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Fusion of multi‑scale bag of deep 
visual words features of chest 
X‑ray images to detect COVID‑19 
infection
Chiranjibi Sitaula 1*, Tej Bahadur Shahi 2,3, Sunil Aryal4 & Faezeh Marzbanrad 1

Chest X‑ray (CXR) images have been one of the important diagnosis tools used in the COVID‑19 
disease diagnosis. Deep learning (DL)‑based methods have been used heavily to analyze these 
images. Compared to other DL‑based methods, the bag of deep visual words‑based method 
(BoDVW) proposed recently is shown to be a prominent representation of CXR images for their 
better discriminability. However, single‑scale BoDVW features are insufficient to capture the detailed 
semantic information of the infected regions in the lungs as the resolution of such images varies in real 
application. In this paper, we propose a new multi‑scale bag of deep visual words (MBoDVW) features, 
which exploits three different scales of the 4th pooling layer’s output feature map achieved from VGG‑
16 model. For MBoDVW‑based features, we perform the Convolution with Max pooling operation over 
the 4th pooling layer using three different kernels: 1× 1 , 2× 2 , and 3× 3 . We evaluate our proposed 
features with the Support Vector Machine (SVM) classification algorithm on four CXR public datasets 
(CD1, CD2, CD3, and CD4) with over 5000 CXR images. Experimental results show that our method 
produces stable and prominent classification accuracy (84.37%, 88.88%, 90.29%, and 83.65% on CD1, 
CD2, CD3, and CD4, respectively).

Coronavirus (COVID-19), which is caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-
CoV-2)1, has been highly contagious and killing millions of people around the world. The quick transmission of 
COVID-19 from human to human all around the world created a health hazard and pandemic from late 2019 and 
the situation is still not in control. The World Health Organization (WHO) urged to put every effort to reduce 
the spread of this virus. However, many countries are facing critical health care crises as the number of infected 
people are surging because of the multiple waves of COVID-19  infections2. Various techniques have been adapted 
to assist the infected patients of SARS-COV-2 with the help of telehealth  services3 and wearable  devices4. The 
effect of SARS-COV-2 virus in the human body has been identified that it may cause the Pneumonia-like effect 
in the lungs, which can be studied by the help of chest X-ray (CXR) images . It particularly motivates researchers 
to use automated biomedical image processing tools and machine learning methods in analyzing the chest X-ray 
(CXR) images for quick diagnosis of COVID-19 and its impact in the lungs. Also, it is reported in recent studies 
that artificial intelligence-based automated COVID-19 detection techniques produce a higher  performance5.

The automatic image recognition and classification by machines is primarily dependent on the image feature 
representation schemes. These image representation techniques are either traditional vision-based features such 
as Gist-color6 or deep neural network-based features such as deep features. Semantic features extracted using 
deep neural networks, also known as deep learning (DL) models, are widely used to analyze various types of 
 images7–10. Recent studies have shown promising results using DL methods over traditional machine learning 
methods to analyze CXR images for COVID-19  diagnosis11,12. Authors  in13 used transfer learning (refer to 
“Related work”) by fine-tuning a pre-trained DL models including  AlexNet14, ResNet-1815, and  GoogleNet16 for 
detecting COVID-19 using CXR images. These deep learning models require a lot of learn-able and tune-able 
hyper-parameters, thereby demanding a large number of training images. However, in the biomedical domain, 
most of the image datasets (e.g., COVID Chest X-ray, Computed Tomography (CT) images, etc.) have a limited 
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data size because of privacy issues and complex acquisition processes. The existing feature extraction methods 
such as Global Average Pooling (GAP) and Flattening methods obtained from pre-trained models, which work 
well on other kinds of images, may not provide an accurate representation for CXR images because of their 
sparsity (i.e., having fewer semantic regions in such images). Also, the CXR images with COVID-19 and other 
similar diseases such as Pneumonia have similar effects on the lungs, which make it more challenging to classify 
such images. Keeping these issues in mind, recently authors in Ref.5 adopted a novel feature extraction method 
based on Bag of Deep Visual Words (BoDVW) to classify CXR images, which imparts the state-of-the-art per-
formance during diagnosis of COVID-19 disease.

The Bag of Visual Word (BoVW)  approach17 uses the concept of key points and descriptors to represent 
images. Key points are scale-invariant points in images. Also, the key points are the visual patterns/clues in each 
image, thereby capturing sparse interesting regions in the image, which is beneficial in dealing with inter-class 
similarity and sparsity problems to some extent. These key points and their descriptors are used to construct 
vocabularies and histograms of frequency to analyze images. The BoVW-based feature extraction approaches 
are not only popular in traditional computer vision techniques such as Gist-color6 , but also in deep learning 
based  methods18 because of their capability to arrest semantic relationships from the feature map of pre-trained 
models. The Bag of Deep Visual Words (BoDVW) approach used in one domain might not work well on another 
domain. For instance, authors in Ref.18 designed deep convolution features (DCF-BoVW) for satellite images to 
capture numerous semantic regions presented in the images, which might not work on biomedical images such 
as CXR because they contain only a few semantic regions. To overcome this, recent work carried out by Sitaula 
et al.5 proposed a new bag of deep visual words (BoDVW), which still has three main limitations. First, it is only 
dependent on single scale CXR images, which might compromise the classification accuracy when provided the 
CXR images at various scales. Second, there is no study on effects on different scales of bag of deep visual words-
based features on CXR image analysis for COVID-19 diagnosis. Last, the efficacy of fusion of bag of deep visual 
words-based features at different scales has not been studied for COVID-19 diagnosis.

In this paper, we propose a multi-scale BoDVW-based feature extraction method to represent CXR images 
for COVID-19 diagnosis. For this, we adopt the following steps. First, we extract the raw feature map from the 
mid-level (4th pooling layer) of the VGG-16 pre-trained  model19 for each input image. We prefer the 4th pooling 
layer in our work, which has been chosen by empirical study and suggestions from the recent works by Sitaula 
et al.5,20. Next, we extract multi-scale deep features using various kernels and stride (please refer to Table 1). For 
this, we extract deep features at three different scales ( 1× 1 , 2× 2 , and 3× 3 ), perform L2-normalization, and 
prepare codebook/dictionary based on the training set, which results in three different bag of deep visual words 
for each corresponding scale. Last, we combine these three different bag of deep visual words to represent the 
CXR images for the classification. Example comparison of two-dimensional projections of features produced 
by DCF-BoVW18,  BoDVW5 and our proposed method on the COVID-19 CXR image  dataset21 based on the 
t-SNE (t-distributed Stochastic Neighbor Embedding)  visualization22 is presented in Fig. 1. In Fig. 1, we observe 
that the DCF-BoDVW method has a problem in discriminating mainly two classes: Normal and COVID. This 
is because of the over-normalization of features during feature extraction. Compared to the DCF-BoDVW 
method, the BoDVW method has provided a higher discriminability for both Normal and COVID classes. This 
improvement in discriminability is attributed to the selection of proper normalization (e.g., L2-norm) during 
feature  extraction5. Because of the single scale image input used in both DCF-BoDVW and BoDVW, it is unable 
to capture sufficient information of CXR images for the better discrimination. To this end, our work proposes 
to exploit the multi-scale information to enrich the separability. This visual presentation underscores that our 
proposed method (multi-scale bag of deep visual words) imparts a higher separability among different ambigu-
ous classes compared to the two recent methods.

The main contributions in our work are listed below: 

(a) propose to use the improved version of a bag of deep visual words (multi-scale) method using three dif-
ferent scales over deep features achieved from 4th pooling layer of VGG-16 to represent COVID-19 CXR 
images;

(b) analyze the contribution of each scale used in our work and perform extensive class-wise study on the result 
achieved from our method;

(c) demonstrate the superior performance of our method by evaluating on four public COVID-19 CXR (CD1, 
CD2, CD3, and CD4) image datasets against the recent state-of-the-art methods using pre-trained DL 
models and the Support Vector Machine (SVM) classifier.

The remainder of the paper is organized as follows. In “Related work”, we review some of the recent works on 
CXR image representation and classification. Similarly, we discuss our proposed method in “Proposed method” 
in a step-wise manner. Furthermore, “Experimental setup and comparison” details the experimental setup, per-
formance comparison, and ablative study associated with it. Finally, “Conclusion and future works” concludes 
our paper with potential directions for future research.

Related work
Several studies by far flagged that deep learning models employing large numbers of layers and convolution 
operations impart promising results in various complex problems such as  prediction24, and  classification5,25. The 
use of deep learning models can be grouped into two classes: (a) build a model from scratch and train it- called 
as user-defined DL models; and (b) use of existing DL architectures, which are already trained on large datasets 
such as  ImageNet26, or  Places27 as pre-trained models. The semantic features extracted from intermediate layers 
of DL models (both user-defined and pre-trained models) have been more significant in task-specific image 
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analysis (classification or segmentation) than hand-crafted computer vision-based features such as Gist-color6 
and Spatial Pyramid Matching (SPM)28. In recent years, various deep learning models have been used for CXR 
image  classification13,20,29–37. Due to the limited size of the COVID-19 CXR image datasets, most of these deep 
learning models adopt transfer learning approaches for CXR images analysis. In this section, we confine our 
discussion into two types of deep learning models: (a) individual deep learning models; and (b) combined or 
ensemble deep learning models.

Several researchers have actively investigated individual or single deep learning models for CXR image 
analysis. Initially, authors  in29 compared deep learning and traditional machine learning methods for Pneumo-
nia diagnosis in CXR images. They trained self-devised Convolutions Neural Network (CNN) from scratch on 
CXR images and reports promising results on validation data (classification accuracy: 93.73%). Apart from self-
defined DL models, pre-trained DL models have been used for CXR based Pneumonia diagnosis. It is assumed 
that pre-trained models are less time-consuming and perform better if the knowledge learned from the previous 
domain is somehow useful in later domain. Authors  in30 proposed DL models for early diagnosis of Pneumonia 
utilizing pre-trained model on CXR images. They adopted  Xception38 and VGG-1619 and built the Pneumonia 
classification model. Their results show that VGG-16 has a higher classification accuracy in comparison to 
Xception model (87.00% and 82.00% for VGG-16 and Xception, respectively). Given the promising results of 
pre-trained VGG-16 model on CXR image classification for Pneumonia, quite a few studies were carried using 
pre-trained DL models for CXR image classification. For instance, popular pre-trained DL models, such as VGG-
1619,  Xception38,  ResNet5015 and  DenseNet16939 were used as feature extractors from CXR images by Varshni 
et al.31. Features extracted from these models were used to classify such images using various traditional machine 
learning classifiers such as  SVM40, Random  Forest41, K-Nearest  Neighbors42, and Naive  Bayes43. Their experiment 
produces a higher area under the curve (AUC) score of 80.02% using SVM classifier over the features extracted 
from DenseNet169 model. Similarly, Ozturk et al.34 devised a novel deep learning model for the categorization of 
COVID-19 related CXR images using  DarkNet1944. Their proposed method imparts the classification accuracy 
of 98.08% for 2-class problem (COVID vs No_Findings) and 87.02% for 3-class problem (COVID vs No_Find-
ings vs Pneumonia). Similarly, Panwar et al.36 implemented a deep learning model, called nCOVnet, based on 
VGG-16 model. Their method imparts a prominent detection rate of COVID-19 (97.62% true positive rate) over 
CXR images. This further suggests that the VGG-16 model is still a strong candidate in CXR image analysis. 
Authors  in13 used  AlexNet14,  ResNet1815, and  GoogleNet16 models in a 4-class problem (COVID vs Normal vs 

Figure 1.  Scatter plot (t-SNE) of two dimensional (2-D) projection of features achieved from (a) DCF-BoDVW, 
(b) BoDVW, and (c) our proposed method on CXR images of CD4 (training set of Set 1)21,23. Our proposed 
method, which is based on multi-scale approach, has a higher separability, particularly for COVID and Normal 
classes, compared to both (a) DCF-BoDVW and (b) BoDVW).
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Pneumonia viral vs and Pneumonia bacteria) for CXR images classification. They further enhanced the model 
performance and prevented the model from over-fitting using Generative Adversarial Network (GAN)45 based 
data augmentation technique. They experimented these models with three combinations of classes: 2-class setting 
(COVID-19 vs Non-COVID), 3-class setting (COVID vs Normal vs Pneumonia bacteria) , and 4-class setting 
(COVID, Normal, Pneumonia viral, and Pneumonia bacteria ). Among all three combinations, each of individual 
transfer learned models such as RestNet18, GoogleNet, and AlexNet produces 100% classification accuracy in 
a 2-class setting, whereas the classification accuracies of these models in a 3-class setting are 81.5%, 81.5% and 
85.2%, respectively. They have limited performance in a 4-class setting. Similarly, Khan et al.46 developed a deep 
learning model, named as Coronet, using Xception as a base architecture and performed fine-tuning of their 
model over the CXR images. Coronet provides the classification accuracy of 89.60% in a 4-class setting (COVID 
vs Pneumonia bacteria vs Pneumonia viral vs Normal) and 95% in a 3-class setting (COVID vs Pneumonia vs 
Normal). In the meantime, Islam et al.37 proposed to combine the CNN with LSTM based on VGG-16 model, 
which provides an excellent accuracy (99.4%) on CXR images in a 3-class setting (COVID vs Pneumonia vs 
Normal). Not only the transfer learning-based schemes were investigated for COVID-19 detection, the attention-
based method was also used for CXR image analysis. For instance, Sitaula et al.20 published an attention-based 
VGG model (AVGG) for the COVID-19 CXR image classification. Their model provides some promising results 
on three publicly available datasets having different number of classes (3-class setting, 4-class setting, and 5-class 
setting). They attain the highest classification accuracy of 87.49% in a 5-class setting (COVID vs No_findings vs 
Normal vs Pneumonia bacteria vs Pneumonia viral). Furthermore, authors  in35 used the  EfficientNet47 model, 
which adopted transfer learning over CXR images for the COVID-19 classification, produces the classification 
accuracy of 93.90%. Recently, authors  in5 adopted new bag of deep visual words (BoDVW) to represent the CXR 
images for the COVID-19 diagnosis. Their method produces the highest classification accuracy of 87.92% in a 
5-class setting (COVID vs No_findings vs Normal vs Pneumonia bacteria vs Pneumonia viral), outperforming 
several recent state-of-the-art methods.

The ensemble of several learning approaches has been used in CXR image analysis and classification. The 
fundamental idea behind such approaches is that different features of a CXR image can be represented by various 
learning methods and their combination would result in better classification of images. Saha et al.48 proposed 
an ensemble of several machine learning methods such as Random  Forest41, Support Vector  Machine49, Deci-
sion  Tree50 and  AdaBoost51 on top of the features extracted from Convolution Neural Network (CNN) model. 
They report promising results on binary classification of CXR images into COVID-19 vs Non-COVID with an 
accuracy of 98.91 % and a low false negative rate comparing to standalone CNN model. Similarly, Das et al.52 
proposed an ensemble of CNN models, namely,  DenseNet2139,  ResNet5018, and  InceptionV353 for COVID-19 
diagnosis, where individual models’ output their prediction separately and then combined using weighted aver-
age for the final prediction. Their model imparts the highest accuracy of 94.00% on CXR images for CXR image 
classification during COVID-19 diagnosis. Furthermore, Chouhan et al.32 introduced an ensemble of five pre-
trained deep learning models, namely AlexNet, ResNet18, DenseNet121, GoogleNet, and InceptionV3,for the 
diagnosis of Pneumonia in CXR images using transfer learning (TL) approach. The multiple pre-trained models 
help fortify the classification accuracy up to 96.40%, which is much better than the performance of standalone 
models. Nevertheless, ensemble learning algorithms are onerous that require higher attention on hyper-parameter 
tuning and over-fitting problems.

Proposed method
We propose a multi-scale bag of deep visual words to represent CXR images more accurately. We discuss our 
proposed multi-scale bag of visual word extraction process in this section, which consists of three main steps: 
Deep feature extraction, Bag of Deep Visual Word (BoDVW) extraction and Feature fusion. The high-level 
flowchart of our method is depicted in Fig. 2.

Figure 2.  High level flow chart that shows the training and testing operation to extract our proposed features 
for the classification.
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Deep feature extraction. The VGG-1619 deep learning model, pre-trained model initialized with Ima-
genet26, is chosen in our work for three reasons. First, the five pooling layers in VGG-16 model make it easy to 
analyze and experiment for feature extraction at the various intermediate levels. Second, the use of the smaller 
size kernels in VGG-16 could learn separable features of the biomedical images at fine-grained  level5. Third, 
recent works on biomedical image analysis shows the unsurpassed performance in various tasks such as COVID-
19 CXR image  analysis20 and breast cancer image  analysis8. VGG-16 has 13 Convolution layers, 5 Max-pooling 
layers (MP), and 3 Fully Connected layers (FC). The convolution operation involves the learn-able parameters w 
and b, passing a filter or kernel over the image pixels. Each Convolution layer is followed by an activation layer 
to introduce non-linearity. The Pooling layers are used to reduce the size of the activation map. The detailed 
pipeline of our work showing the deep feature extraction and codebook design steps followed by classification 
is also presented in Fig. 3.

Mathematically, let X ∈ RnH×nW×nC is an input image, K ∈ Rf×f×nC is a filter, φ is an activation function, then 
the subsequent activation map after convolution is defined in Eq. (1).

where nH , nW , and nC denote the height, width, and depth or channel, respectively. Similarly, F, n, m, and bn 
denote activation map, height of activation map, width of activation map, and bias, respectively.

According to the recent work carried out by Sitaula et al.5, 4th pooling layer of VGG-16 provides more dis-
criminating features than other layers for CXR image representation. This is because higher layer (5th pooling 
layer) is specific to objects and lower layers (1st, 2nd and 3rd pooling layers) are more generic. These higher and 
lower layers impart less important features for the chest X-ray image representation. Thus, we utilize the 4th 
pooling layer of VGG-16, which outputs a tensor of size of 14× 14× 512 . It is used as a input feature map to 
achieve the normalized deep features at three different scales ({s1, s2, s3}). We list the size of each kernel or scale 
and stride used in three different scales to extract the normalized deep features in Table 1. Here, we perform the 
Max pooling operation at three different scales separately as suggested from empirical study in terms of better 
accuracy (refer to Table 3 of “Supplemental file”) and then, achieve the normalized deep features corresponding 
to each scale. We prefer Max pooling operation in our work to preserve the high activation values that impart the 

(1)F(X,K)m,n = φ





nH
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�

j=1
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Figure 3.  Diagram showing the deep feature extraction and codebook design steps followed by classification of 
CXR images in our proposed method. Note that s1, s2, and s3 denote max pooling operation performed at three 
different scales such as 1× 1 , 2× 2 , and 3× 3 , respectively. Note that during training phase, we achieve the 
codebook and testing phase is carried out based on such codebook to extract our proposed features for the SVM 
classification purpose.
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highly discriminating information at the particular scale. Also, we prefer stride 1 in our work because a higher 
stride could miss the discriminating semantic regions.

After the Max pooling operation on the 4th pooling layer at the corresponding scale, we achieve the nor-
malized deep features as suggested  by5, which uses L2-normalization. The size of each deep feature vector is 
512-D in our work because the depth of input pooling layer’s tensor is 512. As an example, we achieve {xji(I)}

N
i=1 

normalized deep feature vectors (each with 512-D size) for the input image (I) at {jth} scale (i.e., kernel size = 
( j × j ) and stride = 1) and i-th position of the resultant Max-pooled tensor with N features. For example, if we 
choose s1 scale, it provides N = 196 deep features. We repeat this overall step thrice for three different scales 
(s1, s2, and s3) of each input image.

We also present the step-wise process to extract such deep features for training and testing CXR images at 
three different scales in Algorithm 1. In the algorithm, VGG161×1(.) , VGG162×2(.) , and VGG163×3(.) denote 
the deep features extracted using s1 (1× 1) , s2 (2× 2) , and s3 (3× 3) , respectively for each input CXR image.

Bag of Deep Visual Word (BoDVW) feature extraction. Apart from the traditional bag of visual 
words, we utilize the novel bag of deep visual words used to represent CXR images for COVID-19 diagnosis 
as proposed by Sitaula et al.5 recently, which captures the vital semantic regions from sparse CXR images more 
accurately. The bag of deep visual word extraction at various scales runs through the following steps for each 
input image.

Let us assume that we have m training examples, then we have m× 196 total deep feature vectors to design the 
codebook/dictionary at scale {s1}. We construct our codebook using a simple yet powerful clustering algorithm 
called k-means54. The k-means clustering help us find k groups or clusters and the value of “k” is selected empiri-
cally, say ( {gj1, g

j
2, g

j
3, . . . , g

j
k ) of normalized deep features at scale j. Later on, we use the centroid of these groups to 

assign the number of deep features into one of these clusters, based on their similarity to each cluster center. More 
precisely, each center ( {gj1, g

j
2, g

j
3, . . . , g

j
k ) is used to cluster all deep features into weights ( {wj

1(I),w
j
2(I), . . . ,w

j
k(I) ) 

for each input image (I) to achieve the corresponding bag of deep visual words ( BoDVW(gj , I) ) at scale j. Here, 
each weight wj

i represents the cumulative count of features assigned to each center gji  as defined in Eq. (3) at scale 
j. This BoDVW extraction process is repeated for all three scales (j) of the input image (I) used in this study.

where j ∈ {1, 2, 3}.
In Algorithms 1 and 2, we use KMeans(.) to learn the patterns across deep features achieved from training 

CXR images. Based on such patterns, we calculate the bag of deep visual words using BoDVW(.) for each input 
CXR image at scale j. Note that in Algorithm 1, BoDVW(gj , tr[i]) and BoDVW(gj , te[i]) denote bag of deep visual 
words for i-th training CXR image (tr) and i-th testing CXR image (te) at scale j, respectively.

(2)BoDVW(gj , I) = {w
j
1(I),w

j
2(I), . . .w

j
k(I)},

Table 1.  Detailed information of six schemes studied in our work.

Scheme {s1} {s2} {s3} {s1,s2} {s1,s3} {s2,s3} {s1, s2, s3}

Scale (1× 1) (2× 2) (3× 3) (1× 1) & (2× 2) (1× 1) & (3× 3) (2× 2) & (3× 3) (1× 1) & (2× 2) & (3× 3)
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Feature fusion. Three bag of deep visual words (BoDVW)-based features computed at three different 
scales—s1, s2, and s3—are fused as suggested by Sitaula et al.7 to attain the final representation. This is a feature-
level fusion, where we perform concatenation fusion of features achieved at three different scales for the input 
CXR image. Also, Sitaula et al. suggests that the simple concatenation feature fusion approach imparts a higher 
performance than other methods such as max, min, and sum. This is because of the uniform involvement of 
multiple features in the final representation. The concatenation of these features into a single feature vector, 
which is of 1200-D size (features from 3 scales, each with k = 400 size) results in a better representation of 
COVID-19 CXR images. Mathematically, the concatenated resultant feature vector R(I) for I is defined in Eq. (3). 
Here, b1, b2, and b3 denote the feature vector achieved at s1, s2, and s3, respectively for the input CXR image (I). 
To represent the input image (I) for the classification purpose, we concatenate such three features in this study.

where bj = BoDVW(gj , I) for each scale j ∈ {1,2,3}.
Also, Algorithm 1 lists the steps to achieve multi-scale bag of deep visual words features. Here, Ftr[i] and 

Fte[i] denote the multi-scale bag of deep visual words features of ith image under both training (tr) and testing 
(te) images, respectively.

Classification. The classification of features obtained after the fusion of BoDVW at different scales (refer to 
Table 1) are achieved using Support Vector Machine (SVM)49 classifier.

Experimental setup and comparison
Datasets. We select a wide variety of datasets to evaluate the effectiveness of our method. Four publicly avail-
able CXR images COVID-19 datasets are categorized into three to five classes. The summary of each COVID-19 
dataset (CD) is listed in “Datasets description” of the “Supplemental file”.

(3)F(I) = [b1, b2, b3],
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Dataset 1 (CD1) There are at least 125 CXR images in each of the categories: COVID-19, Pneumonia, and 
No_findings. This dataset is most challenging for classification as No_findings category has several ambiguous 
CXR images.

Dataset 2 (CD2) It has 4 categories: COVID, Normal, Pneumonia viral (PneumoniaV), and Pneumonia 
bacteria (PneumoniaB). Here, each category contains at least 320 CXR images.

Dataset 3 (CD3) It is the combination of CD1 and CD2, where the images from No_findings category in 
CD1 are combined with images from all categories on CD2. Therefore, this dataset consists of five categories: 
COVID, No_findings, Normal, Pneumonia Bacteria (PneumoniaB), and Pneumonia Viral (PneumoniaV), each 
having at least 320 CXR images. Example images of COVID-19 are shown in Fig. 4.

Dataset 4 (CD4) It comprises 4 categories: COVID, Normal, PneumoniaV, and PneumoniaB, where each 
category possesses at least 69 images.

The proposed model is trained and validated by dividing each dataset into 70:30 ratio for the train/test splits. 
To avoid the possible bias on train/test split and model training, we further design five random splits of each 
dataset and execute five runs (5-fold cross validation). The average accuracy of five different runs is used to 
compare the performance of the proposed model in each set for each dataset.

Implementation. To implement our work, we use  Keras55 implemented in  Python56. Keras is used to imple-
ment the pre-trained model in our work. We use the number of clusters k = 400 in k-means clustering as sug-
gested by Sitaula et al.5 and our empirical study (refer to Table 2 in the “Supplemental file”) to define the dic-
tionary to extract proposed features. For the classification purpose, we use the Support Vector Machine (SVM) 
classifier implemented in Scikit-learn57. We normalize and standardize our features to feed into the SVM clas-
sifier as in Sitaula et al.5. Normalization is a scaling method to limit the values in certain range. Similarly, with 
the help of standardization, we center the values around the mean with a unit standard deviation. Moreover, we 
fix the kernel as Radial Basis Function (RBF) kernel with the γ parameter as 1e − 05 . We automatically tune the 
SVM cost parameter C in the range of {1, 10, 20, . . . , 100} using grid search on the training set based on 5-fold 
cross-validation method. We execute all our experiments on a workstation with NVIDIA GeForce GTX 1050 
GPU and 4 GB RAM.

Comparison with state‑of‑the‑art methods. We compare the performance (Precision, Recall, F1-score 
and Accuracy) of our method with seven recent state-of-the-art methods. Five of these methods are based on 
transfer learning and two other methods use the BoW approach over deep features (refer to Table 2). The results 
of each method on four CXR—image datasets (CD1, CD2, CD3, and CD4) are listed in Table 2. The averaged 
performance over five runs of each competing method on CD1, CD2, CD3, and CD4 are presented in the sec-
ond, third, fourth, and fifth rows of Table 2, respectively.

Results show that our method significantly beats the performance of all contender methods on each dataset 
(CD1, CD2, CD3, and CD4), except for Precision with BoDVW on CD2. The performance improvement of 
our method on CD1 over the second best method  (BoDVW5) are 1.40%, 3.60%, 3.00%, and 2.37% for Preci-
sion, Recall, F1-score, and Accuracy, respectively. Furthermore, our method provides significant performance 
boost over the the worst method (Luz et al.35) with the improvement of 27.60% (Precision), 24.60% (Recall), 
41.80% (F1-score), and 36.17% (Accuracy). Similarly, it further highlights that our method outperforms all seven 
methods on CD2 with Recall, F1-score and Accuracy of 89.40%, 89.40%, and 88.88%, respectively. However, 
our method is second-best in term of Precision with 88.58%. Moreover, we notice that our method improves 
Precision, Recall, F1-score, and Accuracy by 16.38%, 19.40%, 21.60%, and 18.26%, respectively against the worst-
performing method  (nCOVNet36). While comparing our method with the second-best method  (BoDVW5), it 
provides an improvement of 0.40%, 0.40%, and 1.02% for Recall, F1-score, and Accuracy, respectively. Similarly, 
on CD3, we notice that our method achieves Precision, Recall, F1-score and Accuracy with 90.60%, 90.00%, 
90.00%, and 90.30%, respectively. This shows that it has an improvement of 2.40% in Precision, 2.40% in Recall, 
2.40% in F1-score, and 2.38% in Accuracy against the second-best method  (BoDVW5) and 18.40% in Pre-
cision, 24.40% in Recall, 26.80% in F1-score and 22.63% in Accuracy against the worst-performing method 
 (nCOVNet36). Furthermore, while comparing our method with existing methods on CD4, we observe that 
our method imparts the Precision, Recall, F1-score and Accuracy of 84.60%, 84.00%, 83.80%, and 83.65%, 

Figure 4.  Sample images of chest X-ray images abstracted from  CD421,23 for four classes: (a) COVID, (b) 
Normal, (c) PneumoniaB, and (d) PneumoniaV.
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respectively. This underscores that our method has improvement of 1.80% in Precision, 1.60% in Recall, 1.40% 
in F1-score, and 0.43% in Accuracy against the second-best method  (BoDVW5) and 9.20% in Precision, 10.00% 
in Recall, 9.80% in F1-score, and 11.19% in Accuracy against the worst-performing method (DCF-BoDVW18). 
Note that we don’t compare the performance of other DL-based methods on CD4 because of a limited CXR 
images. Through these results of existing methods on all four datasets, we notice that the existing methods 
normally perform worse with a limited CXR image samples. This may be because of the over-fitting problem. 
However, as the dataset size increases, the performance seems to have increased in their models. To this end, we 
speculate that their models are unstable to classify the CXR images when given different size of data samples.

While comparing our method against seven recent DL-based methods on four datasets, it implies that our 
method provides a stable and prominent performance for COVID-19 CXR image classification. We further notice 
that multi-scale bag of deep visual words method on CD4 imparts a slight improvement against single scale bag 
of deep visual words-based method (BoDVW) compared to the results on other datasets (CD1, CD2, CD3, and 
CD4). This underscores that multi-scale bag of deep visual features provide a higher separability if we have a 
larger number of CXR images during training. This further suggests that the capability of bag of deep visual 
word at multi scale settings to capture sparse spatial information of deteriorated region on CXR-images proves 
to be more prominent in feature representation of CXR images than other DL-based methods, such as end-to-
end transfer learning approach. Although our model provides prominent performance in terms of Precision, 
Recall, F1-score and Accuracy compared to other algorithms, we are still at the stage of improving it by adding 
explainability and interpretability features, which are very important for clinicians and health practitioners 
during prognosis of COVID.

Ablative study of multi‑scale features. In this subsection, we design six different schemes based on 
three different kernels for the representation of CXR images. Seven different schemes ({s1}, {s2}, {s3}, {s1, s2}, 
{s1, s3}, {s2, s3}, and {s1, s2, s3}) are based on three different kernels used in our work. Details of such schemes 
are presented in Table 1.

For the study of best combination of multiple scales, we perform our experiment on CD3, which is the largest 
dataset used in our work. The results are presented in “Multi-scale features results” of the “Supplemental file”. 
While looking at the table, we notice that the seventh scheme ({s1, s2, s3}) and fifth scheme ({s1, s3}) impart a 
similar classification performance. However, we suspect that fifth scheme might not work as seventh scheme if 
we have a smaller amount of dataset, because small-sized dataset might require more information to distinguish 
them for the classification. Thus, we employ seventh scheme to work for all datasets used in our study.

Ablative study of class‑wise performance. We study the average class-wise performance of our 
method on CD3 against two recent methods using Precision, Recall, and F1-score. Please refer to “Class-wise 
performance metrics and results” of the “Supplemental file” for the detailed information of such metrics.

The class-wise comparison of our method against two recent methods  (BoDVW5 and  AVGG20) shows that 
our method imparts significant performance boost in most of the cases. For example, our method outperforms 
both methods in terms of F1-score with the highest margin of 3.40%, whereas it outperforms existing methods in 
terms of Recall for three classes (No_findings, Pneumonia Bacteria and Pneumonia Viral). Moreover, our method 
surpasses in terms of Precision against the two existing methods for four classes (COVID, Normal, Pneumonia 

Table 2.  Comparison with previous methods on four public datasets (CD1, CD2, CD3, and CD4) using 
averaged performance (%) of P (Precision), R (Recall), F (F1-score) and A (Accuracy) over 5 runs. Note that ‘–’ 
represents unavailable results. Significant values are in italics.

Dataset Metrics DCF-BoDVW18 Coronet46 nCOVNet36 CNN-LSTM37 Luz et al.35 AVGG20 BoDVW5 Ours

CD1

P 81.80 80.00 75.00 82.80 60.00 84.20 86.20 87.60

R 75.20 80.00 48.40 71.80 59.60 77.20 80.60 84.20

F 77.60 78.60 47.40 73.80 44.20 78.80 83.00 86.00

A 75.31 76.82 62.95 74.40 48.20 79.58 82.00 84.37

CD2

P 82.80 85.60 72.20 86.40 81.00 84.60 89.20 88.58

R 82.40 85.00 70.00 85.20 80.40 84.60 89.00 89.40

F 82.00 84.20 67.80 85.60 79.20 84.60 89.00 89.40

A 81.53 80.60 70.62 85.20 79.00 85.43 87.86 88.88

CD3

P 84.40 84.60 72.20 86.80 84.40 87.00 88.20 90.60

R 83.60 83.40 65.60 86.20 84.20 86.60 87.60 90.00

F 83.60 82.60 63.20 86.00 83.60 86.20 87.60 90.00

A 83.72 83.41 67.67 86.40 83.80 87.49 87.92 90.30

CD4

P 75.40 – – – – – 82.80 84.60

R 74.00 – – – – – 82.40 84.00

F 74.00 – – – – – 82.40 83.80

A 72.46 – – – – – 83.22 83.65
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Bacteria, and Pneumonia Viral). This study further underscores the class-wise efficacy of our method in terms 
of three different metrics against two recent methods on CXR image datasets.

We also perform class-wise analysis using Receiver Operating Characteristic (ROC) curve (refer to “Class-
wise performance metrics and results” of the “Supplemental file”), which plots the graph based on true positive 
rate and false positive rate, and Precision-Recall (PR) curve, which plots the relationship between precision and 
recall, on CD3 dataset. While looking at both ROC curve and PR-curve on such dataset, we observe that our 
method attains excellent performance in discriminating COVID-19 from other remaining classes.

Analysis of hyper‑parameters. In this subsection, we study the effect of different hyper-parameters used 
in our work. For such study, we choose Set of CD3 and analyze the effects of two main hyper-parameters, C and 
Gamma ( γ ), used in SVM with RBF kernel during classification. The sample results are listed in “Hyper-param-
eters tuning” of the “Supplemental file”. While observing the table, we notice that the best C and Gamma values 
of the current set for higher classification accuracy (%) ( 88.20± 0.10 ) are 60 and 1e − 05 , respectively. Based on 
the best values (both C and Gamma) from the training set, we evaluate the testing set for each split. This results 
in a variation of C values from one split to another during classification for each dataset used in our work.

Conclusion and future works
In this work, we presented a novel feature extraction method based on the multi-scale bag of deep visual words 
(MBoDVW) using VGG-16 as a backbone network, to better represent the CXR images for COVID-19 diagnosis. 
Extensive evaluation of our method on four different COVID-19 datasets (CD1, CD2, CD3, and CD4) shows 
the efficacy of our methods over the existing state-of-the-art methods. Our method provides the classification 
accuracy of 84.37%, 88.88%, 90.29%, and 83.65% on CD1, CD2, CD3, and CD4, respectively. The ablative study 
of the impact of the individual scaled feature on classification performance shows that the features at scale 3 (s1) 
attains the highest impact, followed by feature at scale 2 (s2) and scale 1 (s1). The combined multi-scale features 
(s1, s2, s3) yields the best performance on COVID-19 CXR-image classification. Our method also gives the best 
ROC values ranging from 0.95 to 1.00 for each of five classes on CD3. From this encouraging result, we believe 
that our proposed feature extraction method looks more suitable for COVID-19 CXR image classification.

Our method has three main limitations. First, we are not aware of degree of infections in the human lungs for 
the COVID-19 in the available public datasets. Furthermore, the current datasets have only COVID and non-
COVID labels, which have created problem to identify the extent of severity in COVID CXR images. If we had 
a dataset of labelled degree of infections in the lungs, we could design more robust model accordingly. Second, 
our method do not consider semantic segmentation for the multi-scale feature extraction. The addition of seg-
mentation with our method could enhance the classification performance. This is because semantic segmentation 
helps mask the likely regions for the representation and avoids less likely regions. Third, our method is mostly 
based on CXR images for COVID-19 infection study but could work for other kind of images. Thus, it would 
be interesting to apply this concept to other biomedical images, such as histopathological and CT images. As an 
example, the histopathological images have varying sized tumors present in them, which might need information 
from multiple aspects to identify them.
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