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ARTICLE INFO ABSTRACT

Keywords: Objectives: This study aimed to construct geographically, temporally, and epidemiologically representative data
SARS-CoV-2 sets for SARS-CoV-2 in North Africa, focusing on Variants of Concern (VOCs), Variants of Interest (VOIs), and
NorFl‘ Africa Variants Under Monitoring (VUMs).

Z;:elzrglzss Methods: SARS-CoV-2 genomic sequences and metadata from the EpiCoV database via the Global Initiative on

Sharing All Influenza Data platform were analyzed. Data analysis included cases, deaths, demographics, patient
status, sequencing technologies, and variant analysis.

Results: A comprehensive analysis of 10,783 viral genomic sequences from six North African countries revealed
notable insights. SARS-CoV-2 sampling methods lack standardization, with a majority of countries lacking clear
strategies. Over 59% of analyzed genomes lack essential clinical and demographic metadata, including patient
age, sex, underlying health conditions, and clinical outcomes, which are essential for comprehensive genomic
analysis and epidemiological studies, as submitted to the Global Initiative on Sharing All Influenza Data. Morocco
reported the highest number of confirmed COVID-19 cases (1,272,490), whereas Tunisia leads in reported deaths
(29,341), emphasizing regional variations in the pandemic’s impact. The GRA clade emerged as predominant in
North African countries. The lineage analysis showcased a diversity of 190 lineages in Egypt, 26 in Libya, 121
in Tunisia, 90 in Algeria, 146 in Morocco, and 10 in Mauritania. The temporal dynamics of SARS-CoV-2 variants
revealed distinct waves driven by different variants.

Conclusions: This study contributes valuable insights into the genomic landscape of SARS-CoV-2 in North Africa,
highlighting the importance of genomic surveillance in understanding viral dynamics and informing public health
strategies.

Epidemiological dynamics
Genomic sequences

Introduction

The global impact of the COVID-19 pandemic has not only under-
scored the interconnectedness of our world but has also necessitated
unprecedented collaborative efforts in understanding and combating the
causative agent, the SARS-CoV-2. As we delve into the fourth year of
this ongoing pandemic, genomic surveillance has emerged as a pivotal
tool in tracking the evolution of the virus and informing public health
strategies [1].

The SARS-CoV-2 virus, as with other RNA viruses, has a high mu-
tation rate, which has led to the emergence of various mutations and
lineages. These mutations can affect the virus’s transmissibility, sever-
ity, and immune evasion capabilities [2]. Continuous genomic surveil-
lance is crucial to track the emergence and spread of these mutations
and lineages to inform public health strategies and interventions [3].

The Global Initiative on Sharing All Influenza Data (GISAID) and
other platforms, such as the National Center of Biotechnology Informa-
tion, the World Health Organization (WHO) database, the COVID-19 Ge-
nomics UK Consortium, and Nextstrain, are crucial for sharing genomic
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data on SARS-CoV-2. GISAID, in particular, has been instrumental dur-
ing the COVID-19 pandemic, enabling global collaboration and the de-
velopment of public health strategies. In addition, the Africa Pathogen
Genomics Initiative [4] provides genomic sequencing and technical sup-
port services to the countries in the region. These platforms and net-
works play a vital role in sharing genomic data and supporting disease
surveillance efforts.

The first SARS-CoV-2 genome sequence was determined in January
2020 [5]. By September 2023, over 16 million genomes have been pub-
licly shared on GISAID. Although the sequencing of cases has risen, high-
income countries continue to outpace low- and middle-income nations
in genomic surveillance efforts, creating disparities.

Tunisia initially faced challenges in genomic surveillance owing to
limited resources. The absence of a national sequencing strategy hin-
dered comprehensive surveillance until June 2020, when Federated Re-
search Projects initiated whole genome sequencing through Interna-
tional Sequencing Partnerships. Despite progress, widespread genomic
surveillance aligned with national guidelines remained challenging until
January 2021. Triggered by the Alpha variant’s emergence in the United
Kingdom [6], the Ministry of Health launched a national sequencing
strategy supported by international donations. The two-step sequenc-
ing involved S gene sequencing, followed by whole genome sequencing,
collaborating with various laboratories for broad geographic coverage
[71.

As the epidemic evolved, the strategy adapted for identifying vari-
ants of concern (VOCs). In 2023, a proactive approach included random
sequencing of diverse cases, focusing exclusively on human-hosted viral
dynamics and excluding animal or environmental samples.

The situation in Tunisia is not unique. In fact, other African coun-
tries have also faced challenges in their genomic surveillance efforts.
However, there is evidence that the situation is improving, with more
African SARS-CoV-2 genome sequences being submitted to the GISAID
database [8,9].

The study aimed to provide a detailed analysis of SARS-CoV-2 ge-
nomic epidemiology and lineage dynamics in North Africa over 4 years,
emphasizing the need for comprehensive and representative data sets.
It investigates the sampling methods, sequencing technologies, patient
statuses, and identifies significant virus clades and variants. The find-
ings contribute to understanding the virus’ spread, evolution, and public
health impacts in the region. The study also highlights the importance
of timely molecular characterization of circulating strains and the chal-
lenges faced in North Africa, while contributing to global SARS-CoV-2
understanding and public health strategies.

Material and methods
Study design and data collection

On September 15, 2023, the GISAID platform (www.gisaid.org,
accessed on September 15, 2023) was assessed. The SARS-CoV-2
genomic sequences and corresponding metadata from the EpiCoV
database were downloaded. The following filters were applied: location:
Africa/Mauritania, Morocco, Algeria, Tunisia, Libya, and Egypt; host:
human; “complete” sequence.” The EpiCoV database defines a “com-
plete genome” as sequences with more than 29,000 nucleotides. The
whole genome of the entire data set was already available within the
downloaded metadata.

The information collected included gender, age, patient status, spec-
imen, vaccination status, collection date, sampling method, sequencing
technology, GISAID clade, and PANGO lineage. The retrieved data were
then collated in a Microsoft Excel sheet.

Data analysis

Data analysis was performed using Microsoft Excel for Microsoft,
version 16.0.5404.1002.
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All the information regarding the number of cases, deaths, gender,
age, patient status, specimen, vaccination status, collection date, sam-
pling method, sequencing technology, and variant analysis was ana-
lyzed.

Results
Sequencing rates

A total of 10,783 viral genomic sequences obtained from six North
African countries—Egypt (5044 sequences), Libya (178 sequences),
Tunisia (2455 sequences), Algeria (880 sequences), Morocco (2168 se-
quences), and Mauritania (58 sequences)—were analyzed.

South Africa was the leading contributor to genomic sequencing in
the African region, providing 32.2% of the total sequences, followed
by Kenya with 7.6%. However, the North African nations, including
Egypt (46.8%), Libya (1.7%), Tunisia (22.8%), Algeria (8.2%), Morocco
(20.1%), and Mauritania (0.5%), collectively contributed 6.4% of the
genomic sequences from Africa (Supplementary Figure 1).

Notably, the sequencing efforts vary across North African countries
(Table 1). In Egypt, approximately 0.98% of COVID-19 samples have
undergone sequencing. Algeria has demonstrated a sequencing rate of
0.32%, whereas Tunisia and Morocco follow with rates of 0.21% and
0.17%, respectively. The genomic surveillance efforts in Libya and Mau-
ritania, however, are comparatively lower, with only 0.04% and 0.09%
of cases sequenced, respectively. Although Egypt exceeds the suggested
threshold of at least 0.5% for routine genomic surveillance [1], the other
countries fall below this benchmark.

Sampling methods

The sampling methods for SARS-CoV-2 in North African countries
are not standardized, with the majority of countries lacking a clear
strategy (Table 1). In Egypt, Libya, and Morocco, the majority of the
reported cases (99.6%, 79.8%, and 98%, respectively) originated from
unspecified sources (not mentioned category). In Algeria, 54% of cases
were collected through the National SARS-CoV-2 genomic and variant
surveillance program. Tunisia applies the baseline surveillance program
to 19.1% of sampling cases, whereas 59.8% of cases are sampled ran-
domly. Mauritania lacks detailed sampling information, with 100% of
cases categorized as “not mentioned” (Table 1).

Sequencing technology

In North African countries, SARS-CoV-2 genome sequencing exten-
sively uses two technologies: Illumina and Oxford Nanopore. Illumina
dominates in Egypt, Tunisia, and Libya, constituting 94%, 73.6%, and
99.5% of sequencing data, respectively. Conversely, Algeria and Mo-
rocco favor Oxford Nanopore, comprising 94.1% and 52.1%, respec-
tively, of their sequencing outputs. Mauritania exclusively relies on Ox-
ford Nanopore, contributing 100% of their data, with no use of Illumina
in this context.

Patient status

Since the onset of the COVID-19 pandemic, over 59% of the genomes
from North African countries lack the corresponding clinical and/or de-
mographic metadata submitted to GISAID (Table 2).

Assessing the vaccination status of SARS-CoV-2 patients in North
African nations reveals a concerning pattern of missing data. Across
the region, information regarding vaccination status is notably absent
(93.7% of total cases), with a substantial majority of cases remaining
unaccounted for (Table 2). In Egypt, only 6.9% of cases mention a vac-
cination status, leaving a significant 93.1%, in whom the status remains
undisclosed. Libya stands out as a unique case, with 100% of cases hav-
ing no mention of their vaccination status, making the landscape even
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Table 1

Variability and genomic surveillance of SARS-CoV-2 in North Africa (based on data downloaded from Global Initiative on Sharing All Influenza Data per 15 September 2023).
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more enigmatic. Tunisia offers a glimpse, with 0.1% of cases being vac-
cinated and 13.2% not vaccinated, yet a staggering 86.7% falls into the
category of “not mentioned.” Algeria and Morocco share a similar trend,
with 0.3% of cases reported as vaccinated, whereas an overwhelming
99.7% lack this crucial information. Mauritania, like Libya, presents a
perplexing scenario, with no data available on vaccination status for any
of the reported cases (Table 2).

SARS-CoV-2 cases in North African countries show gender dispari-
ties. Egypt has a slightly higher incidence of cases in males, with a gen-
der ratio of 1.1, and 64% of cases categorized as “unknown.” Libya has a
male predominance, with a gender ratio of 1.5, and 80.3% of cases cat-
egorized as unknown. Tunisia, Algeria, and Morocco have a relatively
balanced distribution, with similar gender ratios of 0.8, 0.9, and 1, re-
spectively, and low percentages of cases categorized as unknown. Mau-
ritania has a significant male predominance, with a gender ratio of 1.8,
and no cases categorized as unknown (Table 2).

The majority of genomes sequenced in Egypt, Tunisia, Algeria, Mo-
rocco, and Mauritania were attributed to the 15-44 years age group, fol-
lowed by the 45-64 years age group as the second largest. However, the
situation differs for Libya because a significant portion of these metadata
contain unknown categories, representing 80.3% of all Libyan data.

SARS-CoV-2 epidemiology dynamics in North Africa

Between the onset of the COVID-19 pandemic and September 2023,
North African countries have reported varying impacts from SARS-CoV-
2. Morocco had the highest number of confirmed COVID-19 cases, with
1,272,490 cases, followed by Tunisia with 1,151,126 cases. In terms
of COVID-19-related fatalities, Tunisia reported the highest number of
deaths in the region, with 29,341, whereas Egypt had 24,812 deaths
(https://covid19.who.int/, Supplementary Figure 2).

Spatio-temporal distribution of the virus clades

Genomic sequences from North African countries were systemati-
cally categorized into GISAID clades. Worldwide, the GRA clade was
the predominant lineage, accounting for 48.2% of cases, followed by
the GK clade with 15.7% of cases. The other identified clades in the re-
gion were GR (10.5%), G (7.7%), GH (7.5%), GRY (6.6%), O (1.8%), GV
(0.9%), S (0.8%), L (0.3%), and V (0.02%).

The prevalent clade differed among nations. Notably, the GRA clade
was dominant in Algeria (64.7%), Morocco (59.8%), Egypt (52%), and
Tunisia (27%). Conversely, Libya and Mauritania exhibited G as the pre-
vailing clade, constituting 47.8% and 41.4%, respectively (Figure 1).

Distribution of SARS-CoV-2 lineages

In this study, all SARS-CoV-2 genome sequences were classified into
Pango lineages, and their distribution was analyzed over the study pe-
riod (Figure 2). The sequences in North African countries can be classi-
fied into 190 different lineages in Egypt, 26 in Libya, 121 in Tunisia, 90
in Algeria, 146 in Morocco, and 10 in Mauritania.

Distinct lineage dynamics have unfolded during different phases of
the pandemic. In the initial wave, characterized as the pre-VOC phase,
the B.1 lineage emerged as the predominant variant in Egypt, Tunisia,
Algeria, and Morocco. However, with the advent of the VOC Alpha-
driven wave, the genomic landscape witnessed a transition, marked by
the dominance of the B.1.1.7 lineage across the region.

Subsequently, during the wave associated with the VOC Delta, a nu-
anced pattern emerged. In Egypt and Algeria, the B.1.617.2 lineage was
the dominant variant. Conversely, during the same period, Libya re-
ported the AY.4 lineage as the dominant variant, Tunisia exhibited dom-
inance of AY.122, Morocco of AY.33, and Mauritania of AY.34.1.

Concerning the Omicron VOC, a significant lineage diversity was ob-
served.
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Table 2
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Clinical metadata including patient status, vaccination status, gender distribution, and sex ratio (based on data downloaded from Global Initiative on Sharing All

Influenza Data per 15 September 2023).

Country Patient status Vaccination status Gender distribution Sex ratio

Hospitalized  Released Alive Deceased ~ Unknown Vaccinated Not Not Male Female Unknown

(%) (%) (%) (%) (%) (%) Vaccinated mentioned (%) (%) (%)

(%) (%)
Egypt 22 6.4 23.8 0.06 47.7 6.9 93.1 18.9 17.1 64 1.1
Libya 1.1 0.6 17.9 80.3 100 11.8 7.9 80.3 1.5
Tunisia 2.4 0.2 16.9 0.6 79.7 0.1 13.2 86.7 44.2 53.6 2.2 0.8
Algeria 1.2 63.7 35 0.3 99.7 45.7 52 2.3 0.9
Morocco 2.1 6.5 17.4 74 0.3 99.7 44.5 43.3 12.3 1.0
Mauritania 13.8 6.9 67.2 12.1 100 63.8 36.2 1.8
Total 11.5 4.4 24.4 0.2 59.6 3.3 3 93.7 32.1 33.5 34.4 1.0
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Figure 1. Regional variation in SARS-CoV-2 clade distribution across North African countries (based on data downloaded from Global Initiative on Sharing All

Influenza Data per 15 September 2023).

Examining the most abundant lineages, in Egypt, BA.5.2 (13.75%)
was the most prevalent, followed by B.1.617.2 (8.74%) (Figure 2a); in
Libya, B.525 (44.94%) was the dominant lineage, followed by A (9.55%)
(Figure 2b); in Tunisia, AY.122 (24.23%) was the most prevalent, fol-
lowed by B.1.1.7 (21.67%) (Figure 2c¢); in Algeria, BA.5.2 (17.27%) was
the dominant lineage, followed by B.1.617.2 (12%) (Figure 2d); in Mo-
rocco, BA.1 (10.56%) was the dominant lineage, followed by B.1 (10%)
(Figure 2e); in Mauritania, B.1.525 (31.03%) was the dominant lineage,
followed by AY.34.1 (27.58%) (Figure 2f).

Temporal dynamics of SARS-CoV-2 variants

The chronological progression of variants observed across North
African countries is illustrated in Figure 3. In these countries, the ini-
tial wave, emerging in late 2020, was primarily fueled by pre-variant
lineages. However, a shift occurred in Tunisia, Algeria, and Morocco
in early 2021 with the advent of the Alpha variant (Figures 3c, d, and
e), a VOC characterized by specific point mutations associated with in-
creased transmissibility and disease severity. Interestingly, this variant
did not trigger a wave in Egypt (Figure 3a) and did not dominate in

Libya and Mauritania (Figures 3b, and f), where the Eta variant was
dominant. Toward the close of 2021, a new wave has been driven by
the rapid dissemination of the Delta variant, which has completely sup-
planted the previously circulating VOC. The dominance of the Delta
variant endured until the end of 2021 across all North African countries
(Figure 3) (for Libya, data availability was limited; Figure 3b). Early in
2022, all North African countries (excluding Mauritania owing to insuf-
ficient data; Figure 3f) encountered a fresh wave of infections sparked
by the emergence of the Omicron strains. The Omicron BA.1 variant dis-
placed the Delta variant in early 2022, marking the onset of this wave,
followed by subsequent waves characterized by the prevalence of the
Omicron BA.2 and Omicron BA.5 lineages (Figure 3). The emergence of
recombinant virus forms in North Africa toward the end of 2022 marked
the start of the endemic phase and new cycles of variant displacement.
Throughout 2023, these recombinant forms progressively gained promi-
nence, eventually becoming the predominant lineages by March 2023.
In addition, a meticulous analysis of viral lineages was conducted,
revealing distinct patterns through a monthly classification. Notably,
with each wave, the number of observed lineages exhibited a consistent
trend of initial increase, followed by a subsequent decline after the peak
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of the wave, only to rise again with the onset of a new variant-driven
surge. During the study period, the highest recorded diversity of lineages
occurred in Egypt, with 43 different lineages. All were identified dur-
ing the Omicron XBB variant wave (Figure 3a). In Libya, during the Eta
variant surge, 12 distinct lineages were observed (Figure 3b), whereas
the Delta variant wave in Tunisia witnessed 19 lineages (Figure 3c).
Algeria and Morocco experienced 25 and 29 different lineages, re-
spectively, during the Omicron BA.5 variant surge (Figures 3d, and
e). Mauritania saw five distinct lineages during the Eta variant wave
(Figure 3f).

Prevalence of SARS-CoV-2 variants

The genomic sequences of SARS-CoV-2 in North African countries
align predominantly with the WHO-defined category of VOCs. In Egypt,

Percentage distribution of SARS-CoV-2 variants in Egypt
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Omicron emerges as the dominant VOC, constituting 55.3% of the se-
quences, followed by Delta at 12.1%. VOCs Alpha and Gamma exhibit
frequencies below 1%, with no recorded Beta sequences. Notably, previ-
ously circulating Variants of Interest (VOI), such as XBB.1.5 (3.7%) and
XBB.1.16 (0.1%), were identified, whereas Kappa, Eta, and Iota were
absent among the Egyptian isolates (Supplementary Figure 3).

Conversely, Libya faces data limitations, hindering a comprehensive
analysis. Eta, identified as a VOI, prevails at 44.9%, whereas VOCs such
as Omicron, Delta, and Alpha constitute 17.4%, 2.2%, and 2.2%, respec-
tively (Supplementary Figure 3). Tunisia exhibits a diverse landscape,
with Omicron leading at 28.1%, followed by Delta (26.1%) and Alpha
(21.7%). Sequences of Beta are below 1%, whereas Gamma is absent.
Additional VOI, such as Zeta, XBB.1.5, and XBB.1.16, along with several
Omicron sub-lineages classified as Variants Under Monitoring (VUM),
have been identified (Supplementary Figure 3).
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Figure 2. Relative distribution of SARS-CoV-2 lineages in North African countries (February 2020 to September 2023) Based on whole genome sequencing (based
on data downloaded from Global Initiative on Sharing All Influenza Data per 15 September 2023). The diagram illustrates the relative distribution (%) of SARS-
CoV-2 lineages in North African countries. Different lineages are color-coded, and those with higher proportions are marked in black font for easy identification. (a)
Represents the distribution over 5044 sequences obtained in Egypt. (b) Illustrates the distribution over 178 sequences in Libya. (c) Shows the distribution over 2455
sequences in Tunisia. (d) Depicts the distribution over 880 sequences in Algeria. (e) Displays the distribution over 2168 sequences in Morocco. (f) Represents the

distribution over 58 sequences in Mauritania.
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Figure 2. Continued

In Algeria, Omicron was predominant at 65.3%, followed by Delta
at 12.3%. Beta and Gamma sequences are not recorded, whereas Eta
and XBB.1.5, as VOIs, are present at 1.8% and 1.5%, respectively (Sup-
plementary Figure 3). Morocco mirrors a similar pattern, with Omicron
leading at 61.4%, Delta at 11.9%, and no recorded Gamma sequences.
Previously circulating VUM, such as Omicron XBB.1.9.1, is noted at
1.4% (Supplementary Figure 3). Mauritania’s data limitations compli-
cate a detailed analysis; however, among the identified VOCs, Delta
prevails at 34.5%, followed by Omicron at 12.1% and Alpha at 8.6%.
The predominant VOI is Eta at 31%, with no additional available data
(Supplementary Figure 3).

Discussion

Compared with other continents, Africa’s overall genomic contribu-
tion appears relatively modest (1.06%), with Asia, Europe, and North
America accounting for a substantial majority of the global genomic
data set at 10.29%, 49.12%, and 35.15%, respectively (www.gisaid.org,
accessed on September 15, 2023).

The sequencing rate varies considerably across African countries. In
fact, South Africa and Kenya demonstrate a higher sequencing rate rel-
ative to their positive cases (32.2% and 7.6%, respectively), whereas
other countries have a more moderate contribution [10]. As the COVID-
19 landscape continues to evolve, these sequencing rates in North Africa
may offer valuable insights into the virus’ spread and adaptation, similar
to observations made in other regions [11].

Genomic sequencing is vital for tracking the evolution and spread
of SARS-CoV-2; optimizing tests, treatments, and vaccines; and guiding
public health responses. Disparities in global genomic surveillance em-
phasize the need for equitable sharing of pathogen genomic data and re-
sources [1]. In Africa, the expansion of genomic surveillance, including
increased domestic sequencing, enables faster detection of new variants
and informs tailored public health strategies [12]. However, challenges,
such as the lack of a standardized sequencing strategy and incomplete
clinical and demographic metadata, need to be addressed to enhance the
effectiveness of genomic surveillance in the region. To address these
challenges, there is a need for sustained investment in pandemic pre-
paredness, equitable access to scientific technology, and strengthening
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Figure 2. Continued

global health security through geographically representative genomic
surveillance [13]. Regional approaches, such as those implemented by
the WHO through its regional offices, play a crucial role in support-
ing countries to strengthen genomic surveillance systems and address
knowledge gaps to enhance country-led efforts in pathogen sequencing
[13,14].

The lack of a standardized clear strategy for SARS-CoV-2 sequencing
in North African countries poses a significant challenge to comprehen-
sive genomic surveillance. The absence of an uniform approach to sam-
pling may lead to inconsistencies in the data collected, hindering the
accurate assessment of the virus’ genomic landscape and the identifica-
tion of emerging variants [11,12,15]. For instance, the high percentage
of cases originating from unspecified sources in Egypt, Libya, and Mo-
rocco, as well as the lack of detailed sampling information in Mauritania,
underscore the need for a more structured and systematic approach to
sampling. Without standardized sampling strategies, it becomes increas-
ingly difficult to capture a representative and diverse set of SARS-CoV-2

genomes, which is essential for understanding the virus’ evolution and
informing public health responses. The African Union member states
have developed practical guidance for implementing genomic SARS-
CoV-2 surveillance, including advice on sampling and sample referral
logistics, to detect and monitor VOCs [12].

The lack of clinical and demographic metadata submitted to GISAID
for over 59% of the genomes from North African countries is a significant
concern. The absence of this information hinders the ability to conduct
a comprehensive analysis of the virus’ genomic landscape and its impact
on different populations. It is highly likely that these metadata are stored
within national repositories but are not reported to GISAID to comply
with their respective data sharing regulations. Accessing clinical patient
information in these countries is further complicated, possibly because
of the absence of fully computerized systems in hospitals, making vital
information nearly impossible to retrieve [16-18].

The lack of vaccination status information for a substantial majority
of cases in the region, especially in Libya and Mauritania, is concerning.
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This absence complicates assessing vaccination program effectiveness
and its impact on virus spread. A structured and systematic approach to
data collection and sharing is crucial to enhance genomic surveillance
efforts in the region [19].

The gender distribution variations in SARS-CoV-2 cases in North
African countries highlight the potential influence of social and de-
mographic factors on virus spread. The high percentage of cases cat-
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egorized as unknown in some countries emphasizes the necessity for
improved data collection and reporting practices to gain a more com-
prehensive understanding of the virus’ impact on diverse demographic
groups.

The distribution of SARS-CoV-2 clades in North African coun-
tries reveals intricate dynamics shaping the virus’ genomic land-
scape. The diverse clade distribution reflects the complexity of the
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Figure 3. Chronological distribution of Pango lineages among all SARS-CoV-2 genomic sequences from North African countries, retrieved from Global Initiative on
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Figure 3. Continued

viral population and highlights unique genetic profiles in the re-
gion [20]. Notably, the GRA clade dominates in Algeria, Morocco,
Egypt, and Tunisia, emphasizing its regional significance. In contrast,
Libya and Mauritania exhibit the G clade as the prevailing lineage,
indicating distinct genomic patterns. Analyzing the clade distribu-
tion is crucial for understanding SARS-CoV-2 transmission, severity,
and potential immune evasion in the region, influenced by factors
such as population movements, transmission dynamics, and regional
interventions.

The distribution of SARS-CoV-2 lineages in North African countries,
as revealed in this study, provides valuable insights into the epidemio-
logical and evolutionary dynamics of the virus in the region. The emer-
gence and dominance of specific lineages during the different phases
of the pandemic, such as the pre-VOC phase and the waves associated
with the VOC Alpha and VOC Delta, reflect the complex and evolv-
ing nature of the virus. The significant diversity of lineages observed
concerning the VOC Omicron further underscores the ongoing evolu-
tion of SARS-CoV-2. The most prevalent lineages, such as BA.5.2 in
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Egypt, B.525 in Libya, AY.122 in Tunisia, BA.5.5 in Algeria, BA.1 in data collection and reporting practices to ensure a more comprehensive

Morocco, and B.1.525 in Mauritania, highlight the unique genetic land- understanding of the virus’s impact on different demographic groups. In
scape of the virus in each country. These findings are consistent with the addition, the absence of COVID-19 cases in Tunisia during June 2020
broader global trend of the continuous evolution and diversification of is a notable finding that may reflect the effectiveness of public health
SARS-CoV-2 lineages and emphasize the importance of ongoing genomic measures implemented during that time.

surveillance to monitor the spread and impact of the virus. This study’s The monthly classification of SARS-CoV-2 lineages reveals a dynamic
results contribute to the growing body of knowledge on the genetic di- pattern, with each successive wave showing an initial increase in ob-
versity and lineage dynamics of SARS-CoV-2 in North Africa, providing served lineages, followed by a decline after the wave’s peak. This cyclic
a foundation for further research and public health efforts in the region pattern suggests an interplay between viral evolution and population-
[11,21-25]. The distribution of lineages in Mauritania and Libya is se- level immunity, influenced by the introduction and spread of novel vari-
riously lacking in information, which highlights the need for improved ants. It also highlights the continuous evolution and diversification of
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SARS-CoV-2 lineages, demonstrating the virus’ ability to adapt and gen-
erate new variants over time.

Conclusion

Our comprehensive analysis of SARS-CoV-2 genomic data in North
African countries offers valuable insights into the complex dynamics of
the virus within the region. Despite Africa’s relatively modest contribu-
tion to the global genomic data set, the varying sequencing rates across
countries underscore the importance of continuous genomic surveil-
lance in understanding the virus’ spread and adaptation.

Countries can strengthen the sampling methodologies by implement-
ing broader and more representative sample collection strategies. In
addition, addressing the gaps in metadata sharing through standard-
ized protocols and enhanced collaboration between health care institu-
tions and research entities is crucial. By improving sampling practices
and metadata sharing mechanisms, countries can ensure more accurate
and comprehensive genomic surveillance, thereby facilitating informed
decision-making and effective public health interventions in response to
the pandemic.
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