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Abstract

Calyptrate flies include about 22,000 extant species currently classified into Hippoboscoi-

dea (tsetse, louse, and bat flies), the muscoid grade (house flies and relatives) and the

Oestroidea (blow flies, bot flies, flesh flies, and relatives). Calyptrates are abundant in

nearly all terrestrial ecosystems, often playing key roles as decomposers, parasites, par-

asitoids, vectors of pathogens, and pollinators. For oestroids, the most diverse group

within calyptrates, definitive fossils have been lacking. The first unambiguous fossil of

Oestroidea is described based on a specimen discovered in amber from the Dominican

Republic. The specimen was identified through digital dissection by CT scans, which pro-

vided morphological data for a cladistic analysis of its phylogenetic position among extant

oestroids. The few known calyptrate fossils were used as calibration points for a molecu-

lar phylogeny (16S, 28S, CAD) to estimate the timing of major diversification events

among the Oestroidea. Results indicate that: (a) the fossil belongs to the family Mesem-

brinellidae, and it is identified and described as Mesembrinella caenozoica sp. nov.; (b)

the mesembrinellids form a sister clade to the Australian endemic Ulurumyia macalpinei

(Ulurumyiidae) (McAlpine’s fly), which in turn is sister to all remaining oestroids; (c) the

most recent common ancestor of extant Calyptratae lived just before the K–Pg boundary

(ca. 70 mya); and (d) the radiation of oestroids began in the Eocene (ca. 50 mya), with the

origin of the family Mesembrinellidae dated at ca. 40 mya. These results provide new

insight into the timing and rate of oestroid diversification and highlight the rapid radiation

of some of the most diverse and ecologically important families of flies. ZooBank acces-

sion number–urn:lsid:zoobank.org:pub:0DC5170B-1D16-407A-889E-56EED3FE3627.
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Introduction

The spectacular episodes of ‘explosive’ diversification that have occurred scattered in the his-

tory of life have always fascinated evolutionary biologists. Radiations are even more intriguing

when the resulting species diversity and abundance we observe today contrasts with a fossil

record that is sparse or even entirely lacking. In this respect, the calyptrate Diptera (e.g., tsetse,

house flies, blow flies, and related groups) are a good example. Calyptrate flies comprise one of

the major clades of Schizophora, the latter representing the most rampant radiation of Diptera

ever [1] and one of the largest radiations of insects within the Cenozoic [2]. For oestroids—the

most diverse group within the calyptrates—definitive fossils have been entirely lacking.

The approximately 22,000 extant species of calyptrates [3] (about 14% of all flies) are abun-

dantly represented in nearly all terrestrial ecosystems, from tropical forests, savannas, and

deserts to the extreme High Arctic, often playing key roles in the environment as decomposers,

parasites, parasitoids, vectors of pathogens, and pollinators [4]. Calyptrates include some of

the most common and well-known synanthropic scavengers on Earth such as the house fly

(Musca domestica Linnaeus; Muscidae), the lesser house fly (Fannia scalaris (Fabricius); Fan-

niidae), and the blue bottle flies (Calliphora spp.; Calliphoridae); such notorious blood-feeders

as the tsetse flies (Glossina spp.; Glossinidae) and the stable fly (Stomoxys calcitrans (Linnaeus);

Muscidae); as well as such economically important mammal parasites as the New World

screw-worm fly (Cochliomyia hominivorax (Coquerel); Calliphoridae) and the human bot fly

(Dermatobia hominis (Linnaeus, Jr.); Oestridae).

Calyptrates are currently classified into two superfamilies and one ‘grade’, which together

contain 15 families: the Hippoboscoidea, comprising the Glossinidae and Hippoboscidae

(louse flies and bat flies); the muscoid grade of families (‘Muscoidea’; house flies and relatives),

comprising the Fanniidae, Muscidae, Anthomyiidae, and Scathophagidae; and the Oestroidea,

comprising the Calliphoridae (blow flies, probably non-monophyletic), Mesembrinellidae,

Mystacinobiidae (New Zealand bat fly), Oestridae (bot flies), Rhiniidae (rhiniid flies), Rhino-

phoridae (woodlouse flies), Sarcophagidae (flesh flies), Tachinidae (parasitoid flies), and most

recently the Ulurumyiidae (McAlpine’s fly [5]). Nearly all recent studies are in agreement that

the Calyptratae are a monophyletic group, the emerging phylogenetic scheme being one with a

basal Hippoboscoidea and a monophyletic Oestroidea nested within a paraphyletic muscoid

grade [1, 6, 7, 8, 9, 10] (but see Ding et al. [11] for an alternate hypothesis). Relationships

within Oestroidea are complicated and not well resolved, with little agreement between mor-

phology- and molecular-based studies [7, 12, 13, 14, 15, 16, 17, 18, 19].

The most recent phylogenetic analysis employing a relaxed molecular clock model suggests

a calyptrate origin near the K–Pg boundary, 66 million years ago (mya) [1], but there are few

reliable calyptrate fossils known so far: one stem-group anthomyiid (Protanthomyia minuta
Michelsen) from Eocene Baltic amber (ca. 42 mya), which represents the oldest calyptrate

known so far [20]; a few tsetse flies in shales from the latest Eocene of North America and the

Oligocene of Europe (40–35 mya) [2]; and a few crown-group representatives of Anthomyii-

dae [21], Muscidae [22], and Hippoboscidae [23] from Dominican amber, which are impre-

cisely dated within the Miocene at 20–15 my [24].

Putative oestroid fossils include five mineralized puparia in a piece of ironstone from the

Late Cretaceous (70 mya) of Canada, described as Cretaformia fowleri McAlpine and originally

attributed to the Calliphoridae sensu lato [25]. This fossil was later treated as an unplaced schi-

zophoran [2, 26], but even this placement may be questionable because neither mouthparts

nor posterior spiracles are recognizable and only the annulation of the wrinkled surface bears

some resemblance to a cyclorrhaphan puparium. Tertiary fossils that have been tentatively

assigned to oestroid families are listed in Table 1. These are mostly compression fossils of
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larvae or adults that are currently assigned to Oestridae, Sarcophagidae, and Tachinidae [27].

However, these placements are best treated as speculative because no diagnostic characters

conclusively support them [28, 29, 30]. It is worth noting that larvae of both Oestridae and

Tachinidae are obligate endophages of living mammals and insects, respectively, with the free-

living larval stage restricted to the short period when the mature larva leaves the host to pupate.

Table 1. Putative oestroid fossils of the Tertiary.

Eocene (56–34 mya) Oligocene (34–23

mya)

Miocene (23–5 mya) Undetermined

Tertiary

Oestridae Adipterites obovatus

(Heer, 1864) (Lr) (Co)

Upper Freshwater-Molasse

Formation, Sarmatian (12.7–

11.6 mya), Germany 47.7˚N,

8.9˚E

Oestridae Agiebelia ignota

(Townsend, 1921) (Lr)

(Co)

locality

undetermined

Oestridae Cuterebra ascarides

(Scudder, 1877) (Lr) (Co)

Green River Formation,

Bridgerian (50.3–46.2 mya),

Colorado, USA 39.0˚N,

108.0˚W

Oestridae Cuterebra bibosa

(Scudder, 1877) (Lr) (Co)

Green River Formation,

Bridgerian (50.3–46.2 mya),

Colorado, USA 39.0˚N,

108.0˚W

Oestridae Dermatobia hydropica

(Scudder, 1877) (Lr) (Co)

Green River Formation,

Bridgerian (50.3–46.2 mya),

Colorado, USA 39.0˚N,

108.0˚W

Oestridae Novoberendtia baltica

(Townsend, 1921) (Lr)

(Am)

Baltic amber (?) (no further

information available)

Tachinidae Lithexorista scudderi

Townsend, 1921 (Ad)

(Co)

Green River Formation,

Bridgerian (50.3–46.2 mya),

Wyoming, USA 41.6˚N,

109.6˚W

Tachinidae Lithotachina antiqua

(Heer, 1849) (Ad) (Co)

Upper Freshwater-Molasse

Formation, Sarmatian (12.7–

11.6 mya), Germany 47.7˚N,

8.9˚E

Tachinidae Muscidites deperditus

Heyden & Heyden, 1866

(Lr) (Co)

Chattian

(28.4–23.0 mya),

Germany 49.7˚N,

8.2˚E

Tachinidae Tachina sp. (?) (Co) Switzerland [no further

information available]

Tachinidae Vinculomusca vinculata

(Scudder, 1877) (Lr) (Co)

Green River Formation,

Bridgerian (50.3–46.2 mya),

Colorado, USA 39.0˚N,

108.0˚W

Tachinidae Undetermined

Tachinidae (Eg) (Am)

Dominican mines

(15–20 mya),

Dominican Republic

Sarcophagidae Sarcophaga sp. (?Lr)

(Am)

Baltic amber (?) (no further

information available)

Abbreviations: Ad = adult, Am = amber, Co = compression, Eg = egg, Lr = larva. Data from Evenhuis [27], the Fossilworks website (http://fossilworks.org/

bridge.pl?a=home (accessed July 7, 2016)) and from original descriptions.

https://doi.org/10.1371/journal.pone.0182101.t001
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Fossilisation of such larvae, which are free-living for such a short time, must be an extremely

rare event. This improbability, along with the lack of diagnostic features, suggests that pre-

Quaternary fossil larvae tentatively assigned to parasitic Oestroidea are misidentified.

The putative plano-convex dipteran egg attached to the pronotum of a leaf beetle (Chry-

somelidae) preserved in Dominican amber [31, 32] is particularly interesting. Within Diptera,

the plano-convex egg shape has evolved independently in at least five lineages of arthropod

parasitoids: once in the Rhinophoridae, three times in the Tachinidae (Eutherini, Exoristinae,

and Phasiinae), and once in the Muscidae (Eginia Robineau-Desvoidy) [33, 34, 35, 36]. How-

ever, while the size, shape, and position of the object on the beetle’s body are suggestive of a

tachinid egg, there are no other morphological clues to support or reject such a conclusion.

There are a few Quaternary (sub)fossils and copal inclusions of Oestroidea [27], but they

are not discussed here because they have little bearing on oestroid evolution. Two genera in

this category, Paleotachina Townsend and Electrotachina Townsend, were long thought to be

Eocene fossils of Tachinidae (and were catalogued as such [27]) but were revealed as copal

inclusions [37] and later assigned to the Muscidae and Sarcophagidae, respectively [30]. Not

included in Table 1 are brief notes on Tachinidae and Calliphoridae in Dominican amber [31,

38] or the record (with photograph) of a specimen of Calliphoridae (possibly Chrysomya Robi-

neau-Desvoidy) from ‘a piece of nearly colourless amber’ [39]. The material upon which these

reports were based has not been further described or illustrated and cannot be evaluated until

more detailed information is published.

The absence of unambiguous pre-Quaternary oestroid fossils necessitated the dating of oes-

troid lineages from tectonic or other geophysical events considered causative for patterns in

current distributions, like the closure of the Transantarctic corridor (minimum age for dis-

persal of nasal bot flies into Australia [29]), the collision of the African and Eurasian plates

(maximum age for diversification of the rhino and horse stomach bot flies [29]), and the sub-

mersion of the Isthmus of Panama and the existence of a Protoantillean corridor (vicariance

dating for some flesh fly lineages [40]). Nevertheless, this approach is of limited use in dating

clades [41] because it assumes that the distributions of organisms at the time of these events

were static and constrained by geophysical events, with little consideration for dispersal events

and the widespread ebb and flow in distributions, which fossil data often indicates actually

happened in most animal and plant taxa (probably in response to palaeoclimatic change) [42].

This paper describes the first unambiguous fossil of Oestroidea based on a perfectly preserved

male fly discovered in amber from the Dominican Republic. We identify and characterize the

specimen through digital dissection of its terminalia by CT scans, which provide morphological

data for a cladistic analysis of the phylogenetic position of the fossil among extant oestroid line-

ages. We use the few known calyptrate fossils as calibration points for a preliminary molecular

phylogeny (using 16S, 28S and CAD) to estimate the timing of major diversification events

among the Oestroidea.

Results

Systematics

Order Diptera

Superfamily Oestroidea

Family Mesembrinellidae

Genus Mesembrinella Giglio-Tos, 1893.

Mesembrinella caenozoica sp. nov.

Figs 1 and 2
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Type material. Holotype male, a Dominican amber inclusion of Miocene age, housed in the

American Museum of Natural History. Additional details are given under Materials and

Methods.

Etymology. The specific epithet ‘caenozoica’ alludes to the name of the Cenozoic Era (from

Greek kainos, meaning ‘new’, and zoe, meaning ‘life’), which covers the period from ca. 66

mya to the present day. The epithet should be treated as a Latin adjective.

Diagnosis. A medium-sized fly (body length: ca. 8.5 mm) (Fig 1A), readily distinguishable

from extant mesembrinellids by the following combination of character states: prementum

about 0.65–0.70 times as long as height of head; labella broad and about 4/5 as long as premen-

tum; palpus sub-cylindrical, about as long as antenna (Fig 1A and 1B); proepisternal depression

Fig 1. Holotype of Mesembrinella caenozoica sp. nov. (A) habitus in right dorsolateral view. (B) head and part of thorax

in right dorsolateral view. (C) thorax in right dorsolateral view.

https://doi.org/10.1371/journal.pone.0182101.g001
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Fig 2. Holotype of Mesembrinella caenozoica sp. nov., CT scan of the terminalia. (A) tergite 6, sytergosternite 7+8,

epandrium and cerci in posterior view. (B) epandrial complex in posterior view. (C) epandrial complex and phallus in left

First fossil of an oestroid fly
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with pale, hair-like setulae; postpronotum with three setae arranged in a triangle; scutum with 3

(presutural) + 3(postsutural) dorsocentral setae (Fig 1C); 3 katepisternal setae; metathoracic spi-

racular lappet without setae; general setulae of postpronotum, scutum and scutellum relatively

long and suberect; posterolateral margin of lower calypter with long trichia; stem vein bare; vein

R4+5 with fine setulae from base to about 2/3 of distance to crossvein r-m; abdominal tergite 3

with two long, erect median marginal setae and two lateral marginal setae (Fig 1A); setae on

abdominal sternites normally developed and not arranged in two rows; abdominal tergite 6

broad, not indented posteriorly and not fused to syntergosternite 7+8 (Fig 2A); cerci long, nar-

row and evenly curved anteroventrally (Fig 2B–2D); lateroventral lobes of distiphallus well

developed (Fig 2D and 2E); scale-like vestiture of lateroventral lobes of distiphallus not visible;

narrow lateral projection of lateroventral lobes of distiphallus present; acrophallus well devel-

oped, sub-cylindrical (Fig 2C and 2D).

Description: S1 Text.

Morphological cladistic analysis

The heuristic tree searches using parsimony with equal weights yielded 30 most parsimonious

trees (MPTs) (tree length: 258 steps; Consistency Index: 0.400; Retention Index: 0.754). All of

these MPTs recovered the superfamily Oestroidea (clade A) and the family Mesembrinellidae

(clade C) as monophyletic, both with a Bremer support value (BS) of 4 (strict consensus tree in

Fig 3). Optimization of the character transformations performed on the favoured MPT (S1

Fig) revealed that mesembrinellid monophyly relies on one nonhomoplastic (56:1, spermathe-

cae very elongated), and eight homoplastic apomorphies (8:1, prothoracic spiracle with drop-

shaped dorsal opening; 10:1, postalar wall setose; 11:1, metasternal area setose; 12:1, coxo-

pleural streak absent; 19:1, metathoracic spiracle large; 24:0, excavation of syntergite 1+2

extending to posterior margin; 31:1, bend of M characteristically broadly rounded; 33:1, hind

surface of hind coxa setose). The first split divides the family Mesembrinellidae into two sub-

clades: clade D including species formerly ascribed to subfamily Mesembrinellinae sensu Gui-

marães [43] (Table 2), and clade E including species formerly assigned to subfamilies

Laneellinae (M. nigripes (Guimarães) and M. perisi (Mariluis)), Souzalopesiellinae (M. facialis
(Aldrich)) (Table 2), plus M. patriciae Wolff and M. caenozoica sp. nov. The position of M. cae-
nozoica as sister to M. facialis (clade F) is supported by one nonhomoplastic apomorphy (45:1,

lateral projection of lateroventral lobe of distiphallus present) (see S1 Dataset).

Molecular phylogenetic analyses and divergence time estimation

Overall, trees inferred via ML and Bayesian inference methods were similar in their recon-

struction of clades (i.e., families/subfamilies), with relationships among major clades receiving,

in general, low (< 50%) bootstrap support (bs; ML) and moderate (< 90%) posterior probabil-

ities (pp; Bayesian) (Figs 4 and 5, S2 Fig, S3 Fig).

Despite partial reliance on the notoriously inconclusive 28S ribosomal gene [17], our analy-

ses reconstructed relationships largely consistent with those of previous studies employing

considerably more data, but fewer taxa (e.g., [16, 17]). For example, overall relationships

among families are largely consistent with Wiegmann et al.’s [1] phylogeny of the order Dip-

tera, with a paraphyletic muscoid grade, Oestridae as sister to Sarcophagidae, and Tachinidae

sister to a clade of Calliphoridae, with Rhinophoridae somewhat removed from this latter

lateral view. (D) terminalia in left ventrolateral view. (E) detail of phallus and hypandrial complex in left ventrolateral view.

Abbreviations: bcfs = bacilliform sclerite; c = cerci; edsd = tip of extension of dorsal sclerite of distiphallus; ep = epandrium;

eph = epiphallus; hyp = hypandrium; prg = pregonite; syn7+8 = syntergosternite 7+8; t6 = tergite 6. Scale bars: 0.4 mm.

https://doi.org/10.1371/journal.pone.0182101.g002
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Fig 3. Strict consensus cladogram of major lineages of Oestroidea from 30 most parsimonious trees under equal weights

(length = 258 steps; C.I. = 0.400; R.I. = 0.754) generated in TNT 1.5, from analysis of the morphological dataset (S1 Dataset). Capital

letters above branches indicate branches as discussed in the text. Numbers below branches indicate Bremer supports values (BS).

https://doi.org/10.1371/journal.pone.0182101.g003
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Table 2. Valid names for all extant species and subspecies of Mesembrinellidae.

‘LUMPERS’ ‘SPLITTERS’

Mesembrinella clade Laneellinae Souzalopesiellinae Mesembrinellinae

M. abaca (Hall) Mesembrinella

M. aeneiventris (Wiedemann) Huascaromusca

M. andina (Wolff, Bonatto & Carvalho) Thompsoniella

M. anomala (Guimarães) Thompsoniella

M. apollinaris Séguy Mesembrinella

M. batesi Aldrich Mesembrinella

M. bellardiana bellardiana Aldrich Mesembrinella

M. bellardiana fuscicosta Séguy Mesembrinella

M. benoisti (Séguy) Eumesembrinella

M. bequaerti (Séguy) Huascaromusca

M. bicolor (Fabricius) Mesembrinella

M. bolivar (Bonatto) Giovanella

M. brunnipes Surcouf Mesembrinella

M. carvalhoi (Wolff et al.) Huascaromusca

M. cordillera (Wolff & Ramos-Pastrana) Huascaromusca

M. currani Guimarães Mesembrinella

M. cyaneicincta cyaneicincta (Surcouf) Eumesembrinella

M. cyaneicincta pauciseta Aldrich Eumesembrinella

M. decrepita (Séguy) Huascaromusca

M. flavicrura Aldrich Mesembrinella

M. lara (Bonatto) Huascaromusca

M. latifrons Mello Albuquerquea

M. obscura (Wolff) Huascaromusca

M. patriciae Wolff Mesembrinella

M. peregrina Aldrich Mesembrinella

M. pictipennis Aldrich Mesembrinella

M. purpurata (Aldrich) Huascaromusca

M. quadrilineata (Fabricius) Eumesembrinella

M. randa (Walker) Eumesembrinella

M. semiflava (Aldrich) Huascaromusca

M. semihyalina Mello Mesembrinella

M. spicata (Aldrich) Henriquella

M. townsendi (Guimarães) Mesembrinella

M. umbrosa Aldrich Mesembrinella

M. uniseta Aldrich Huascaromusca

M. volgelsangi (Mello) Huascaromusca

M. xanthorrhina (Bigot) Mesembrinella

Laneella clade

M. nigripes (Guimarães) Laneella

M. patriciae Wolff Mesembrinella

M. perisi (Mariluis) Laneella

M. facialis (Aldrich) Souzalopesiella

Comparison between classification schemes of the family Mesembrinellidae: ‘lumpers’ (grey column) vs. ‘splitters’ (white columns).

https://doi.org/10.1371/journal.pone.0182101.t002
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Fig 4. Bayesian phylogenetic reconstruction collapsed into clades at family and subfamily level of major lineages of Oestroidea from

analyses of the combined (16S, 28S, CAD) dataset, generated in MrBayes (above branches left = Bayesian posterior probabilities;

above branches right = maximum likelihood bootstrap support).

https://doi.org/10.1371/journal.pone.0182101.g004
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Fig 5. Bayesian inferred time-calibrated phylogeny of major lineages of Oestroidea from analysis of the combined (16S, 28S,

CAD) dataset, generated in BEAST v. 2.4.0. The length of the light blue bars at nodes indicates 95% confidence intervals of node ages.

Numbers indicate posterior probabilities. Time scale unit: 10 million years.

https://doi.org/10.1371/journal.pone.0182101.g005
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clade. On the other hand, relationships within Oestroidea depart to some extent from those of

Kutty et al. [7] and Marinho et al. [15] (e.g., position of Mesembrinellidae and Tachinidae),

and as in these previous studies, relationships among major oestroid clades (families and calli-

phorid subfamilies) are not always well resolved.

Major inferred relationships are summarized below:

1. Calyptratae: In ML and Bayesian trees (Figs 4 and 5, S2 Fig, S3 Fig), Hippoboscoidea are sis-

ter to the remaining taxa with substantial support (78% bs; 0.97 pp; constrained in the

BEAST analysis), with Muscidae, Fanniidae, and Anthomyiidae + Scathophagidae (with or

without Mystacinobiidae) forming a paraphyletic grade of muscoid families from within

which the Oestroidea arose. Node age estimates have broad confidence intervals (Fig 5),

especially for deeper nodes. The median estimated age of the Calyptratae (basal node) is

67.5 my (95% CI: 49.8–96.2 mya).

2. Oestroidea: Oestroid ‘backbone’ relationships are supported by generally high posterior

probabilities in Bayesian analyses, but are weakly resolved in the ML analyses (Fig 4, S2

Fig). The superfamily itself is well-supported in Bayesian analyses, with the exception of the

Mystacinobiidae, which in some analyses emerge as sister to Anthomyiidae + Scathophagi-

dae. The family Oestridae always emerges as sister taxon to the Sarcophagidae, with this

clade being either sister to all remaining oestroids (MrBayes; Fig 4, S3 Fig) or sister to all

oestroids except Mesembrinellidae + Ulurumyiidae (BEAST; Fig 5). The age of Oestroidea

(minus Mystacinobia) is estimated to be 48.2 my (37.1–66.5), that of Sarcophagidae + Oes-

tridae is 40.7 my (27.0–58.3), and Sarcophagidae are estimated to be at least 23 million

years old (myo) (11.4–38.0).

3. Tachinidae: Relationships among tachinid taxa largely mirror those recovered from recent

analyses using much larger data sets [17]. Tachinid monophyly is supported (41% bs,

1.0 pp) and all analyses reconstruct the Polleniinae (Calliphoridae) as sister to Tachinidae

(as in Winkler et al. [17]). Bayesian analyses (BEAST and MrBayes) support Rhinophoridae

as sister to Tachinidae + Polleninae (0.99 and 0.83 pp respectively) (Figs 4 and 5, S3 Fig), a

relationship also recovered in the best ML tree (S2 Fig). The estimated age of Tachinidae is

remarkably young for such a diverse family, at only 33.7 my (24.8–46.7).

4. Calliphoridae sensu lato: Relationships among the various clades of Calliphoridae s.l. vary

among analyses, with the Bayesian trees indicating either a monophyletic clade of calliphor-

ids minus Mesembrinellidae and Polleniinae (BEAST, 0.97 pp, Fig 5), or a grade of two

major lineages, 1) Chrysomyinae and 2) all remaining calliphorids (MrBayes and ML analy-

ses), which are paraphyletic with regard to the clade Rhinophoridae + (Tachinidae + Polle-

niinae): (Fig 4, S2 Fig, S3 Fig).

5. Mesembrinellidae: All analyses reconstruct Mesembrinellidae and Ulurumyiidae as sister

taxa with medium to strong support (50% bs, 0.97–0.99 pp; Figs 4 and 5) (see also the mor-

phology-based reconstruction in Fig 3). Relationships within Mesembrinellidae generally

correspond to those obtained by Marinho et al. [19], which is not surprising given that anal-

yses are based largely on the same data. Mesembrinella nigripes, M. perisi and M. patriciae
form a clade (Laneella clade) sister to the remaining mesembrinellids (Mesembrinella
clade). The age of the clade Mesembrinellidae + Ulurumyiidae is estimated to be 43.1 my

(31.1–60.0), and the Mesembrinellidae themselves are estimated to be 38.8 myo (27.2–

53.7).
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Discussion

Morphological phylogeny of Oestroidea

Overall, the backbone relationships of oestroid families are poorly supported in our analysis.

Although most families and subfamilies represented by at least two terminal taxa were recon-

structed as monophyletic, the 30 most parsimonious trees vary widely in the reconstructed

relationships among them (S1 Dataset). This ambiguity is apparent in the strict consensus

cladogram of Fig 3, where a monophyletic Mesembrinellidae + Ulurumyiidae (clade B; BS: 1)

is sister to clade H (BS: 2), which includes all the remaining oestroid taxa as part of a large

basal polytomy. Within clade H, families Sarcophagidae (clade I, BS: 2), Oestridae (clade O,

BS: 6), Tachinidae (clade Q, BS: 3), and Rhinophoridae (clade S, BS: 4) are monophyletic (the

Rhiniidae were represented by only one species and the Mystacinobiidae are monotypic),

whereas the ‘Calliphoridae’ break into five clades as follows:

Clade J–Helicoboscinae (Eurychaeta muscaria (Meigen));

Clade K–Bengaliinae (Bengalia Robineau-Desvoidy, Auchmeromyia Brauer & Bergen-

stamm) (BS: 1);

Clade L–Polleniinae (Pollenia Robineau-Desvoidy, Morinia Robineau-Desvoidy) (BS: 2);

Clade M–Ameniinae (Amenia Robineau-Desvoidy, Catapicephala Macquart, Paramenia
Brauer & Bergenstamm) + Aphyssurinae (Aphyssura Hardy) + Phumosiinae (Euphumosia
Malloch, Phumosia Robineau-Desvoidy) (BS: 2);

Clade N–Chrysomyinae (Chrysomya) + Toxotarsinae (Toxotarsus, Sarconesia) + Luciliinae

(Lucilia) + Calliphorinae (Calliphora) + Melanomyinae (Melinda) (BS: 2).

Notably, clade P reconstructs the Tachinidae (clade Q) sister to a clade composed by Rhinii-

dae + (Mystacinobiidae + Rhinophoridae) (clade R; BS: 3).

Mesembrinellid diversity and systematics, and the phylogenetic position

of Mesembrinella caenozoica

Mesembrinellids are a small group of 38 extant species, traditionally classified into three sub-

families and nine genera [19, 43, 44] (Table 2, right column). However, this morphology-based

generic and suprageneric classification, which is adopted by several authors, is largely unsup-

ported by a hierarchical array of synapomorphies [45, 46, 47]. Moreover, recent and ongoing

studies based on molecular data [19] do not corroborate monophyly of most of the non-mono-

typic nominal genera of this family. Accepting genera for which explicit evidence of mono-

phyly is lacking, inevitably leads to taxonomic and nomenclatural instability. Coupling the

recent results of phylogenetic analyses of the Mesembrinellidae with such a weak generic clas-

sification would trigger the redundant reassignment of several species to different genera, or

the need to erect new monotypic genera to hold ‘non-fitting’ species, leading to a proliferation

of names and confusion. For these reasons, we have chosen to adopt a more conservative clas-

sification scheme, as recently proposed by Vargas & Wood [48] and Moll [47], by lumping all

the 38 valid species of mesembrinellids under the nominal genus Mesembrinella.

In the parsimony-based phylogenetic analysis the Dominican species is reconstructed

within the Mesembrinellidae as sister to Mesembrinella facialis. Clade E (M. facialis + M. caeno-
zoica) + (M. patriciae + M. nigripes + M. perisi) includes all the representatives of the former

subfamilies Souzalopesiellinae and Laneellinae sensu Guimarães [43] plus M. patriciae
(Table 2), which has been recently retrieved as sister to clade M. nigripes + M. perisi also on

molecular grounds [19]. Clade E is sister to the other three mesembrinellid taxa analyzed,

which were formerly classified in the nominal subfamily Mesembrinellinae sensu Guimarães

[43] (Table 2). These results are in contrast to the morphological phylogenies of Toma &
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Carvalho [45] and Bonatto [46], in which a monophyletic M. perisi + M. nigripes (as Laneella)

is the basal lineage of the Mesembrinellidae, and M. facialis (as Souzalopesiella) is sister to all

mesembrinellids except the clade M. perisi + M. nigripes, but the results largely agree with the

recent and more comprehensive study of Moll [47]. The molecular phylogeny of Marinho

et al. [19] also reconstructed M. perisi + M. nigripes + M. patriciae as monophyletic and sister

to the remaining Mesembrinellidae.

Mesembrinellidae—Distribution and natural history

All extant mesembrinellid species are restricted in distribution to the rainforests of the Neo-

tropical Region, from southern Mexico (Yucatan) to northern Argentina (Buenos Aires), with

no records from the Caribbean islands except for Trinidad and Tobago [43]. The ecology of

these flies is poorly known, but adults are shade-loving and occur almost exclusively within

forests with a closed canopy. Occasional observations of mesembrinellids in clearings have

been made during cloudy or rainy days. They are silent and fast fliers—although females fly

more like big muscids, i.e., not as swift and agile as other large oestroids—mostly attracted to

fermenting fruit, decaying animal matter and bird faeces [43]. Females of all species display

pseudo-placental macrolarvipary, depositing one, relatively large, late first instar larva at a

time, which has been nourished by secretions apparently produced by the spermathecae [49].

The few attempts of in vitro rearing of a selection of species on both animal and plant material

have mostly failed (TP, unpubl.), except for Mesembrinella nigripes, which was successfully

reared from first instar to adult on a variety of animal substrates, including dead snails, which

were suggested as a possible primary resource for this species by Guimarães [43]. In fact, the

successful breeding of M. nigripes on a diversity of decaying animal matter does not necessarily

reflect its true breeding habits in the wild, but rather hints at a possible ancestral plasticity in

this genus. This would be consistent with our phylogenetic reconstruction, according to which

the mesembrinellids are sister to a macrolarviparous coprophage, the endemic eastern Austra-

lian Ulurumyia macalpinei Michelsen & Pape (see also the molecular phylogeny section).

According to Guimarães [43], mesembrinellids have two types of first instars that likely

reflect different developmental strategies. The first instar of M. nigripes, M. facialis and M.

patriciae is sub-conical or cylindrical in shape [19, 43] and has slender and pointed mouth-

hooks, whereas first instars of other mesembrinellids (e.g., M. abaca (Hall), M. aeneiventris
(Wiedemann), M. batesi Aldrich, M. bellardiana Aldrich, M. benoisti (Séguy), M. cyaneicincta
(Surcouf), M. latifrons Mello, M. peregrina Aldrich, M. purpurata (Aldrich), M. quadrilineata
(Fabricius), M. randa (Walker) and M. semihyalina Mello) are ovoid in shape and the mouth-

hooks are dorsoventrally flattened and apically rounded (‘spatula-like’ of Guimarães [43]), a

shape that is unusual among oestroid flies and would seem to indicate a special diet. Character

states of larval M. nigripes, M. facialis and M. patriciae are possibly plesiomorphic with respect

to those of the remaining mesembrinellids [43] (but see also Toma & Carvalho [45]).

Interestingly, the two other oestroid lineages that, according to our parsimony-based phylo-

genetic reconstruction, independently evolved a macrolarviparous reproductive strategy (Heli-

coboscinae and Ameniinae + relatives) attack dying or live land snails respectively [50, 51, 52,

53].

Mesembrinella caenozoica–palaeoenvironment and extinction

Fossils can reveal much about the palaeoclimatic and palaeoenvironmental conditions that

prevailed at the time when the organisms lived, and can sometimes provide indirect informa-

tion about the co-occurrence of species that are lacking from the fossil record. For example,

the discovery of specialized fossil pollinators and phytophages indicates the presence of their
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pollinizers or host plants respectively, in the same way as a diversity of fossil bloodsucking

arthropods suggests a diversity of vertebrate hosts, or fossils of insects with aquatic life stages

suggest the proximity of freshwater [54]. Paleo-environmental reconstructions [2, 31, 54] based

on plant and animal inclusions of the Miocene Dominican amber deposits are of a diverse trop-

ical rain forest ecosystem with clearings, ponds and streams of the sort that occurs there today.

Coupling such reconstructions with the little we know about the ecology of extant mesembrinel-

lids would suggest that M. caenozoica was also a stenotopic, silvicolous and shade-loving species.

The extinction of mesembrinellids from the Caribbean islands is noteworthy, and M. caenozoica
is another instance among dozens, where a widespread clade, documented from the Caribbean

through a species preserved in Dominican amber, has experienced a local extinction (or nearly

so) (topic most recently reviewed in Grimaldi et al. [55]). Most such extinctions are of insect

groups that presently exist in Central or South America [56], as is the case for Mesembrinelli-

dae. One explanation for these extinctions involves insularity and the geological history of the

Caribbean plate: as the Proto-Caribbean land mass drifted away from nuclear America and

became insular, the biota of the various islands that today form the Greater Antilles became

depauperate. However, factors other than insularity could have driven some of the extinctions

through time, in particular the changing palaeoenvironmental conditions that occurred through

the Late Miocene. The mesembrinellids may also have become extinct on the Caribbean islands

more recently as a consequence of the Plio-Pleistocene cooling, which resulted in extensive hab-

itat disturbance and drying [57]. The narrow ecological requirements of the mesembrinellids

make them particularly sensitive to climate change, which is a major determinant of habitat loss

and fragmentation.

Oestroid phylogeny: Faint light at the end of the tunnel?

Our phylogenetic analyses of Oestroidea are preliminary. The goal of our molecular analysis

was not so much a focused effort to produce a robust phylogeny of the entire clade, but rather

to employ available data to arrive at the best estimate of oestroid phylogeny, which served as a

framework for roughly estimating ages of diversification for major lineages, based (in part) on

this newly discovered oestroid fossil. In this light, we were surprised at how well these data

recovered previously hypothesized clades (e.g., families, subfamilies) and how consistent many

of the relationships were among different analyses (e.g., Mesembrinellidae + Ulurumyiidae;

Rhinophoridae (Polleniinae + Tachinidae); Oestridae + Sarcophagidae). Still, higher ‘back-

bone’ relationships within the superfamily are not well resolved and differ among analyses,

and a more intensive study employing many more loci will likely be needed to resolve them

and produce a stable phylogenetic topology.

The estimated ages of key nodes in this study are largely consistent with other recent esti-

mates of divergence times using a variety of molecular data sets, which have estimated the ori-

gin of Calyptratae at ca. 55 mya [1], 50.4 mya [11] and 60.4 mya [58]. Our estimate is similar,

but somewhat older, at 67.5 my, indicating that calyptrates may date from before the K–Pg

event. This similarity may stem partly from reliance on the same (few) fossil calibrations,

although we are the first to include an undisputed oestroid fossil. Our results for the origin of

Oestroidea (48.2 mya) and of the family Tachinidae (33.7 mya) are highly congruent with previ-

ous estimates (e.g., 56.0 and 33.2 mya [58], and ca. 40.0 and 30.0 mya [1]). A recent phyloge-

nomic study of the insects as a whole [59] also suggests relatively recent phylogenetic origins for

calyptrates and oestroids in the Upper Paleogene and Lower Oligocene, respectively. Remark-

ably, however, this study suggests that the split between Sarcophagidae and Tachinidae is

approximately at the same depth as that between the apine genera Apis Linnaeus and Bombus
Latreille (Hymenoptera: Apidae), if not younger. Regardless of the exact time of phylogenetic
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origin, the Calyptratae have likely experienced multiple episodes of rapid radiation, diversifying

into about 22,000 described (and many undescribed) species in a relatively short time [1]. It

may not be a coincidence that the origin of the calyptrates is estimated to be around the Creta-

ceous-Palaeogene mass extinction event. The upheaval of existing ecological communities and

the opening of new niches following such a massive extinction event may have facilitated the

diversification of lineages and life histories in this ecologically plastic clade of flies, as has been

suggested for mammals, passerine birds, and other taxa [60, 61].

The mesembrinellid clade (including Ulurumyia macalpinei) appears to be of late Eocene

age (43 myo), with the Mesembrinellidae estimated as about 39 myo, substantially older than

the fossil of M. caenozoica. Given the uncertainty about where the fossil taxon fits among other

Mesembrinella species in our molecular phylogeny, it is difficult to ascertain where the fossil

calibration constraint should be placed on the phylogeny. It is possible that constraining a sub-

group to a minimum age of 15 my, rather than the whole family, could push our estimated

node ages further back. The near-basal position of Mesembrinellidae within the Oestroidea,

isolated from other lineages of Calliphoridae sensu lato, was suggested previously by Crosskey

[50] and Pape [62], although the close association with Ulurumyiidae is a novel hypothesis.

Morphology and molecules have usually yielded markedly different phylogenetic recon-

structions of the oestroid lineages, and this applies to our analyses as well. Two exemplar cases

involve the sister group relationship of the Tachinidae and the monophyly/non-monophyly of

the bot flies. All recent phylogenetic reconstructions based on multiple genes [16, 17, 63] con-

verge in reconstructing the calliphorid genus Pollenia as sister to a monophyletic Tachinidae

with strong statistical support. Remarkably, there are very few clues supporting this hypothesis

on morphological or ecological grounds, except that larvae of both Pollenia and ‘lower’ tachi-

nids [36, 64] appear to be parasitoids of soil-dwelling organisms (i.e., earthworms and larvae

of litter-associated weevils, respectively) [64]. On the other hand, molecular-based reconstruc-

tions often fail in retrieving Oestridae as monophyletic ([16, 17] in part), ([18] in part), [19],

despite strong support from morphological data [12, 13, 28, 29] (Fig 3). As remarkable excep-

tions, all analyses presented here agree in reconstructing the family Oestridae as monophyletic

and, for the first time, Ulurumyia macalpinei as sister to Mesembrinellidae, with this clade in

turn being sister to the remaining Oestroidea (or at least much of it, Figs 3 and 5).

This situation exemplifies the uncertainty and difficulty in reconstructing relationships

among oestroid lineages. Disagreement among reconstructions could be attributed to a possi-

ble rapid diversification event of persistent lineages [1, 17]. However, our time-calibrated phy-

logeny suggests that oestroid diversification as a whole may have been relatively ‘slow’ but

punctuated by multiple episodes of more rapid radiation throughout the Cenozoic (Fig 5). On

the other hand, the early evolution of oestroids could have been a time of ‘evolutionary experi-

mentation’ during which many early lineages went extinct, leaving a somewhat skeletal phy-

logeny with only a few surviving lineages that later diversified. Without a better fossil record, it

is impossible to discern between these possible scenarios.

Phylogenetic trees inferred from multiple gene sequences are starting to converge into simi-

lar, more stable patterns [59, 65, 66, 67, 68], and this is true also for the oestroids despite the

sparse and uneven taxon coverage [16, 17]. If we assume that the recent molecular data are bet-

ter at recovering the true phylogeny of Oestroidea, then we are still left with the question of

why the morphology is so misleading and what this suggests about character evolution in this

group. Conversely, if we assume inferences from the morphological data are closer to the

truth, why are molecular-based inferences less accurate? Presently, we have a limited set of

morphological characters with which to infer the phylogeny of the Oestroidea and this is due

to the slow pace of detailed morphological investigation in recent decades. For many clades

there are only one or two supporting character states, which are often homoplastic (S1 Fig).
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From this, it follows that very few additional characters, alternative homology assessments, or

the use of different methods, might cause substantial topological changes to the inferred phy-

logenies. Also, there is no simple way to assess the complexity of morphological character evo-

lution, except by their implied weights based on the number of homoplastic occurrences (but

see [69]).

Differences between molecular- and morphology-based reconstructions of Oestroidea

may seem unbridgeable, but the discovery of the first, undisputed oestroid fossil allows us

to better establish the age and the ‘tempo and mode’ of diversification in these flies. Our

results suggest that the K–Pg extinction event may have played a crucial role in boosting

calyptrate diversification through the Cenozoic, as it did for the major radiations of birds,

mammals and angiosperms.

Materials and methods

Amber inclusion

The amber inclusion was acquired from Mr. Jorge Martı́nez of Santiago, Dominican Republic,

whose well-known workshop and business has provided Dominican amber inclusions for sci-

entific study for decades. The mine source of the specimen is impossible to determine with cer-

tainty, since rough amber from various mines located north-northeast of Santiago [70] is

usually mixed during processing in the workshops in Santiago. It is certain that the specimen

is not copal (subfossilized resin that is only hundreds to thousands of years old, outcrops of

which occur in eastern Dominican Republic in the vicinity of Cotui) because it is not reactive

with organic solvents and is not the typical very light yellow colour of copal. The inclusion

with the male holotype of Mesembrinella caenozoica sp. nov. is in the James Zigras collection,

housed in the Division of Invertebrate Zoology at the American Museum of Natural History,

New York.

CT-scan analysis

Scanning was done in the Microscopy and Imaging Facility (MIF) at the American Museum of

Natural History, using a General Electric Phoenix v|tome|x-s nanotube high resolution com-

puted tomography system with a tungsten target, an accelerating voltage of 90kV and a current

of 200μA, at resolutions between 9 and 7.5 μm. 300ms exposures were taken at 0.2˚ intervals.

Volumetric data was produced with GE Phoenix’s Datos Reconstruction 2.2.1 software using a

cone-beam filtered back projection reconstruction algorithm. A beam hardening correction

was applied. Volumetric data was exported as16-bit integer greyscale TIFF stacks. Image stacks

were combined in the Fiji distribution of NIH’s ImageJ with the Pairwise 3D stitching plug-in.

Imaging focused on the male terminalia, in order to visualize hidden but informative features

of the phallus such as the dorsolateral processes, and the cerci. Data were rendered and ani-

mated using Volume Graphics Studio Max 2.2.6 software equipped with the Coordinate Mea-

surement Module.

Morphological terminology

Morphological terminology follows Cumming & Wood [71], with minor differences as dis-

cussed in Cerretti et al. [35].

Morphological cladistic analysis

To evaluate the phylogenetic position of Mesembrinella caenozoica sp. nov. among extant Oes-

troidea a matrix was constructed of 74 morphological characters for 49 taxa (S1 Dataset),
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mostly adapted from previous studies [12, 13, 14] with minor adjustments from our own stud-

ies. Oestroid diversity is represented by a sample of 45 species, including M. caenozoica
described here, plus four muscoid outgroups (three Muscidae, one Anthomyiidae). The sam-

ple includes all oestroid subfamilies, except Paramacronychiinae (Sarcophagidae) (see S2 Text

for a complete list of included taxa and depositories of material studied).

The data matrix was produced in Mesquite version 3.03 [72] (S1 Dataset). Cladistic analysis

was conducted with TNT version 1.5 [73, 74]. Heuristic searches were run with the ‘traditional

search’ option with the following parameters: General RAM of 1 GB, memory set to hold

1,000,000 trees, setting 1,000 replicates with tree bisection-reconnection (TBR) branch swap-

ping and saving 1,000 trees per replicate. Multistate characters were treated as unordered and

zero-length branches were collapsed. Inapplicable and unknown states were coded as ‘-’ and

‘?’, respectively, in Mesquite. Character state changes were optimized in WinClada version

1.00.08 [75]. The favoured tree was selected among the most parsimonious trees by calculating

the total fit (command ‘fit�’ in TNT) for every tree under a range of k-values (S3 Text), using

the unambiguous transformation algorithm, and choosing one of the trees with highest fit.

Bremer support values were calculated in TNT from 15,000 trees up to 10 steps longer than the

shortest trees obtained from a ‘traditional search’, using the ‘trees from RAM’ setting. Consis-

tency and retention indices were calculated in TNT.

Molecular phylogenetic analyses and divergence time estimation

Sequence data for 89 taxa was obtained either directly via PCR amplification of extracted DNA

from collected specimens or through deposited sequence data from NCBI Genbank (see S2

Text). Most 28S and 16S sequences of mesembrinellids and some other oestroids were from

Marinho et al. [15, 19], and most tachinid sequences, as well as a number of CAD sequences of

other taxa, were from Winkler et al. [17]. For the newly obtained sequences, flies were collected

by hand netting and 1–3 legs were removed from each specimen and placed in 95% ethanol

shortly after collection. DNA extraction and isolation were performed with a Puregene1 Tis-

sue Kit (Qiagen Inc.) using standard methods (see [17]). PCR amplifications employed the

primers 28SF and 28SR for the 5’ half of the 28S rDNA gene and 54F and 405R for the 5’ region

of the CAD gene (‘CAD1’; see Winkler et al., [17], Moulton & Wiegmann [76]). PCR amplifi-

cation protocols and conditions followed those outlined in Winkler et al. [17].

Sequences from each locus were aligned separately with MAFFT v.7 [77] via the online

MAFFT server (http://mafft.cbrc.jp/alignment/server/), employing the G-INS-1 algorithm for

CAD and the L-INS-I algorithm for 28S and 16S. A large unalignable intron of variable length

in the centre of the fragment was trimmed from CAD [76]. Final sequence lengths were 1650

bp, 1615 bp, and 665 bp for 28S, CAD, and 16S respectively. In a few cases, concatenated

sequences of different genes were from different congeneric species (see S2 Text). The full

alignment is available through the online data repository TreeBASE (treebase.org).

A Maximum Likelihood analysis was performed using GARLI v2.01 [78]. The concatenated

data set was partitioned by locus, and within CAD by codon position, and a separate GTR+I

+Γ substitution model was defined for each partition, following the best partition and substitu-

tion model scheme given by PartitionFinder v1.1.1 [79], with all parameters estimated from

the data. GARLI run was set as follows: 5 independent search replicates, 5x106 generations and

default options for automated stop. The hippoboscoid Glossina morsitans Westwood was

selected as outgroup. 100 non-parametric bootstraps of the data set were conducted using the

original search parameters, except for the genthreshfortopoterm option, which was set to

10,000. Similar results were obtained in a RaXML-HPC v.8.2.8 [80] run conducted on XSEDE

servers via the CIPRES web portal (v. 3.3) [81], with the same parameters.
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Bayesian phylogenetic inferences were performed with MrBayes 3.2.6 [82] and using

BEAST v. 2.4.4 [83], both also conducted on XSEDE servers via the CIPRES web portal (v. 3.3)

[81]. MrBayes analysis was conducted with the same partition and substitution model scheme

used in the ML analysis and the run was set as follows: 50x106 generations with two sets of 6

chains, sample frequency = 1,000 and burn-in set to 25% after checking for convergence. Node

supports were assessed by analysing the posterior probabilities in the 50% extended majority-

rule consensus tree. The BEAST analysis was set similarly to the MrBayes run and additional

priors (for divergence time estimation) included a Yule coalescent model with parameters esti-

mated with a gamma prior for relative birth rate, gamma shape parameters with exponential

priors, and all rates with gamma distributed priors using default values of alpha and beta. The

hippoboscoids (Glossina morsitans and Ornithoctona erythrocephala (Leach)) were assigned as

the outgroup (i.e., all other taxa were constrained to be monophyletic). A relaxed log-normal

clock model was used to estimate divergence times [84, 85], with an exponential distributed

mean prior (ucldMean.c; mean = 10) and a gamma distributed standard deviation. Four cali-

brations were used at four nodes in the tree, in each case using a log normal distributed prior

for the estimated tmrca (time to most recent common ancestor), and all were assumed to

define a monophyletic group. These calibrations included: 1. Phaoniinae (Muscidae) from 15–

20 myo Dominican amber [22], used to constrain Phaonia Robineau-Desvoidy + Cordiluroides
Albuquerque (initial prior offset = 15); 2. Glossina Wiedemann (Glossinidae) from 35 myo

Colorado shale [2], used to constrain Glossina + Ornithoctona Speiser (offset = 35); 3. Pro-
tanthomyia Michelsen (stem group Anthomyiidae) [20] from ca. 42 myo Baltic amber, used to

constrain Anthomyiidae (offset = 42), and the current fossil Mesembrinella from 15–20 myo

Dominican amber used to constrain the minimum age of Mesembrinellidae as a whole (off-

set = 15). Prior parameters for each of these distributions were estimated with log-normal

hyper-prior distribution, beginning with M = 2.0, and S = 2.50. MCMC chain length was

50x106 generations with trees stored every 1,000 generations and parameters logged every

1,000 generations. A conservative burn-in frequency of 25% was used based on visual exami-

nation of tree likelihood convergence using TRACER. TreeAnnotator v2.4.0 was used to calcu-

late the maximum clade credibility tree and posterior probabilities of nodes based on the 37

500 trees retained by the MCMC analysis.

Nomenclatural Acts

The electronic edition of this article conforms to the requirements of the amended Interna-

tional Code of Zoological Nomenclature, and hence the new names contained herein are

available under that Code from the electronic edition of this article. This published work and

the nomenclatural acts it contains have been registered in ZooBank, the online registration

system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the

associated information viewed through any standard web browser by appending the LSID to

the prefix “http://zoobank.org/”. The LSID for this publication is: urn:lsid:zoobank.org:pub:

D808DBAD-EE10-466F-94E5-A4B536EE938A. The electronic edition of this work was pub-

lished in a journal with an ISSN, and has been archived and is available from the following dig-

ital repositories: PubMed Central, LOCKSS.
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