section), and model explaina-
bility (XAI Applications section). Mental Disorder Datasets 

Figure 7: Literature trends in TAI domains. Abbreviations: 
RAI, responsible AI; TAI, trustworthy AI; XAI, explainable AI.
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section also compiles existing datasets in the literature on 
ML and DL for MHDs.

Multimodal-based applications

In recent years, the merging of ML with mental health 
research has opened up new avenues for innovative 
approaches to classifying and diagnosing mental disorders. 
One particularly promising direction in this field involves 
the integration of multimodal techniques, where information 
from various sources, including imaging, textual data, and 
physiological signals, is combined. This section examines a 
group of papers on the cutting edge of this transformative 
landscape, where researchers have used both ML and DL 
models within a multimodal context. Table 2 contrasts the 
revised papers based on various aspects, including the spe-
cific mental disorder(s) addressed, the datasets employed, 
and the performance levels attained.

The main goal of Vaz et al. (2023) is to classify anxiety by 
treating it as a skewed binary classification challenge, using 
an examination of physiological signals. This research uti-
lizes a dataset that includes data from ECGs, electrodermal 
activity (EDA), and EMGs, all of which are sourced from 
the wearable stress and affect detection dataset (Schmidt 
et  al., 2018). What distinguishes this approach from tradi-
tional research is its focus on assessing anxiety levels in a 
natural, uncontrolled setting, thereby characterizing anxiety 
as a neutral state. This distinctive perspective offers valuable 
insights with potential implications for the development of 
improved techniques and strategies for individuals to man-
age their overall health and well- being. The data analysis 
process involved feature extraction and selection methods. 
In the context of feature extraction, each physiological sig-
nal was partitioned into segments, each spanning a 5-min 
duration with a 4-min overlap. Consequently, 15 segments 
were derived for each subject, resulting in the computation of 
109 features for each segment. The subsequent feature selec-
tion process encompassed the following three key stages: 
addressing missing values and conducting variance analysis, 
evaluating unsupervised correlations to establish an appro-
priate threshold, and applying a supervised wrapper method. 
Following these steps, all features underwent normalization 
through Min-Max scaling. Furthermore, the study tackled 
the uneven distribution of data by applying four different 
data balancing strategies. These strategies included random 
oversampling, synthetic minority oversampling technique 
(SMOTE), and borderline SMOTE 2. The application of 
these methods helped in augmenting the data from the under-
represented class. Additionally, various ML algorithms, 
including adaptive boosting (ADB) and RF, were employed 
for the purpose of anxiety classification. The most favora-
ble outcome in terms of F1 score, achieving a performance 
level of 86.4%, was attained through the use of ADB. Safa 
et al. (2022) embarked on an innovative investigation involv-
ing the automated collection of extensive datasets containing 
depression-related symptoms from the Twitter platform. This 
study represents the inaugural exploration of biotext, wherein 
visual elements are associated with pre-established lexicons. 
Additionally, the study introduces the use of profile headers 

as a distinctive feature in the prediction of mental disorders. 
The primary objective was to discern the interplay between 
depression and linguistic patterns, employing lexicon anal-
ysis and natural language processing (NLP) techniques. 
The proposed architectural framework of the study is struc-
tured around three fundamental modules. The initial module 
encompasses data collection and dataset construction, entail-
ing the aggregation of tweets with diagnosed depression 
indicators and the implementation of an automated preproc-
essing pipeline to facilitate  subsequent analytical procedures. 
The dataset underwent refinement through the removal of 
retweets, emoticons, URLs, special characters, and non-Eng-
lish content. Furthermore, GIF images were converted into 
the JPG format for profile and header images.

The second module centers on the extraction of pertinent 
features, fostering cross-examination between textual and 
visual attributes to identify those that exert the most signifi-
cant influence. Subsequently, the third module is dedicated to 
the classification task, aimed at ascertaining the psychologi-
cal states of users, alongside conducting comparative analy-
ses. To assess the efficacy of the proposed methodology and 
gauge the performance of various features, a benchmark clas-
sifier was established using LR. Furthermore, a set of classi-
fiers was employed for the prediction tasks, encompassing a 
total of nine classification techniques (i.e. DT, linear SVM, 
gradient boosting, RF, ridge classifier, AdaBoost, CatBoost, 
and MLP). Yazdavar et al. (2020) presented a work similar to 
Safa et al. (2022), while extending their analysis to encom-
pass individual-level demographic attributes. Moreover, 
they delved into the examination of the attributes associ-
ated with posted images, including color palettes, aesthetics, 
facial expressions, and their correlations with indicators of 
depressive symptoms. Qureshi et al. (2019) presented a new 
method that uses a multitask NN to encode different types 
of data and an attention-based NN for merging various data 
modalities. These authors developed a pair of models to pro-
cess audio data, a single model for text, and a trio for video 
content. These specialized encoders are used for performing 
tasks connected with depression-level regression and depres-
sion-level classification. The proposed architecture comprises 
three primary components: (i) modality encoders for multi-
task learning, which takes unimodal features as the input and 
generate modality embeddings, addressing both regression 
and classification tasks; (ii) an attention-based fusion net-
work responsible for merging individual modalities; and (iii) 
a deep neural network (DNN) responsible for producing esti-
mated scores or classifying patients into medically relevant 
categories, with its output conditioned on the results of the 
attention fusion network.

The experimental findings of the distress analysis inter-
view corpus  -  wizard of oz (DAIC-WOZ) dataset (Valstar 
et al., 2016) demonstrate that multitask representation learn-
ing networks exhibit superior performance when contrasted 
with single-task representation networks. Furthermore, the 
textual input emerges as a pivotal factor influencing the esti-
mation process. Wei et al. (2023) introduced an ML model 
designed to facilitate the early detection of autism spectrum 
disorder (ASD), developmental language disorder (DLD), 
and global developmental delay (GDD) in children. The 
study involved the assembly of a dataset comprising 2004 
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children, with data collection spanning the years 2019-2021. 
Each child underwent assessments such as the ones involv-
ing the Gesell developmental scale and the autism behav-
ior checklist. To model development, a total of 14 features 
were incorporated. These features encompassed variables 
such as age, gender, and 12 summative metrics derived from 
assessment instruments. The authors devised an ML-based 
approach that harnessed easily accessible tools, serving as 
a decision support system for the early detection of ASD, 
DLD, or GDD in children. Moreover, they refined the ML 
model and provided visual representations of its classifica-
tion process, which improved the model’s clinical clarity. 
This enhancement is aimed at supporting less experienced 
pediatricians by increasing their diagnostic accuracy.

Lastly, the proposed model was deployed into a web appli-
cation tailored for clinicians, offering real-time decision sup-
port. Five distinct ML algorithms, namely eXtreme Gradient 
Boosting (XGB), DT, LR, SVM, and NN, were evaluated for 
their ability to identify children with ASD, DLD, and GDD. 
Notably, XGB demonstrated the highest accuracy, achieving 
a rate of 78.3%. Zhang et al. (2020) addressed the disparity 
and granularity inherent in audiovisual–textual modalities 
by segregating them into two distinct subgroups. The first 
subgroup, encompassing the audiovisual modality, operates 
at the frame level, while the second subgroup, involving the 
textual modality, functions at the session level. In this sys-
tem, audio and visual characteristics are processed using 
a multimodal deep denoising autoencoder on a frame-by-
frame basis, then transformed into fixed-length vectors at the 
session level. To determine the viability of their proposed 
method, the researchers carried out assessments related to 
bipolar disorder and depression, making use of the bipo-
lar disorder corpus (Ciftci et  al., 2018) and the Extended 
Distress Analysis Interview Corpus (Ciftci et al., 2018). The 
latter is an expanded form of the DAIC-WOZ (Valstar et al., 
2016), which encompasses semi-clinical interviews.

For the detection of bipolar disorder, the most effective 
multimodal framework achieved an Unweighted F1 (UF1) 
score of 0.721, signifying a substantial improvement over 
unimodal architecture. In the context of depression detection, 
the UF1, employing 700 units of fused dimension, reached 
0.917. These results led to the conclusion that in depres-
sion detection, the audiovisual features demonstrate a lesser 
degree of discriminative capability compared to textual fea-
tures. Tang et al. (2020) introduced a multimodal framework 
centered around fMRI to detect ASD. The architecture of this 
model exhibits the capacity to analyze two distinct forms of 
activation maps through the amalgamation of various DL 
networks. The initial input includes a time series activation 
map for the regions of interest (ROI), created by calculating 
the correlation matrix between every pair of ROI. The second 
input is the activation map that integrates fMRI data with the 
ROI. Using both types of activation maps, which are derived 
from functional data, improves the classifier’s aggregate per-
formance. These features of the data mentioned are used as 
inputs for two different classifiers: a three-dimensional (3D) 
ResNet-18 network and a MLP classifier. The feature vectors 
produced by these classifiers are then combined and used as 
the input for a series of fully connected layers that lead to 
the final determination of whether the individual is healthy 

or shows signs of autism. The research study was conducted 
using the autism brain imaging data exchange (ABIDE) 
dataset (Di Martino et al., 2014). The dataset was subjected 
to a series of preprocessing procedures which included the 
correction of slice timing, adjustment for motion artifacts, 
and the normalization of global mean intensity. The pro-
posed framework achieved notable results, demonstrating an 
F1-score of 0.805 and an impressive recall rate of 95%, which 
holds considerable significance for the development of com-
puter-assisted diagnostic systems.

Abbas et al. (2023) introduced the deep multimodal neu-
roimaging framework (DeepMNF) to detect ASD using both 
fMRI and structural MRI. DeepMNF leverages the integra-
tion of spatiotemporal information across different modal-
ities, combining two-dimensional time series data with 3D 
images. The primary objective is to fuse complementary data, 
thereby enhancing both group distinctions and homogeneity 
in the context of ASD diagnosis. DeepMNF incorporates 
four distinct modalities into a classification system, allowing 
for the study of spatiotemporal information related to ASD 
diagnosis, including neuronal activations and morphological 
features within the brain. The rationale for employing multi-
ple modalities is rooted in the recognition that a multimodal 
framework can effectively address the heterogeneities inher-
ent in ASD classification by amalgamating complementary 
information. This addressing, in turn, holds the potential for 
outperforming single-model frameworks in terms of clas-
sification accuracy. Meanwhile, the classification compo-
nent of the study is anchored in CNN. Initially, the authors 
explored a configuration comprising a single CNN and a sin-
gle max-pooling layer for each modality. Subsequently, they 
expanded the architecture, determining the number of lay-
ers based on validation accuracy. Furthermore, the research 
involved the evaluation of various possible combinations 
of multimodal options, considering all four modalities. For 
training and testing, the ABIDE dataset was employed within 
the proposed framework. The dataset underwent a compre-
hensive five-stage preprocessing, encompassing Anterior 
Commissure Posterior Commissure alignment correction, 
intensity rescaling, skull stripping, and linear and non-lin-
ear image registration. Notably, DeepMNF, incorporating 
four modalities in a multimodal fashion, demonstrated accu-
racy at 87.09%, surpassing the performance of previously 
reported studies using the same dataset. Cai et al. (2020a,b) 
constructed a multimodal model that combined data from 
three different EEG sources. These sources captured EEG 
signals under various audio stimuli, including neutral, nega-
tive, and positive audio inputs, with the goal of distinguish-
ing between individuals with depression and those without. 
The dataset of the study comprised 86 participants diagnosed 
with depression and 92 non-depressed individuals. The EEG 
data were recorded using three electrodes while subjects 
were exposed to different audio stimuli.

To prepare the dataset for training, several filtering tech-
niques, such as the Notch and Kalman filters, were applied 
during the preprocessing stage. Subsequently, both linear 
and non-linear features were extracted from the EEG sig-
nals. After this feature extraction process, a phase for fea-
ture fusion was implemented. Following feature fusion, a 
combination of t-tests and genetic algorithms was employed 
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for feature selection and feature weighting, with the aim of 
enhancing the overall performance of the recognition frame-
work. The researchers evaluated three different classifiers 
(i.e. DT, SVM, and KNN) using the prepared dataset. The 
experimental results revealed a notable improvement in clas-
sification accuracy when the data from positive and negative 
audio stimuli were fused. Particularly, the KNN achieved 
the highest accuracy, reaching 86.98%. Mallol-Ragolta et al. 
(2018) introduced a multimodal approach that leverages both 
skin conductance (SC) physiology and self-reported data 
obtained from questionnaires to predict the severity of symp-
toms in individuals with PTSD. To assess the effectiveness 
of their proposed model, the authors used the Engagement 
Arousal Self-Efficacy (EASE) dataset (Dhamija and Boult, 
2017). This dataset consists of diverse forms of data, such 
as facial and audio recordings, physiological signals, and 
self-reported measures, gathered from individuals participat-
ing in online trauma-recovery therapy. The SC signal within 
the dataset underwent preprocessing, which included a series 
of steps such as applying a low-pass Butterworth filter and 
decomposing the signal into tonic and phasic components. 
Furthermore, two sets of features were extracted from the 
SC signals, while the questionnaire-based text features were 
rooted in a trauma-focused coping self-efficacy measure 
(CSE-T). The CSE-T questionnaire inquired about the sub-
jects’ perceived capability to cope with various situations. 
The overall CSE-T score was computed as the average of all 
questionnaire items, resulting in an absolute value ranging 
from 1 to 7.

For the system classification task, a support vector regres-
sor was employed, and system performance was assessed by 
computing the mean squared error between the actual and pre-
dicted PTSD symptom severity scores for each  subject. The 
conducted experiments demonstrated that changes in PTSD 
symptom severity were notably more accurately modeled 
using this novel multimodal approach compared to relying 
solely on self-reports or SC data. Sun et al. (2021) developed a 
depression-level estimation system using a transformer-based 
framework that relies on two unimodal sources: audio and 
video data. The primary aim of this framework was to address 
two critical challenges. First, the  framework aimed to process 
extended sequences of data, a necessity in depression detec-
tion. Second, the framework sought to overcome the inher-
ent challenges in DL by leveraging a multimodal learning 
approach to enhance its performance. To tackle the former, the 
researchers devised a transformer model capable of processing 
prolonged sequences. For the latter challenge, the researchers 
introduced an adaptive late fusion strategy, which involved 
assigning greater weights to effective modalities or features 
while reducing the influence of less effective ones. The effec-
tiveness of the proposed framework was evaluated using 
the AVEC 2019 DDS dataset (Ringeval et al., 2019), which 
encompasses audio and video modalities, each with various 
features, such as MFCC from audio. The evaluation metric 
employed to assess depression detection was the concordance 
correlation coefficient (CCC), which quantifies the agreement 
between actual and predicted Patient Health Questionnaire 
Depression Scale scores. The experimental outcomes indi-
cated that the proposed framework outperformed the current 
state-of-the-art methods, achieving a CCC score of 0.733.

Finding a subset of EEG channels to detect schizophrenia 
is the main challenge handled by Hassan et al. (2023). The 
proposed approach to overcome this challenge involved the 
development of a channel selection mechanism rooted in the 
performance analysis of a CNN when considering individ-
ual EEG channels from distinct brain regions. The chosen 
channels were subsequently amalgamated and fused through 
CNN, followed by the integration of ML classifiers such 
as SVM and LR. The evaluation of the model was carried 
out using a publicly available EEG dataset (Olejarczyk and 
Jernajczyk, 2017), comprising EEG signals from 28 sub-
jects, with half of them diagnosed with paranoid schizophre-
nia. Notably, the data collection process entailed the use of 
19 electrodes, corresponding to 19 channels. In preparation 
for feature extraction, a preliminary preprocessing stage 
involved the application of a Butterworth filter, and subse-
quent z-score normalization was executed. In addition, to cir-
cumvent the need for hand-crafted feature extraction, CNN 
was harnessed as a feature extractor. For the classification 
phase, an array of classifiers was explored. The experimental 
results revealed that the most effective combination involved 
the use of CNN for feature extraction in tandem with an LR 
classifier. This combination achieved an impressive accuracy 
rate of 98% for testing not dependent on the subject, using 
EEG signals from only three channels. Mellem et al. (2020) 
introduced a multimodal framework designed for the predic-
tion of symptom severity in psychiatric disorders, specifi-
cally targeting anhedonia, dysregulated mood, and anxiety. 
To estimate symptom severity, the researchers employed 
three distinct regression algorithms, including two linear 
models (i.e. least absolute shrinkage and selection operator 
and elastic net) and a non-linear model (i.e. RF). The evalu-
ation of these models and their associated features was con-
ducted using the ds000030 dataset (Poldrack et  al., 2016), 
a dataset characterized by its rich array of features, encom-
passing clinical scale assessments and MRI data.

To identify the most predictive features, a data-driven fea-
ture selection approach was developed. This approach led to 
the suggestion of seven combinations of feature types, along 
with the creation of six distinct symptom severity scores 
based on clinical scales. Subsequently, an extensive array 
of combinations involving feature sets, symptom severity 
scores, and regression models was explored and assessed 
(i.e. 126 different combinations). The results of this com-
prehensive approach demonstrated a notable enhancement in 
modeling effectiveness, explaining a substantial proportion 
of variance across the three symptom domains. In particular, 
the approach achieved a level of explanation ranging from 
65% to 90% of variance, in contrast to the baseline of 22% 
when not using the feature selection approach.

Fairness applications

ML models rely on data, which means that bias can be 
included in the model decisions or even in the data itself. The 
source model’s bias is related to the unbalanced distribution 
of data among different subgroups, as well as the fact that the 
model’s predictions are influenced by some protected fac-
tors (Paul et al., 2020). Optimally, algorithms would possess 
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comprehensive access to patient’s electronic health record 
(EHR) data to construct representative models for disease 
diagnosis, negative effect prediction, or continuing treatment 
recommendations (Chen et al., 2019). Enhancing fairness in 
prediction has been promoted by modifying models through 
regularization, restrictions, and representation learning.

These efforts can be roughly classified as fairness tech-
niques that rely on models. Some studies have implemented 
data preprocessing techniques to mitigate discrimination. 
However, constraining the model’s complexity or altering the 
training data to enhance fairness might negatively impact the 
model’s predictive accuracy. It can be challenging to justify 
sacrificing forecast accuracy in favor of fairness, especially 
when predictions have a major impact on critical decisions. 
Specifically, employing posthoc corrective techniques that 
rely on randomizing predictions is ethically unacceptable in 
clinical activities due to its potential for decreased predictive 
accuracy. As shown in Table 3, the analysis of fairness in pre-
dictive models should consider model bias, model variation, 
and outcome noise prior to imposing fairness requirements 
(Chen et  al., 2018). When dealing with mental illnesses, 
there is strong evidence that bias is not only related to ML 
diagnosis models or data processing but also related to prac-
titioner’s mental training and stigma (Peris et al., 2008).Peris 
et  al. (2008) explored the relationship between the stigma 
of mental illness and clinical decision-making. The study 
examines both implicit and explicit biases toward mental 
illness among 1539 participants with varying levels of men-
tal health training, including mental health professionals, 
healthcare/social service specialists, undergraduate students, 
and the public. The findings reveal that those with mental 
health training have more positive implicit and explicit eval-
uations of individuals with mental illness. Explicit biases, 
but not implicit, were found to predict more negative prog-
noses for patients, whereas implicit biases (and not explicit) 
predicted a higher likelihood of over-diagnosing. This find-
ing suggests the importance of considering both implicit and 
explicit measures when studying the stigma of mental illness 
and its effects on clinical care. The study underlines the com-
plex ways in which biases can influence the clinical process, 
highlighting the need for clinicians to be aware of their own 
biases, which can affect their decisions regarding diagnoses 
and prognoses.

Adarsh et al. (2023) investigated the importance of early 
detection in diagnosing depression based on patient’s social 
media posts. The study raised the issue of biased data used 
in related works due to unequal data distribution. Their 

work addressed the imbalance in participation across differ-
ent age groups and demographics using the one-shot deci-
sion approach. The study introduced an ensemble model 
that combines SVM and KNN, ensuring data classification 
without bias. This model achieved a classification accu-
racy of 98.05% and applied LIME explainability approach. 
This application was on the label-corrected data to find 
the keywords that contributed to classifying the posts into 
two categories, i.e. with and without suicidal thoughts. The 
study also discusses the challenges in accurately diagnosing 
depression and the potential risks of suicidal thoughts or 
actions if they are not addressed. Park et al. (2022) inves-
tigate the potential gender biases in mobile phone-based 
mental health prediction algorithms. With the backdrop 
that approximately one in five American adults experience 
mental illness annually, the study emphasizes the growing 
significance of mobile phone apps leveraging AI for men-
tal health assessments. However, concerns arise as various 
AI technologies, including facial recognition, have shown 
biases related to age, gender, and race. The study’s objec-
tive was to understand the gender bias susceptibility in ML 
models used for mobile mental health assessments and to 
explore methods to reduce this bias without compromising 
accuracy. Using a dataset of 55 participants, the research 
revealed that while the highest accuracy achieved was 
78.57%, there was a significant gender-based performance 
disparity in the algorithm. This gender disparity was sig-
nificantly reduced after implementing the disparate-impact 
remover approach. The findings underscore the importance 
of algorithmic auditing in mental health assessment algo-
rithms, emphasizing the need for fairness and accuracy 
in such tools. Tanqueray et  al. (2022) explored the inter-
section of gender norms and social robotics, particularly 
in the context of peripartum depression (PPD) screening. 
This study emphasizes the importance of understanding 
social structures and potential divisions before simplifying 
them into algorithms. The study involves semi-structured 
interviews with experts, exploring gender norms in current 
medical practices surrounding PPD screening. It also exam-
ines the role of power and stakeholders in the development 
of new technologies, stressing the need for inclusivity and 
representation. The research highlights the necessity of a 
relational approach in designing robots for PPD screening, 
considering the unique life experiences and backgrounds of 
pregnant women. The study emphasizes the complexities 
of integrating technology in healthcare, advocating for the 
need to understand the social dynamics and power structures 

Table 3: Fairness-based machine learning studies for mental health disorders.

Ref.  ML/DL model  Fairness 
technique

 Data  Dataset  Task

Adarsh et al. (2023)  Ensemble ML  Preprocessing  Text  Reddit 
 communities

 Depression/suicidal 
thoughts

Park et al. (2022)  MPN, SVM, LR, 
KNN, and RF

 Preprocessing  Questionnaires  Phone 
 metadata

 Depression, stress, 
 flourishing, and loneliness

Chen et al. (2019)  LR  Preprocessing  Clinical notes  MIMIC-III  Psychiatric readmissions

Paul et al. (2020)  DL network  Preprocessing 
and in-processing

 Text  OSMI Mental 
Health Survey

 Likelihood mental health 
treatment

Abbreviations: DL, deep learning; KNN, K-nearest neighbor; ML, machine learning; OSMI, open sourcing mental health; RF, random forest; 
SVM, support vector machine.
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to ensure gender fairness in social robotics Tanqueray et al. 
(2022). Chen et  al. (2019) explore the potential of AI in 
addressing disparities in healthcare. The study examines 
two case studies using ML algorithms on clinical and psy-
chiatric notes to predict intensive care unit mortality and 
30-day psychiatric readmission, focusing on race, gender, 
and insurance payer type as proxies for socioeconomic sta-
tus. It reveals that clinical note topics are heterogeneous 
with respect to these demographics, reflecting known clin-
ical findings. The research highlights differences in predic-
tion accuracy and machine bias, particularly with respect to 
gender, insurance type, and insurance policy for psychiatric 
readmission. The study also emphasizes the importance of 
understanding and addressing algorithmic biases in men-
tal healthcare AI applications, advocating for a cooperative 
relationship between clinicians and AI to improve patient 
care and reduce disparities. Training and representation 
alteration (TARA) is a novel method proposed by Paul 
et  al. (2020) to enforce AI fairness with respect to sensi-
tive variables. This method employs dual preprocessing 
and in-processing approaches. The first approach involves 
representation learning alteration via adversarial inde-
pendence to suppress bias-inducing dependence of data 
representation on sensitive factors. The second approach 
involves training set alteration via intelligent augmentation 
using generative models for fine control of sensitive factors 
related to underrepresented populations via domain adap-
tation and latent space manipulation. The study shows that 

TARA significantly debiases baseline models with consid-
erable gains in overall accuracy, presents novel conjunctive 
debiasing metrics, and emphasizes the ability of these met-
rics to assess the effectiveness of the suggested methods.

XAI applications

XAI is one of the crucial components of the TAI-based sys-
tem. In this section, we review a few studies that explored XAI 
in an ML-based approach for MHDs. Table 4 shows the sum-
mary of the reviewed studies. Ahmed et al. (2022b) presented 
a novel approach for enhancing Internet-delivered psychologi-
cal treatment through NLP and DL models. The study focused 
on the challenge of emotion segmentation in psychological 
texts, where emotional biases can lead to incorrect analysis. 
The solution offered by the authors to the challenge is an assis-
tance tool for psychologists, which leverages an NLP-based 
method to create word embeddings using an emotional lexi-
con. This creation is followed by attention-based deep clus-
tering to visualize the emotional aspects of patient-authored 
texts. The authors’ approach involves expanding patient-au-
thored text using synonymous semantic expansion and 
clustering the semantic representation with an Explainable 
Attention Network-based Deep adaptive Clustering model 
(EANDC). They employ similarity metrics for text selec-
tion and curriculum-based optimization for better learning 
explainability. Experimental results showed that the EANDC 

Table 4: XAI-based machine learning studies for mental health disorders.

Ref.  ML/DL model  XAI technique  Data  Dataset  Task
Wang et al. (2021)  LSTM  SHAP  Time series  Private  Mental illness risk

Nguyen and 
Byeon (2022)

 DNN  LIME  Questionnaires  36,258  patients  Depression

Nemesure et al. 
(2021)

 XGBoost  SHAP  Biomedical and 
demographic

 4184 patients  MDD/GAD

Ahmed et al. 
(2022b)

 DNN  Explainable attention 
network visualizations

 Social media 
text

 15,044 social 
posts

 Psychological disorders

Wang et al. (2021)  DNN  SHAP  Sensory data  2069 days of 
patient records

 Anxiety, depression, and 
schizophrenia

Ghosh et al. 
(2023)

 LSTM+CNN  Feature-level 
 explainability

 Social media 
text posts

 13,678 
 samples

 Depression detection

Alam and Kapadia 
(2020)

 N-gram language 
model

 Linguistic inquiry and 
word count explainability

 Social media 
text posts

 2423 patients  Posttraumatic stress 
 disorder

Ellis et al. (2022)  CNN-LSTM  Spatial and spectral 
explainability

 EGG signals  101 patients  Schizophrenia

Zanwar et al. 
(2023)

 MentalRoBERTa  Feature-level 
 explainability

 Social media 
text posts

 8675 users  Attention-deficit  hyperactivity 
disorder, anxiety, bipolar 
disorder, depression, and 
 psychological stress

Han et al. (2022)  BERT attention 
network

 Visualization of attention 
weights

 Social media 
text posts

 4208 users  Depression detection

Toleubay et al. 
(2023)

 Logical neural 
network

 Rule-based 
 explainability

 Medical notes  48 patient 
sessions

 Anxiety, depression, suicidal 
thoughts, and schizophrenia

Yang et al. (2019)  Graph attention 
network

 Activation maps  sMRI  106 subjects  Bipolar disorder

Nguyen and 
Byeon (2023)

 Stacking  ensemble 
of LR, LGBM, 
KNN, RF, and ET

 LIME  Numerical 
features

 526 patients  Parkinson’s disease 
 depression

Abbreviations: BERT, bidirectional encoder representations from transformers; CNN, convolutional neural network; DL, deep learning; DNN, 
deep neural network; ET, extra trees; GAD, generalized anxiety disorder; KNN, K-nearest neighbor; LGBM, light gradient boosting machine; 
LSTM, long short-term memory; MDD, major depressive disorder; ML, machine learning; RF, random forest; sMRI, structural MRI; XAI, explai-
nable AI.
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model, particularly the attention method with a bidirectional 
LSTM architecture, achieved a significant 0.81 ROC in blind 
tests. The model also helped in symptom recognition of men-
tal disorders, proving that the synonym expansion based on 
the emotion lexicon increases accuracy. The EANDC model 
can assist mental health professionals in understanding and 
treating mental health conditions more effectively.

Wang et  al. (2021) employed deep learning neural net-
works (DLNNs) to assess the illness risk of mental disorders 
in Nanjing, potentially influenced by various air pollutants 
and meteorological conditions. The study leverages the 
SHAP method to interpret the predictions of the proposed 
DLNNs, emphasizing the non-linear association between 
outpatient visits for mental disorders and environmental 
stressors. Through enhanced model interpretability, the study 
identifies and elucidates low-frequency, high- impact non-lin-
ear risk factors and their potential interactions, contributing 
to the broader understanding of air pollution epidemiology 
and its impact on mental health. Nguyen and Byeon (2022) 
focused on the implications of the COVID-19 pandemic on 
the mental health of the elderly. The study developed a DNN 
model to predict depression in the elderly based on 22 social 
characteristics using data from the 2020 Community Health 
Survey of the Republic of Korea, which comprised 97,230 
adults over the age of 60 years. To offer explainability on 
the model’s predictions, the model was further integrated 
with a LIME-based explainable model. The model achieved 
a prediction accuracy of 89.92%, with an F1-score of 92%, 
precision of 93.55%, and recall of 97.32%, according to the 
study. The findings indicate the COVID-19 pandemic’s large 
impact on the likelihood of depression in the elderly, as well 
as the promise of the explainable DNN model in the early 
detection and treatment of depression in patients. Nemesure 
et al. (2021) predicted major depressive disorder (MDD) and 
generalized anxiety disorder (GAD) using basic medical 
examination and an ML approach. The study used 59 bio-
medical and demographic features from 4184 undergraduate 
students who underwent a general health screening and psy-
chiatric assessment for MDD and GAD. The results showed 
that the model could predict MDD and GAD with an AUC 
of 0.67 and 0.73, respectively. Important predictors for MDD 
included satisfaction with living conditions and having pub-
lic health insurance, while for GAD, the top predictors were 
up-to-date vaccinations and marijuana use.

Wang et  al. (2021) investigated into how environmental 
factors like air pollution and meteorological conditions can 
be linked to the risk of mental disorders using DLNNs. The 
authors used a permutation-based SHAP method to interpret 
the DLNN’s predictions. The study revealed that air pol-
lutants like NO

2
, SO

2
, and CO are significant predictors of 

outpatient visits for mental disorders, indicating their sub-
stantial impact on mental health risks. The study combined 
data on daily outpatient visits from two major hospitals in 
Nanjing with environmental data from air quality monitor-
ing stations, capturing the non-linear relationship between 
environmental stressors and mental health outcomes. The 
model’s performance was robust, and SHAP analysis pro-
vided insights into the variable importance and interaction 
effects. Notably, the findings suggest that high levels of NO

2
 

increase the risk of MHDs, while SO
2
 and CO showed mixed 

effects. The study holds potential implications for public 
health policies, emphasizing the importance of air pollution 
control in mitigating mental health risks. The authors also 
acknowledge limitations of the study such as the inability 
to measure individual exposure levels to pollution and the 
broader categorization of mental disorders, suggesting ave-
nues for more focused future research. The paper concludes 
that accurate modeling of illness risk, combined with inter-
pretability, is crucial for effective air pollution management 
strategies to address mental health concerns.

Mental disorder datasets

In this section, we surveyed the existing mainly open-ac-
cess datasets for mental disorders. Each dataset is described 
in terms of the abbreviation, the size, the mental disorder, 
whether the dataset is open access or not, whether the data-
set is time series or not, the modalities, the task including 
detection, prediction, and diagnosis, and the access link if 
the dataset is open access. Table 5 includes the description 
of 43 datasets. All these datasets are open access except 
Andrzejak et  al. (2001), Tasnim et  al. (2022), Yoon et  al. 
(2022), Cummins et al. (2023), and Nigg et al. (2023), where 
we could not find a direct download link. Most datasets are 
single modality, where the dataset contains one type of data. 
For example, Ramírez-Dolores et al. (2022) presents a ques-
tionnaire, Olejarczyk and Jernajczyk (2017), Andrzejak 
et al. (2001), Mane (2023), Nasrabadi et al. (2020), Obeid 
and Picone (2016), Shoeb (2009), Temko et  al. (2015), 
Gupta et  al. (2018), Brinkmann et  al. (2016), Detti et  al. 
(2020), and Stevenson et  al. (2019) present EEGs; Yates 
et al. (2017), Cohan et al. (2018), and Turcan and McKeown 
(2019) are about social media posts; Singh et al. (2022) and 
Villa-Pérez and Trejo (2023) present tweets; Yoon et  al. 
(2022) contains videos; Mauriello et  al. (2021) presents 
short messages; Tasnim et  al. (2022) and Cummins et  al. 
(2023) present speeches; Wang et al. (2016), Tanaka et al. 
(2021), and ADHD-200 (2023) contain MRIs; El Haouij 
et al. (2018), Schmidt et al. (2018), Jakobsen et al. (2020), 
Hosseini et al. (2022), and Kang et al. (2023) present sen-
sory data; and Edgar et al. (2002) and Wu et al. (2017) are 
about genetic data. Using single modality data to build an 
ML model results in a model which cannot provide person-
alized or customized medicine. The main reason for this 
limitation is because in real environments, medical experts 
use multimodal data about the patient to provide a deeper 
representation and understanding of the patient’s conditions. 
We collected a set of multimodal datasets with different 
formats which support the building of more robust and TAI 
models. For example, Albrecht et al. (2019) collected EEG, 
medication, and behavioral modalities for schizophrenia, 
and Valstar et al. (2013, 2014) are speech and video modal-
ities for depression. In addition, Shen et al. (2022) collected 
the two modalities of speech and text for depression, Siless 
et al. (2020) collected MRI, clinical, and behavioral modal-
ity for anxiety and depression, and Cai et al. (2020a,b) con-
tains the two modalities of EEG and speech for depression. 
Likewise, Hicks et  al. (2021) had the demographics, neu-
ropsychological tests, and activity and heart rates modalities 
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for ADHD, Nigg et al. (2023) had the DNA, EEG, MRI, psy-
chophysiological, psychosocial, clinical, and functional data 
for ADHD. Jaiswal et al. (2020) had the ECG, EDA, and res-
piration, and heart rate modalities for stress, Kempton et al. 
(2023) had the two imaging modalities of MRI and com-
puted tomography (CT) for the depression, and Larivière 
et  al. (2021) had the two imaging modalities of MRI and 
diffusion tensor imaging for epilepsy. Another important 
dimension for analysis is the longitudinal nature of the data-
set. Most datasets are not time series data which means that 
each patient has been represented by a single record or sin-
gle observation. Some datasets tracked patients over time 
(Schmidt et al., 2018; Albrecht et al., 2019; Tasnim et al., 
2022; Kang et al., 2023). We noticed that depression disease 
has many datasets, but we also noticed that most datasets 
have small samples of data. For comprehensive datasets con-
centrated on specific type of data, Li et al. (2019) provided a 
comprehensive survey of the speech dataset for mental dis-
orders. In addition, Wong et al. (2023) provided a survey of 
the EEG datasets for seizure detection and prediction, and 
Garg (2023) surveyed the mental health analysis process 
based on social media posts datasets.

CHALLENGES AND FUTURE 
 RESEARCH DIRECTIONS

The literature of TAI in general has been reviewed in this 
study. In addition, we reviewed and evaluated the literature 
of TAI in the medical disorder domain considering the TAI 
requirements. We found a great shortage in MHD literature 
regarding TAI requirements. These results could be the rea-
son for the little applications of AI-based systems in the real 
environment of MHDs. This review provides the research-
ers in the AI and mental disorders domains with an accurate 
analysis and evaluation of the current literature. In this sec-
tion, we highlight the current limitations and possible direc-
tions for enhancements of AI-based systems for MHDs. The 
following is a list of possible research directions considering 
the previously discussed literature:
• There is no unified definition of the TAI term and its 

requirements. There is no unified framework for applying 
TAI principles. There are no best practices and machine 
learning operations guidelines to implement an ecosystem 
for supporting RAI use in the medical context (Sivarajah 
et  al., 2023). There is an urgent need to develop deep 
research in RAI in the medical domain to develop medi-
cally trustworthy applications of AI.

• Available datasets in the MHD domain are mostly not suf-
ficient and have a small number of patients. MHDs need 
time series and multimodal data. Most available datasets 
are not prepared for building personalized ML models that 
are suitable for building personalized CDSSs. Existing 
datasets have short sequences which are not suitable for 
advanced DL models such as transformers. New data aug-
mentation algorithms like stable diffusion and GAN can 
be used to generate samples. Data preprocessing, division 
into train/validation/test, data labeling, data balancing, 
etc. could result in biased datasets which over optimize 

https://enigma.ini.usc.edu/
https://bicr-resource.atr.jp/srpbsfc/
https://github.com/CPHSLab/Stress-Detection-in-Nurses
https://zenodo.org/record/7606611
http://www.szdb.org
https://github.com/ktapani/Neonatal_Seizure_Detection
https://repod.icm.edu.pl/dataset.xhtml%3FpersistentId%3Ddoi%3A10.18150/repod.0107441
https://openneuro.org/datasets/ds000030
https://github.com/ZihengZZH/bipolar-disorder/blob/master/docs/dataset.md
https://fcon_1000.projects.nitrc.org/indi/abide/
https://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
https://vast.uccs.edu/~sdhamija/EASE_dataset.tar.gz
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the results and result in overfitted models that are difficult 
to generalize.

• The available datasets must be examined for potential 
data bias and uncertainty. Most datasets are biased due to 
the inclusion and exclusion criteria employed to choose 
respondents. The combination of patient’s EHR data leads to 
a robust ML model that gives individualized and patient-tai-
lored decisions. In the current literature, the study of mul-
timodal time series data is insufficient. Medical data are 
usually multimodal in nature including neuroimages such as 
MRI and PET, structured data such as lab tests, graph data 
such as medicine and diseases, text data such as medical 
reports, EEG data, sensory data, etc. Fusion of these data 
results in comprehensive datasets that could be used to build 
personalized models and for discovering new biomarkers.

• All ML/DL models either neglected TAI at all or concen-
trated on specific dimension of TAI. For example, some 
studies concentrated on model robustness, especially 
related to security issues. At the same time, the study 
neglected the model transparency which is very much 
related to security. Some studies concentrated on model 
fairness and neglected model robustness, but increasing 
model fairness could result in lower performance models. 
Some studies focused on providing comprehensive XAI 
features and made the proposed model fully transparent. 
However, this transparency affects the model’s security 
and user’s data privacy. No study in the literature imple-
mented a comprehensive TAI framework that can balance 
all these, possibly conflicting, requirements.

• ML/DL models can be used in real environment only if 
they are stable. Model reproducibility could be used to 
measure the generalizability of models. Reproducibility 
can be achieved by (i) developing standard datasets, (ii) 
applying standardized data management, (iii) using stand-
ard cross-validation techniques to validate the models, 
(iv) testing models on different datasets, and (v) publicly 
releasing the code (El-Sappagh et al., 2023).

• Building a federated ML model requires the integra-
tion of data from different sources. In medical domain, 
these data could have different standards, use different 
terminologies, and have different data structures. Data 
interoperability solutions can solve this challenging 
issue arising from the above differences. This solution 
facilitates the modeling of distributed CDSSs for use in 
distributed medical systems. Furthermore, the model 
can be trained on a dataset from one source and tested 
on data from another. This allows us to develop a model 
with data from one study and confirm it with data from 
another. This has the potential to improve the model’s 
generalizability. Notably, finding standard mapping rules 
between different datasets is crucial. Standard ontologies 
and terminologies, such as Systematized Nomenclature 
of Medicine Clinical Term, International Classification 
of Disease, Logical Observation Identifiers Names and 
Codes, and Unified Medical Language System, and uni-
fied data formats such as Fast Healthcare Interoperability 
Resources and OpenEHR can help in handling this chal-
lenge (El-Sappagh et al., 2019).

• XAI features of ML/DL models are crucial necessities 
for medical applications. There are many limitations of 

the current XAI literature. In the MHD domain, there 
are many modalities to consider, and building consist-
ent multimodal XAI features is important. This provides 
the domain experts with XAI features with different 
formats like feature importance, case-based reasoning, 
fuzzy and natural language explanations, visual expla-
nations, etc. However, explanations should be context 
based. In other words, the provided explanations should 
depend on the experience of the user. Testing the cau-
sality and the uncertainty of the provided XAI is also 
crucial. Domain experts must participate in the design 
process of the XAI features of the AI-based system. In 
addition, using natural language models like GPT-4 to 
provide interactive XAI features needs to be explored 
(Salahuddin et al., 2022; Ali et al., 2023). Graph neural 
networks can combine multimodal data and knowledge 
bases for providing interactive explainability. There is an 
urgent need to provide new techniques for evaluating the 
XAI methods which combine human-centered and quan-
titative evaluations.

• Fusion of different data formats such as MRI, EEG, text, 
video, audio, and clinical data is crucial to improve the 
accuracy of the ML/DL models. The fusion of multimodal 
time series data needs complex models to understand 
these data. Ensemble and hybrid model optimization is 
a critical field to export to build stable and robust ML/
DL models. AutoML techniques can be used to optimize 
the ML pipeline and select the best model architectures. 
The optimization can include the selection of the best XAI 
features that have the best fidelity with the main ML/DL 
models.

• Knowledge-guided ML/DL architectures are state-of-the-
art to improve the performance and the interpretability of 
ML/DL models. Interpretable knowledge-based systems 
are based on domain experts, standard clinical practice 
guideline, and literature knowledge. This knowledge can 
be represented as Bayesian networks, knowledge graphs, 
IF–THEN rules, or semantic ontologies. Integrating this 
knowledge with the data-driven AI models improves the 
learning and performance of the resulting ML/DL model 
and improves its interpretability.

• The TAI techniques and tools are immature. For example, 
fairness tools, techniques, and metrics face many dilem-
mas, including the lack of a unified definition of fairness 
(Mehrabi et al., 2019). Most fairness definitions concen-
trated on the equality where each individual or group is 
given the same resources, but definitions neglected the 
equity where individuals and groups given the needed 
resources to succeed. Model robustness is based on pro-
viding countermeasures of adversarial attacks, but there is 
no universal method to measure the level of robustness of 
ML model against unknown attacks. Model explainability 
faces many challenges such as multimodal XAI, measur-
ing XAI uncertainty, context-based XAI, human-in-the-
loop in XAI design, interactive XAI, etc. These challenges 
need further investigation.

• The role of non-functional TAI parts such as regulation, 
standardization, certification, education, awareness, 
and accountability needs further study (Sivarajah et al., 
2023).
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CONCLUSION

In this study, we explored the literature of ML and DL mod-
els in the MHD domain. We evaluate the literature of TAI in 
MHD detection and prediction. We investigated and explored 
the use of multimodal data to build customized models. We 
evaluated the models’ robustness, fairness, and transpar-
ency compared to the TAI standards and guidelines. Most 
existing datasets for MHDs have been collected. The main 
results of this study are as follows: (i) existing ML/DL mod-
els are not robust because these studies did not implement 
suitable security and privacy measures, have not performed 
any external validation, and have used small datasets; (ii) 
existing literature is not fair because no evaluation has been 
done for data and algorithmic bias, and no suitable measures 
have been found to remove these biases; (iii) existing meth-
ods have used limited XAI features because no multimodal, 
multiformat, context-sensitive, robust, and interactive XAI 
has been implemented; and (iv) existing studies were mainly 
depended on single modality such as images or EEG signals. 
Based on the analysis of the literature, we highlighted the 
current limitations of the literature of AI-based models in the 
MHD domain, and we suggested future research directions 
that could improve this domain. The investigation presented 
in this work is crucial to build medically relevant and accept-
able AI-based models that could play an effective role in 
enhancing the quality of mental health management.
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