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ABSTRACT

Some brain regions have a central role in supporting integrated brain function, marking them as network hubs.
Given the functional importance of hubs, it is natural to ask how they emerge during development and to
consider how they shape the function of the maturing brain. Here, we review evidence examining how brain
network hubs, both in structural and functional connectivity networks, develop over the prenatal, neonate,
childhood, and adolescent periods. The available evidence suggests that structural hubs of the brain arise in the
prenatal period and show a consistent spatial topography through development, but undergo a protracted period
of consolidation that extends into late adolescence. In contrast, the hubs of brain functional networks show a
more variable topography, being predominantly located in primary cortical areas in early development, before
moving to association areas by late childhood. These findings suggest that while the basic anatomical infra-
structure of hubs may be established early, the functional viability and integrative capacity of these areas un-
dergoes extensive postnatal maturation. Not all findings are consistent with this view however. We consider
methodological factors that might drive these inconsistencies, and which should be addressed to promote a more

rigorous investigation of brain network development.

1. Introduction

The human brain undergoes profound changes during the first two
decades of life. Key developmental events, such as the initial growth of
axons during the second trimester, or the pruning of excess synapses
during childhood and adolescence, are critical in sculpting the anato-
mical wiring that links spatially distributed neural elements (de Graaf-
Peters and Hadders-Algra, 2006; Stiles and Jernigan, 2010). These de-
velopmental changes in neuronal connectivity parallel the maturation
of social, cognitive, and motor skills from birth to young adulthood
(Lamblin et al., 2017; Marek et al., 2015; Marrus et al., 2018), and
alterations of normal development can augment risk for neurodeve-
lopmental disorders such as autism spectrum disorder, attention-deficit
hyperactivity disorder, and schizophrenia (Dennis and Thompson,
2013; Fornito et al., 2015; Paus et al., 2008).

The complete network of neuronal connections comprising the
human brain is called the connectome (Sporns et al., 2005). Connec-
tions within this intricate network are distributed unevenly, such that
certain network elements possess a relatively large number of connec-
tions, marking them as putative network hubs (van den Heuvel and
Sporns, 2013a). Brain hubs facilitate the integration of functionally
specialized and anatomically disparate neural systems (van den Heuvel
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and Sporns, 2011), a role supported by their tendency to form long-
2016; Harriger et al., 2012; van den Heuvel et al., 2012), and their
topological position within the brain, which suggests that they mediate
a large fraction of signal traffic (Misi¢ et al., 2014, 2015; van den
Heuvel et al., 2012). Hubs are also implicated in many phenotypically
diverse psychiatric and neurological disorders (Crossley et al., 2014;
Fornito et al., 2015). In the mature adult human brain, hubs typically
localize to areas of association cortex, basal ganglia and thalamus —
regions that play a central role in higher-order cognition (Buckner and
Krienen, 2013; van den Heuvel and Sporns, 2013a).

Give the apparent importance of network hubs for integrated brain
function, and their involvement in diverse diseases, it is natural to ask
how hubs arise throughout brain development. Are they present from
the earliest stages of brain development, or do they emerge later in life?
What are the mechanisms that lead to the emergence and functional
prominence of hubs? Advances in developmental neuroimaging have
begun to shed light on these and related questions (Bassett et al., 2018;
Cao et al., 2017, 2016; Morgan et al., 2018; Richmond et al., 2016;
Vértes and Bullmore, 2015; Zhao et al., 2018). In this article, we review
developmental studies that have examined how hubs of the human
brain arise and mature. We first examine how hubs are identified, and
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then review empirical studies of hub connectivity during the perinatal,
child, and adolescent periods of development. We consider some of the
major challenges facing studies of brain network development and
describe new research frontiers which we expect will shed further light
on brain network maturation.

1.1. How are hubs identified?

Analyses of brain hubs typically begin by representing the brain as a
network, or graph, of nodes connected by edges (Bullmore and Sporns,
2009; Fornito et al., 2016; Rubinov and Sporns, 2010). Nodes represent
distinct neural elements, such as specialized neuronal populations or
brain regions, and the edges represent connections between nodes. In
human neuroimaging studies, nodes are typically macroscopic brain
regions, defined using some parcellation scheme (Arslan et al., 2018;
Fornito et al., 2013; Wig et al., 2011). Edges represent some measure of
structural or functional connectivity. The former is estimated using
either diffusion MRI tractography, which identifies putative white
matter pathways based of the diffusion of water molecules in the brain,
or (less directly) as inter-regional correlations in cortical morphometric
parameters, such as cortical thickness or grey matter volume; functional
connectivity is often estimated as a correlation between regional
functional MRI signal fluctuations. Further details on different ap-
proaches to brain network construction have been provided elsewhere
(Alexander-Bloch et al., 2013; Bullmore and Bassett, 2011; Fornito
et al., 2016, 2013).

Network representations of the brain can be either directed or un-
directed, and unweighted or weighted. The brain is intrinsically a di-
rected and weighted network (Fornito et al., 2016, 2013) — that is, each
connection has a source and a target, and these connections vary in
their strength — but directionality is difficult to resolve with non-in-
vasive imaging and many studies to date have used unweighted and
undirected graphs to represent brain networks.

Once a network has been constructed, the mathematics of graph
theory (Barabasi, 2016; Newman, 2010, 2003) can be used to quantify
different properties of the network. One such property is centrality,
which can be defined as the capacity of a node to influence, or be in-
fluenced by, other system elements by virtue of its connection topology
(Borgatti, 2005; Borgatti and Everett, 2006; Fornito et al., 2016;
Freeman, 1978). A node scoring highly on a given centrality measure
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can be considered a hub, depending on the specific aspect of centrality
that one wishes to emphasize (e.g., Fig. 1A). The simplest and most
commonly used measure of centrality for defining hubs is node degree,
which is the number of connections attached to a node (by extension, in
weighted network analyses, the weighted degree, or node strength, is
the sum of the edge weights attached to a node).

Node degree is a simple and intuitive measure, but it can give a
limited impression of a node’s role in the network. For example, the red
node in the network in Fig. 1A has relatively low degree but acts as a
bottleneck for all information passing through the blue and green
clusters of the network. One could easily make a case that this red node
should also be considered a hub, despite its low degree. Similarly, two
different nodes i and j, may have equivalent degree, but i may connect
to other high-degree nodes whereas j connects only to low-degree
nodes. Intuitively, node i should be more influential, but this distinction
will not be quantified using node degree alone. Various metrics have
been proposed to capture these and other more nuanced aspects of
centrality; in fact, some 200 different centrality measures have been
proposed to date (Jalili et al., 2015). Prototypical measures of centrality
(see Fig. 1A) include degree, shortest-path closeness (the average
shortest path between an index node and all others), and shortest-path
betweenness (the extent to which an index node lies on shortest paths
between other node pairs) (Freeman, 1978; Sabidussi, 1966), but other
metrics have been developed that assume more complex communica-
tion dynamics (Avena-Koenigsberger et al., 2017; Borgatti, 2005). In
practice, many centrality measures are often correlated with each other
(Li et al., 2015; Oldham et al., 2018; Ronqui and Travieso, 2015;
Valente et al., 2008), and these correlations can be exploited to define
hubs using consensus scores that aggregate values across several cen-
trality metrics (Sporns et al., 2007; van den Heuvel et al., 2010).

Despite the wide array of centrality measures, and methods for
defining hubs, most studies in neuroscience have relied on node degree
or related variants. It is common to designate the nodes with the highest
scores on a particular centrality measure as hubs, but whether such
nodes represent influential hubs will depend on the distribution of the
metric used to define hubness. If the distribution is right-tailed, the
network contains a subset of nodes (those in the tail of the distribution)
that are disproportionately more central than others; it is this dis-
proportionate centrality that is the defining feature of an influential hub
(Fig. 1B). If the distribution is approximately Gaussian (or more
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Fig. 1. Issues in hub detection. A) Example of different aspects of centrality. The nodes located in the center of the blue and green clusters have the highest degree
(number of connections), but all their connections are to other nodes in the same cluster and they have no direct connectivity with the other cluster. These nodes
therefore act as local hubs, but play a minor role in network-wide integration. Conversely, the red node has the lowest degree in the network but is positioned as a
bottleneck for any communication between the two clusters. More formally, the red node has higher betweenness (it is located on many of the shortest-paths between
nodes) and closeness (its average topological distance to other nodes is small) than any of the other nodes. B) Example of a heavy-tailed degree distribution. The
extended tail contains putative hub nodes that have a very high degree relative to most of the other nodes. C) Example of a binomial degree distribution, which lacks
heavy tails. In this network, most nodes have an average, modal level of degree and the probability of finding nodes with very high degree is low. Note that while
degree is used here as an example, the same reasoning is applicable to other centrality measures (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article).
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precisely for degree, binomial), then the network contains no “out-
lying” nodes that exert undue influence on network function (Fig. 1C).
Moreover, even in the presence of a skewed centrality distribution,
there is no clear cut-off for distinguishing hubs from non-hubs. As such,
the distinction between hubs and non-hubs is, to some extent, arbitrary.

Another consideration in defining hubs is that different centrality
measures may be appropriate for different kinds of networks. For in-
stance, node degree in correlation-based (e.g., functional connectivity)
networks is biased to identify ‘local’ hubs that are highly connected
within a specific sub-network of the brain, rather than hubs that in-
tegrate information across diverse subnetworks, suggesting that other
measures of centrality may be more appropriate in correlation networks
(Power et al., 2013). Finally, the designation of a node as a hub very
much depends on the scale at which nodes are defined. Most MRI stu-
dies map connectivity at the macroscale, between coarsely defined
brain regions. Many of these regions are themselves functionally het-
erogeneous, and a finer-grained parcellation may affect the region’s
status as a hub. For example, the thalamus, despite comprising 50-60
specialized sub-nuclei (Herrero et al., 2002), is often treated as a single
node in human connectomics.

1.2. Properties of brain network hubs in the adult brain

Despite the various methods available for quantifying centrality,
these measures often identify the same regions of brain networks as
being the most influential (see Fig. 2). In structural connectivity net-
works, these putative hub regions typically reside in medial parietal,
frontal and subcortical (basal ganglia and thalamus) regions, with some
evidence for occipital, insula and cingulate regions (Bell and Shine,
2016; Gong et al., 2009; Hagmann et al., 2008; van den Heuvel et al.,
2010; van den Heuvel and Sporns, 2011, 2013a). Hubs in functional
networks are reported in similar areas, including precuneus, cingulate,
frontal and inferior parietal areas, and notably overlap with regions
comprising the default-mode network and executive control networks
(van den Heuvel and Sporns, 2013a; Zuo et al., 2012), which and are
involved in numerous complex cognitive domains (Dosenbach et al.,
2008, 2006). In general, hubs of the adult brain localize predominantly
to association and subcortical regions.

Structural hubs of the brain are more densely interconnected
amongst themselves than expected by chance, forming a so-called rich-
club (Colizza et al., 2006; Zhou and Mondragén, 2004). Rich-club or-
ganization has been observed in humans (van den Heuvel et al., 2012;
van den Heuvel and Sporns, 2011), macaques (Harriger et al., 2012),
rats (van den Heuvel et al., 2016), mice (Fulcher and Fornito, 2016),
Drosophila (Shih et al., 2015), and in the nematode worm Cae-
norhabditiselegans (Arnatkevicitité et al., 2018; Towlson et al., 2013).
Computational modelling indicates that hubs and rich-club connections
are topologically positioned to mediate a large fraction of signal traffic
in the brain (Misi¢ et al., 2015, 2014), synchronize peripheral brain
regions, promote complex brain dynamics (Gollo et al., 2015; Senden
et al., 2014, 2017; Zamora-Lopez et al., 2010), and imaging evidence
shows that they link distinct functional networks (van den Heuvel and
Sporns, 2013b). This integrative role is thought to underlie complex
cognitive processes, such as language and abstract thought (van den
Heuvel and Sporns, 2013a). Rich-club connections extend over longer
distances, on average, than other connections, marking them as highly
Fulcher and Fornito, 2016; Harriger et al., 2012; Towlson et al., 2013;
van den Heuvel et al., 2012). This high wiring cost parallels a high
metabolic cost of hub activity (Liang et al., 2013; Tomasi et al., 2013;
Vaishnavi et al., 2010), which may underlie the involvement of hubs in
diverse brain disorders (Crossley et al., 2014; Fornito et al., 2015).
Modelling studies indicate that disruption of hubs is likely to have a
particularly deleterious impact on brain network function (Achard
et al., 2006; van den Heuvel and Sporns, 2011), a prediction supported
by evidence from lesion studies (Achard et al., 2012; Warren et al.,
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2014). Together, these findings indicate that hubs in the adult brain are
functionally valuable, costly elements of the connectome that play a
central role in integrated brain function and adaptive behavior.

2. The development of hub connectivity

Human brain development unfolds over a protracted period, ex-
tending across 2-3 decades and following a series of sequential yet
overlapping stages, including neuronal migration, axonal growth, sy-
naptogenesis, synaptic pruning and myelination (de Graaf-Peters and
Hadders-Algra, 2006). The precise point at which hubs emerge is dif-
ficult to determine, because we lack the tools for precise mapping of
whole-brain connectivity at very early stages of development. In the
following sections, we review studies examining hub connectivity
during prenatal and infant development, childhood, and adolescence,
focusing on where hubs are located, how hub connectivity changes
through development, and how hubs may be related to cognitive abil-
ities. We draw a distinction between structural connectivity networks,
which reflect the physical infrastructure of the brain and constrain the
potential communication capacity between brain regions, and func-
tional connectivity networks, which more directly index the actual
dynamics taking place in the network.

2.1. Prenatal and infant development

Perhaps the clearest evidence for the early emergence of hubs comes
from studies of C. elegans, the only organism to have had its connectome
mapped nearly completely at the level of every neuron and synapse
(Varshney et al., 2011; White et al., 1986). The birth time of each
neuron is known, allowing precise delineation of when the hubs of this
network emerge (Varier and Kaiser, 2011). Analysis of these data has
shown that hub neurons are amongst the earliest-emerging neurons, all
being born prior to any signs of movement in the animal (Towlson
et al., 2013). Whether this result holds for mammals is unclear. Indeed,
the construction of temporally-resolved atlases of connectome devel-
opment in mouse and primate models will be highly valuable for re-
vealing the timing and mechanisms underpinning hub formation.
However, indirect evidence for the early formation of does come from
non-human primate studies. A general trend has been observed in the
primate cortex, such that areas with high degree have lower neuronal
density (Beul et al., 2017; Scholtens et al., 2014). Low neuronal density
is considered to be a proxy of early completion of neurogenesis, because
a shorter developmental period results in less cell migration and con-
sequently reduced neuronal density (Barbas and Garcia-Cabezas, 2016;
Dombrowski et al., 2001; Hilgetag et al., 2016).

Comparable measures of regional neuron density and neuron birth
times in the human are lacking, and studying fetal and neonate brains
with MRI is methodologically challenging, due to poor signal-to-noise
ratio, poor anatomical contrast between grey and white matter, high
motion, and difficulties in mapping parcellations between brains
(Ouyang et al., 2017; van den Heuvel and Thomason, 2016). None-
theless, the available evidence from this developmental period confirms
an early emergence of structural hubs. Indeed, the structural con-
nectome of neonates shows a right-tailed degree distribution, with high-
degree nodes located primarily along the midline and in lateral frontal
and temporal areas (Fig. 3A) (Ball et al., 2014; van den Heuvel et al.,
2015). A number of these neonate hubs overlap with those in adult
networks, such as those in association (e.g., superior frontal, parietal),
subcortical, and visual regions, indicating that several hub regions in
adults are also hubs in neonates. However some of these hubs may be
infant specifc, such as those in sensorimotor and temporal areas (Ball
et al.,, 2014; Huang et al., 2015; Tymofiyeva et al., 2013; van den
Heuvel et al., 2015; Yap et al., 2011).

Studies of preterm infants suggest that hubs can also be identified
prior to term birth. One study examining diffusion MRI scans of infants
born at approximately 30 weeks gestational age (GA) found hubs in
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Fig. 2. Structural hubs of the adult human brain. A) Spatial distribution of brain network hubs. Here, hubs (red) have been defined as nodes scoring > 1 standard
deviation above the mean on at least one centrality measure (degree, nodal efficiency, or betweenness). Hubs are in the bilateral putamen, thalamus, superior
parietal, superior frontal, precuneus, hippocampus, insula, right pallidum, and left lingual gyrus. B) Node centrality scores for degree, nodal efficiency, and be-
tweenness. Each bar chart shows each node’s score on each of the three prototypical centrality measures, ordered from highest to lowest. Degree is defined as the
number of connections attached to each node. Nodal efficiency (also known as closeness) is the average of the inverse shortest path between a node and all others.
Betweenness is the number of shortest-communication paths between other nodes that pass-through a given index node. Red bars mark hub nodes across all
measures. As can be seen, hubs are consistently ranked highly across all three different centrality measures. See supplementary information for the definition of each
abbreviation. Data is from a group averaged connectome, generated from 973 participants of the Human Connectome Project (for further details, see Oldham et al.,
2018) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

superior frontal, superior parietal, and occipital regions (Fig. 3B) (Ball
et al., 2014). Like in adult and term neonate structural networks, hubs
at 30 weeks GA were highly interconnected, forming a rich-club, and
hub-to-hub connections were significantly longer than other types of
connections (Ball et al., 2014). Moreover, most of the longitudinal
changes occurring in the network between 30 and 40 weeks GA affected
connections between hubs and non-hub areas rather than the rich-club
connections between hubs (Ball et al., 2014). Consistent with this
finding, other work has shown that the strength of connections in a
putative network core of the brain, which typically involves connec-
tions between hub nodes, undergoes minor changes during the third
trimester of development (Batalle et al., 2017). The early formation of
hubs and a rich-club suggests that these nodes and connections form a
stable scaffold to which other elements are added in subsequent

development (Csermely et al., 2013). The rich club thus forms an early
anatomical infrastructure for interregional communication. However,
the strength of these connections is still relatively weak, indicating that
the full integrative capacity of the rich club may only be realized as hub
connectivity matures. Indeed, functional connectivity is constrained,
but not completely determined, by structural connectivity (Goii et al.,
2014; Honey et al., 2010; Skudlarski et al., 2008), and if structural hubs
are immature early in development, one might expect a functional
network topography that deviates from the underlying structural net-
work. Consistent with this view, early studies of functional connectivity
hubs in prenatal and neonate networks are consistently found in pri-
mary sensorimotor, auditory, motor, and visual areas (De Asis-Cruz
et al., 2015; Fransson et al., 2011; Gao et al., 2011; van den Heuvel
et al., 2018).
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Fig. 3. Hubs in prenatal and neonate connectomes. A) Degree of cortical regions in the structural connectivity network of neonates at 40 weeks GA. B) Degree of
cortical regions in the structural connectivity network of neonates at 30 weeks GA. These figures show that hubs (red/yellow areas) are present by 30 weeks GA.
Several of these hub areas, including superior frontal, superior parietal and occipital regions, are also hubs in adults (see Figure X). C) Degree and betweenness
centrality (BC) hubs in a foetal functional connectivity network (degree hubs are in red and betweenness hubs are in yellow). Functional hubs are primarily localised
to primary regions in the prenatal/infant period. In contrast, functional connectivity hubs in adults are located in association areas (see Fig. 4). Both measures show a
high level of consistency in the regions identified as hubs. Panels A and B adapted from Ball et al., 2014, and panel C from van den Heuvel et al., 2018. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Some more recent studies of neonates have detected hubs in asso-
ciation (De Asis-Cruz et al., 2015; van den Heuvel et al., 2018) and
frontal areas (Gao et al., 2011; Scheinost et al., 2016), suggesting the
functional networks of neonates may be in a more mature, adult-like
form than previously thought. However, some of these studies used
suboptimal motion correction techniques (Gao et al., 2011; Scheinost
et al., 2016) or had to remove large amounts of data due to motion
artefacts (van den Heuvel et al., 2018). Given the major challenge that
motion confounds pose for imaging studies of early development
(Satterthwaite et al., 2012), these findings require further validation.
Functional connectivity hubs have also been identified in the cere-
bellum of fetuses (van den Heuvel et al., 2018), a region that is often
overlooked in adult studies of the connectome, but which plays a cri-
tical role in cognitive development (Volpe, 2009).

The localization of functional hubs to primary sensory and motor
areas of the prenatal/neonate brain is thought to be linked to the initial
development of cognitive, motor and visual processes (van den Heuvel
et al., 2018). It may also reflect the relative structural immaturity of
long-range fibers that link spatially disparate association areas, given
that these long-range fibers undergo myelination well into the third and
fourth decades of life, and that primary systems are relatively localized,
and dominated by short-range connectivity. Thus, an adult-like binary
topology of hub connectivity may be established early, but its relative
immaturity may limit its role in promoting integrative dynamics, which
are only fully realized when long-range projections have completely
myelinated. This early immaturity would be expected to produce dy-
namics that are predominantly segregated, resulting in a preponderance
of functional connectivity hubs in early-developing primary areas.
Functional hubs may then shift to association areas as long-range pro-
jection fibers myelinate and enable more integrated processing.

2.2. Childhood development

Nearly all long-range axonal connections are established by birth
(Cabungcal et al., 2006; Larsen et al., 2006), and human imaging stu-
dies have confirmed that the topography of structural hubs in children
resembles the adult brain, with hubs being predominantly localized to
association cortex and subcortical regions (Fig. 4A) (Chen et al., 2013b;
Grayson et al., 2014; Hagmann et al., 2010). Structural rich-club con-
nectivity is also largely like that of adults (Grayson et al., 2014).

While the binary topology of the structural connectome is highly
stable by childhood, the strength of hub connectivity undergoes further
changes (Cao et al., 2016). During childhood, the fractional anisotropy
(FA) of hub connections increases, and these increases are greater than
those observed for other types of connections (Wierenga et al., 2018). In

parallel, the mean diffusivity (MD) in frontal and parietal association
fibers also showed the largest changes during childhood and adoles-
cence (Wierenga et al., 2016). FA and MD measure the extent to which
axonal bundles constrain the direction and magnitude of water diffu-
sion and are often taken as a markers of white matter integrity. Thus,
changes in these measures are thought to reflect the maturation of hub
connections, possibly due to factors such as myelination and denser
packing of axons (Lebel and Beaulieu, 2011). However, FA and MD can
be affected by numerous microstructural changes and other factors
related to data acquisition, meaning that their physiological sig-
nificance can be hard to interpret (Beaulieu, 2002; Jones, 2010; Jones
et al., 2013).

As the strength of hub connectivity increases in childhood, it is
expected that hub areas should occupy a more topologically central role
in the network when connection weights are considered in the analysis.
Several studies of weighted networks have found that the centrality of
hubs in medial frontal and parietal regions does indeed increase from
early to late childhood, but that the centrality of lateral cortical hubs
decreases during this time (Chen et al., 2013b; Huang et al., 2015).
Others have reported that the centrality of hubs remains relatively
stable across childhood and adolescence (Hagmann et al., 2010). These
differences could be due to the choice of centrality measure. Studies
that found developmental changes used nodal efficiency (a measure of
the average topological distance of a node to others; Achard and
Bullmore, 2007). Studies that did not find changes used betweenness
centrality (a measure of the number of shortest communication paths in
the network that pass through a node). Differences across studies in the
way edge weights are measured across studies (for example, whether
weights are measured using FA, MD or some other metric) make it
difficult to compare results across studies (Cao et al., 2016; Koenis
et al., 2015).

As with networks derived from diffusion MRI, those based on pat-
terns of structural covariance (typically covariance in cortical thick-
ness) in childhood have also found that hubs are located in parietal,
frontal, and temporal regions (Fan et al., 2011; Khundrakpam et al.,
2013; Nie et al., 2013). Within these regions, hubs were found in lan-
guage-related areas (e.g., superior/middle temporal gyrus, angular
gyrus), a result that is thought to parallel the significant development of
language during this period (Khundrakpam et al., 2013). By adoles-
cence, hubs are more prominently found in frontal cortex
(Khundrakpam et al., 2013), consistent with frontal areas exercising an
increasingly dominant role in cognition (Lewis and Todd, 2007).
Changes in structural covariance may be driven by increasing myeli-
nation of connected areas, although other microstructural features,
such as changes in glial cell density and neuronal size may also
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article).

contribute (Paus et al., 2008; Tamnes et al., 2010; Zatorre et al., 2012).

Where the topography of structural hubs is considered stable by
childhood, functional networks transition to a more adult-like pattern
during this time. Hubs shift from being localized in primary sensory and
motor areas perinatally to a more distributed pattern extending across
frontal, visual, temporal and subcortical areas between age 5-10
(Fig. 4B) (Betzel et al., 2014; Cao et al., 2014; Grayson et al., 2014;
Hwang et al., 2013; Wu et al., 2013). The shift of hubs from primary to
association areas mirrors the development of higher-order cognition
during this period (Casey et al., 2005). This shift in the location of
functional hubs may be driven by the gradual maturation of long-range
axonal projections.

Despite the consistent localization of functional hubs, the precise
nature of the developmental changes taking place during childhood
remains unclear. Relatively few studies have examined the period from
infancy to early childhood, but there is some evidence for an increase in
frontal and parietal hub centrality (Gao et al., 2011). The picture is
more complicated in late childhood, and appears to depend on whether
weighted or unweighted networks were analyzed — weighted degree has
been found to decrease in lateral frontal, parietal and temporal regions
(Cao et al., 2014), whereas unweighted measures of hub centrality
show no change (Wu et al., 2013). A third study used the first principal
component of different weighted and unweighted centrality measures
to capture common variance in centrality (Hwang et al., 2013). Using
this measure, no changes in hub connectivity were identified
throughout late childhood and adolescence, although functional

connectivity between frontoparietal hubs and non-hub areas did in-
crease over this time.

There is some evidence that functional connectivity between net-
work hubs strengthens during childhood. For example, adults show
evidence of stronger rich-club organization, implying stronger func-
tional connectivity between hubs, than children (Cao et al., 2014;
Grayson et al.,, 2014; Uddin et al.,, 2011). Functional connectivity
within the default mode network—which contains several cortical
hubs—is also increased in adults compared to children (Fair et al.,
2008; Sato et al., 2014; Supekar et al., 2010). Increased connectivity
between hubs is expected to enhance functional integration (van den
Heuvel and Sporns, 2013a), and may thus facilitate the transition from
neural dynamics dominated by local, short-range, and segregated in-
teractions to globally coordinated activity. This view is supported by
evidence that long-range connectivity (such as connections that link
hubs) increases while short-range connectivity decreases during this
developmental period (Dosenbach et al., 2010; Fair et al., 2009, 2007;
Supekar et al., 2009). However, it is well-documented that head motion
artifacts can also reduce short-range and inflate long-range connectivity
(Power et al., 2012). This effect presents a major confound to devel-
opmental studies, since younger people tend to move more in the
scanner. Some evidence indicates that this distance-dependent devel-
opmental trend is still apparent when using stringent controls for mo-
tion, but the effects are weaker than those initially reported (Fair et al.,
2013; Power et al., 2012; Satterthwaite et al., 2013, 2012).
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Fig. 5. Changes in hub structural connectivity during adolescence. A) Connections showing significant decreases (left) and increased (right) in the number of
streamlines between the ages of 15 and 19. The color of each edge indicates the connection type: non-hub to non-hub (yellow), non-hub to hub (orange), and hub to
hub (red) and the thickness of each edge is weighted by its associated one-tailed t-test statistic (FWE corrected, p < 0.05). The color of each node indicates its
assignment to one of five broad anatomical divisions: frontal (cyan), parietal (lime), temporal (magenta), occipital (orange-red), or subcortical (blue). Large nodes are
hubs while smaller nodes are non-hubs. The matrix indicates the distribution of developmental increases (upper matrix) and decreases (lower matrix) across the
anatomical divisions. The value of each matrix element represents the ratio between the frequency of edges linking each pair of divisions and the total number of
edges belonging to the two divisions. B) Connectograms of decreases (left) and increases (right) in streamline density. Nodes are grouped according to anatomical
division and are further ordered by degree (the height of the bar chart is proportional to degree). Red bars indicate hubs. Edges and nodes are colored according to
the scheme described for panel A. F = Frontal; L = left; O = occipital; P = parietal; R = right; S = subcortical; T = temporal. These figures illustrate that devel-
opmental increases are concentrated in frontal, parietal, and subcortical regions, with many of these changes occurring in hub connections. Adapted from Baker et al.,
2015, with permission. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

between subcortical and parietal hubs, and increased connectivity
being observed for links between frontal and subcortical, and frontal
and parietal hubs (Fig. 5) (Baker et al., 2015). These findings are con-
sistent with studies showing that long-range association fibers show the
greatest rates of maturation during adolescence and young adulthood
(Lebel and Beaulieu, 2011; Wierenga et al., 2016), and with the well-

2.3. Adolescent development

Continuing the trend observed in childhood, structural connectivity
hubs in adolescence have a similar spatial configuration as adults
(Fig. 4A), but their connectivity continues to strengthen. One long-

itudinal study of structural network development between the ages of
15 and 19 mapped changes in edge strength, as measured by both known extended period of association, in particular frontal, cortex de-

streamline density (number of streamlines connecting two regions velopment (Casey et al., 2008, 2005; Gogtay et al., 2004; Hill et al.,
weighted by the summed volume of those two regions) and FA, across 2010).
the entire connectome. These changes were both specific — only 8% of Several studies suggest that the centrality of hub areas, as indexed
edges showed increased connectivity and 6% showed decreased con- by measures such as betweenness and nodal efficiency, is largely stable
nectivity — and spatially widespread — 90-93% of brain regions were throughout adolescence (Z. Chen et al., 2013b; Hagmann et al., 2010),
attached to edges showing developmental changes. Proportionally, although some studies have found that frontal and parietal regions in-
connections between hub areas were the most frequently implicated in crease in degree/strength and nodal efficiency (Dennis et al., 2013;
these changes, with decreased connectivity being observed for links Huang et al., 2015). As mentioned previously, these differences could
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loadings on a component, identified through partial least squares, of transcriptional variance across 20,737 genes. Genes associated with this component include
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permission (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

be due to different definitions of edge weights and other differences in
network construction, such as the tractography algorithm used and the
quality of the data.

Structural covariance studies of adolescence find that hubs are in
parietal, frontal and temporal association areas (Fig. 6A,B), and that
hubs undergo significant microstructural and morphological changes
during this period of development (Vasa et al., 2018; Whitaker et al.,
2016). At the outset of adolescence, hubs are among the least myeli-
nated regions in the brain, but the rate at which hub areas myelinate
intracortically during adolescence is higher than for other areas
(Fig. 6D) (Whitaker et al., 2016). Thus, enhanced myelination of these
areas is thought to be a key driver of decreasing cortical thickness in
hubs (Fig. 6C) (Paus et al., 2008), and cortical areas with higher degree
and closness centrality show stronger loadings on a component of
variance in the expression of genes regulating oligodendrocyte and
synaptic function (Fig. 6E) (Whitaker et al., 2016). However, myeli-
nation could not completely explain the observed changes in cortical
thickness, suggesting a potential role for synaptic pruning (Vasa et al.,
2018; Whitaker et al., 2016). Development of cortical association re-
gions, especially frontal areas, parallels the development of executive
cognition and other higher-order cognitive abilities (Casey et al., 2008;
Spear, 2013), however it is important for future work to understand
precisely how these changes in connectivity are related to cognitive
development.

In functional connectivity networks, the spatial topography of hubs

largely matches the adult pattern at the outset of adolescence, but the
specific way in which functional connectivity networks mature through
adolescence remains a topic of contention. Some studies have found
that the centrality of functional hub regions decreases (Cao et al., 2014;
Zuo et al., 2012), while others have reported evidence of stability
(Hwang et al., 2013; Wu et al., 2013). Several studies have indicated
that the strength of functional connectivity between hub areas in-
creases, as measured in different ways (Cao et al., 2014; Grayson et al.,
2014; Uddin et al., 2011); others have found that changes in adoles-
cence only affect hub to non-hub connections (Hwang et al., 2013). The
age range being examined could also influence these results. Studies
that have reported consistent levels of hub centrality only examined
late childhood, adolescence, and early adulthood (Hwang et al., 2013;
Wu et al., 2013) whereas those that found changes in hub centrality
looked for trends across the entire lifespan (Cao et al., 2014; Zuo et al.,
2012). Thus, developmental changes in hub centrality may only be
apparent when looking over a sufficiently long timeframe. In some of
these studies, individuals under 20 years of age were either over or
under represented relative to the rest of the sample, which may have
biased the estimation of developmental trends (Cao et al., 2014; Zuo
et al., 2012).

3. Challenges and frontiers

Developmental studies are often fraught with methodological
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challenges. For example, many analysis tools in neuroimaging have
been designed for application to adult brains, and are not always di-
rectly portable to younger cohorts (Howell et al., 2018; Li et al., 2018;
Makropoulos et al., 2018). The interpretation of developmental effects
in measures of brain structure and function can also be ambiguous
(Poldrack, 2010). Network-based analyses introduce an additional set
of free parameters which, despite offering greater flexibility in studying
developmental processes, often rely on choices and assumptions that
can further complicate interpretation. As the field develops, it will be
necessary to develop best-practice standards to facilitate comparisons
across different investigations.

One of the key challenges of constructing brain networks, both
structural and functional, from neuroimaging data is their susceptibility
to motion artefacts (Power et al., 2012; Yendiki et al., 2014). These
artefacts can lead to both false-positive and false-negative connections,
and spurious changes in connectivity strength (Baum et al., 2018; Fair
et al., 2013; Satterthwaite et al., 2013, 2012). Different strategies are
available for addressing these artefacts. These methods vary in their
efficacy and can have a major impact on the findings (Baum et al.,
2018; Ciric et al., 2017; Parkes et al., 2018). Head motion is more
prevalent in younger cohorts, representing a serious obstacle in asses-
sing the validity and reliability of brain networks during development
(Grayson and Fair, 2017; Satterthwaite et al., 2012; Tamnes et al.,
2017). Many developmental studies of functional connectivity thus far
have used only simple strategies for motion correction, such as linear
regression of translation and rotation parameters, that have been shown
to be inadequate (Ciric et al., 2017; Parkes et al., 2018). The effects of
motion on structural connectivity networks are only beginning to be
understood, but it seems that similar contamination is apparent (Baum
et al., 2018). As such, head motion artefacts may explain at least some
of the inconsistencies found across different studies (Grayson and Fair,
2017).

Careful consideration also needs to be given to how a network is
constructed and analyzed. For instance, the choice of whether un-
weighted or weighted networks are examined should be made judi-
ciously, based on the most appropriate method for evaluating the study
hypotheses. The available evidence indicates that the binary topology
of the connectome is established very early, prior to birth (Hagmann
et al., 2012). It will therefore be important to understand how post-
natal development affects variations in structural connection weights,
and how these, in turn, shape brain dynamics. The method used for
defining connection weights is also a critical consideration, and may
influence whether developmental decreases, increases, or even no
changes are observed (Cao et al., 2016; Koenis et al., 2015).

The appropriateness of a given centrality method for a specific
network should also be taken into consideration. For example, some
topological measures may be disproportionately susceptible to slight
changes in network structure (Newman, 2010), and in correlational
networks, measures such as degree, nodal efficiency, and betweenness
can be difficult interpret (Power et al., 2013; Rubinov and Sporns,
2011). Moreover, most centrality measures examined to date assume a
shortest-path form of communication, where information is transferred
by a single, direct route. This is not a realistic model for neuronal
communication (Goii et al., 2013), and the contribution of other paths
should also be considered (Avena-Koenigsberger et al., 2017; Misi¢
et al., 2015).

Many developmental studies published to date have relied on small
sample sizes, and few have used longitudinal data (Morgan et al.,
2018). The field will benefit from the release of large, longitudinal,
high-quality developmental datasets such as the ABCD study (Casey
et al., 2018; Volkow et al., 2017), Baby Connectome Project (Howell
et al.,, 2018), Developing Human Connectome Project (Makropoulos
et al., 2018), IMAGEN (Schumann et al., 2010), and the Lifespan
Human Connectome Project Development (HCP-D, 2017). Additionally,
the further development of enhanced processing techniques to deal
with the specific challenges posed by imaging data acquired in early
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development (Howell et al., 2018; Li et al., 2018; Makropoulos et al.,
2018) will be important for the field to progress.

One approach that we expect will shed new light on the how hubs
emerge in brain networks involves moving from a description of the
changes that occur through development to the specification and eva-
luation of predictive models of developmental processes, based on hy-
pothesized mechanisms. In this work, networks are grown in silico,
according to specific rules for connecting nodes, as specified by a
generative model of network development (see Betzel and Bassett, 2017
for a detailed review of generative models). The networks that emerge
under different types of rules can be compared to see which best re-
plicates the properties of actual brains. Several wiring rules thought to
mimic plausible mechanisms of hub development have been proposed.
One, termed the “old-get-richer” effect (Kaiser, 2017), proposes that
regions that begin forming and accepting connections early in devel-
opment have the longest time to develop connections and therefore
become hubs. The evidence we have reviewed here is indeed consistent
with an early establishment of hub areas. Another possible mechanism
is non-linear growth, in which nodes are added to a network at an
exponential rate. Under this model, neural structures divide into finer,
more specialized regions, leading to the formation of new areas
(Ebbesson, 1980; Kaiser, 2017). This process increases the variance of
degree across nodes and results in a right-tailed degree distribution
(Bauer and Kaiser, 2017).

Other models have emphasized the role of wiring costs in network
formation (Bullmore and Sporns, 2012). In these models, the prob-
ability of a connection forming between two regions is inversely related
to the distance between them, as has been shown in empirical data
(Arnatkeviciiité et al., 2018; Ercsey-Ravasz et al., 2013; Fulcher and
Fornito, 2016). Sometimes, this distance-dependent rule is balanced
against another parameter that favors forming connections that are
topologically advantageous. For example, one model that has proven
successful in capturing several features of adult human brain networks,
including modularity, clustering and efficiency, involves a trade-off
between penalizing long-range connections and favoring connections
between nodes with similar inputs (Betzel et al., 2016; Vértes et al.,
2012). However, a limitation of these models is they do not completely
reproduce the spatial topography of hubs. A different trade-off model
that balanced wiring cost minimization with favoring connections that
enhance global network efficiency was able to approximate the location
of hubs in C. Elegans and the macaque monkey, but it could not re-
plicate the degree distribution (Chen et al., 2013a).

To our knowledge, the only generative model for a connectome that
has shown success in predicting the topography of hubs has been pos-
ited for C. Elegans. This model, which incorporated information on
neuronal birth times, the physical growth of the organism, and a trade-
off between spatial constraints and nodes preferentially connecting to
highly connected nodes, was able to reasonably approximate the pre-
sence and location of hubs in the organism (Nicosia et al., 2013). These
findings suggest that an interaction between wiring costs, topological
value, and developmental staging may lead to the emergence and
specific location of brain network hubs. A hitherto unexplored phe-
nomenon is how the geometry of the developing brain interacts with
connectome development. When axonal connections are forming near
the end of the first trimester (Miiller and O’Rahilly, 2006; Vasung et al.,
2011, 2010), the brain is over 200 times smaller than an adult (Huang
et al., 2009; Tallinen et al., 2016). As the size of the brain increases, this
may dynamically change wiring costs throughout development, which
may affect which connections are more likely to form at different de-
velopmental periods.

The further development of accurate models of hub development
may also help understand the mechanisms of developmental disorders.
Abnormal hub connectivity is found in numerous neurodevelopmental
disorders, including Attention Deficit Hyperactivity Disorder (ADHD),
Autism Spectrum Disorder (ASD), and schizophrenia (Crossley et al.,
2014). These changes may emerge early on, given evidence that
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children and neonates at risk or diagnosed with one of these disorders
have dysfunctional hub connectivity (Collin et al., 2017; Lynch et al.,
2017; Ray et al., 2014; Shi et al., 2012; Xia et al., 2014). One study
using generative network modelling found that differences in functional
network topology between patients with childhood onset schizophrenia
and healthy controls could be reproduced by tuning the parameters of a
generative network model such that the penalty on forming long-range
connections was reduced (Vértes et al., 2012). In this way, a series of
disparate findings were explained by variations in a single model
parameter. Thus, combining both generative models and studies of
abnormal connectivity may offer a way to unravel how both normal and
abnormal hub connectivity develops.

An additional critical area for further exploration is to understand
how hub maturation relates to cognitive development. Relatively few
studies have explicitly related hub development to measurable changes
in cognition. One might expect that even small changes in hub con-
nectivity could have large effects on cognition, given that complex
cognitive processes have been shown emerge following small neuroa-
natomical changes (Vendetti and Bunge, 2014).

Another avenue that can be used to examine how hub development
impacts brain function is using biophysical models of large-scale brain
dynamics. These models simulate brain dynamics using systems of
differential equations that describe the temporal evolution of popula-
tion-level (regional) neuronal activity, coupled according to an em-
pirically derived structural connectivity matrix (Breakspear, 2017;
Murray et al., 2018). The models have been used to show that rich-club
hubs promote functional complexity and synchronization (Deco et al.,
2017; Gollo et al., 2015; Senden et al., 2017, 2014; Zamora-Lépez et al.,
2010). In principle, one could artificially tune the weights of the
structural connectome to simulate different developmental processes,
and then examine the impact that this re-weighting has on the resulting
dynamics.

4. Conclusions

To summarize, developmental studies of hub connectivity indicate
that structural hubs are present from a very early stage, with the binary
topology of hub connectivity being established prior to birth and the
location of hubs being consistent throughout development. These
structural links appear to be immature however, as functional con-
nectivity networks appear to transition through childhood from a to-
pography in which hubs are localized to primary cortical areas to one
that mirrors the adult configuration, in which hubs localize mainly to
association cortex. This transition appears to be supported by a con-
solidation of structural connectivity between hubs, which continues
into the second and third decades of life, and which appears to be
closely linked to ongoing myelination. Despite this broad trend, con-
siderable inconsistencies are found throughout the literature, and there
are several methodological limitations affecting current research. The
increasing availability of large, well-characterized samples, the refine-
ment of data processing, denoising and network constriction algo-
rithms, the development of biologically-grounded models of network
growth, and a more concerted effort to understand how network ma-
turation parallels cognitive development will lead to a more detailed
picture of the impact that hubs have on the developing brain.
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