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Abstract

Background: The distribution of anopheline mosquitoes is determined by temporally dynamic environmental and
human-associated variables, operating over a range of spatial scales. Macro-spatial short-term trends are driven
predominantly by prior (lagged) seasonal changes in climate, which regulate the abundance of suitable aquatic larval
habitats. Micro-spatial distribution is determined by the location of these habitats, proximity and abundance of available
human bloodmeals and prevailing micro-climatic conditions. The challenge of analysing—in a single coherent statistical
framework—the lagged and distributed effect of seasonal climate changes simultaneously with the effects of an
underlying hierarchy of spatial factors has hitherto not been addressed.

Methods: Data on Anopheles gambiae sensu stricto and A. funestus collected from households in Kilifi district, Kenya, were
analysed using polynomial distributed lag generalized linear mixed models (PDL GLMMs).

Results: Anopheline density was positively and significantly associated with amount of rainfall between 4 to 47 days,
negatively and significantly associated with maximum daily temperature between 5 and 35 days, and positively and
significantly associated with maximum daily temperature between 29 and 48 days in the past (depending on Anopheles
species). Multiple-occupancy households harboured greater mosquito numbers than single-occupancy households.

A significant degree of mosquito clustering within households was identified.

Conclusions: The PDL GLMMs developed here represent a generalizable framework for analysing hierarchically-structured
data in combination with explanatory variables which elicit lagged effects. The framework is a valuable tool for facilitating
detailed understanding of determinants of the spatio-temporal distribution of Anopheles. Such understanding facilitates
delivery of targeted, cost-effective and, in certain circumstances, preventative antivectorial interventions against malaria.
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Background

The density of Anopheles mosquito vectors relative to hu-
man hosts (the vector-to-host ratio) is a critical component
of the intensity of malaria transmission [1]. Spatial and tem-
poral heterogeneity in the density and distribution of
anopheline mosquitoes is determined principally by the
availability of aquatic habitats suitable for the maturation
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and development of their larvae [2,3]. Climate is a major
determinant of macro-spatial (district, regional or country)
and temporal heterogeneity in the distribution of such habi-
tats and consequently of heterogeneity in the distribution
of mosquito vectors [4-8]. In turn, climatic variation drives
heterogeneity in the intensity of malaria transmission
within and among human populations, both in the short-
(seasonal) [9] and long- (climate change) terms [10]. The
fine, micro-spatial distribution of vectors within communi-
ties depends on the location of aquatic habitats [11,12], the
proximity of human bloodmeals [13,14] (Anopheles gam-
biage sensu stricto and A. funestus mosquitoes are strongly
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anthropophagic [15]) and micro-climatic conditions, par-
ticularly the direction of the prevailing wind [16] that trans-
ports olfactory cues from humans to female mosquitoes
[17,18].

There is great interest in identifying factors underlying
the macro- and micro-spatial and temporal distribution
of anopheline vectors either mechanistically using mathem-
atical models (e.g. [19-21]), or phenomenologically using
statistical models (e.g. [22-24]). Studies are often motivated
by projecting the effects of climate change on the distri-
bution of anophelines [25-27] and endemic malaria [28];
improving targeted control on macro- [29,30] and micro-
spatial [16,31] scales, or developing models with capacity
to offer reliable predictions of impending malaria epi-
demics [32]. The latter ‘early warning’ prediction models
are underpinned by the lagged relationship between me-
teorological variables, vector density and malaria incidence
[33]. For example, depending on temperature, it takes be-
tween 6 and 47 days for mosquito larvae to develop into
adults; between 4 and 111 days for the completion of spor-
ogony within a mosquito following ingestion of an infected
bloodmeal (infected mosquitoes are not infectious before
completion of sporogony), and a further 10- to 16-day in-
cubation period before an infected human develops symp-
toms of malaria (see Table 1 in [34]). Thus, increased
anopheline densities [35,36], and cases of malaria [34], are
associated with prior increases in rainfall [37].

Despite an extensive literature, there remains a lack of
general consensus on the relative importance and pre-
dictive capacity of different meteorological factors [35].
This is partly due to the biological and ecological com-
plexities that underpin the associations. For example, the
association between increased rainfall and increased vec-
tor abundance would appear ostensibly simple, being
mediated by more numerous and larger aquatic habitats.
However, the persistence of such habitats following rain
also depends on rates of evaporation, which are themselves
driven by a myriad of factors, including temperature, at-
mospheric pressure, wind-speed, humidity and the surface
area of the specific habitat [19]. Furthermore, temperature-
dependent rates of larval development [38-40] ensure that
the lag between increased rainfall and increased abundance
of mosquitoes will vary with temperature; at an average
temperature of 16°C larvae become adults in an average of
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47 days, while at 30°C it takes an average of 10 days (see
Table 1 in [34] and Figure 1 in [41]). Moreover, when infer-
ence is made using data on malaria incidence, temperature-
dependent rates of sporogony and the incubation period in
the human, add an additional and uncertain lag time.

Methodological issues related to the analysis of these
complex associations are also likely to contribute to some-
what conflicting conclusions on the relative importance of
different meteorological variables. The most common ana-
lytical approach has been to calculate pairwise correlations
between malaria incidence and variables such as daily rain-
fall (e.g. [42]), temperature (e.g. [43]) and humidity (e.g.
[44]) at different numbers of days in the past (lags). This
univariate approach is not conducive to multivariate adap-
tation, making it prone to confounding by inevitably
(highly) correlated meteorological variables. Furthermore,
the method does not quantify the overall statistical signifi-
cance nor the explanatory power of variables considered at
different lags.

Polynomial distributed lag (PDL) models [45] provide
a solution to these analytical difficulties, permitting the
association of multiple explanatory (meteorological) vari-
ables over a continuum of lags to be estimated as part of a
single, coherent model structure. Such models have been
used previously to estimate the association of rainfall, and
daily temperature with weekly incidence of malaria in
Ethiopia distributed over a 10-week lag period [34]. The
PDL framework can be applied to explanatory variables in
a generalized linear model (GLM) [46]. The resulting PDL
GLM is adaptable to hierarchical data structures, becom-
ing a polynomial distributed lag generalized linear mixed
model (PDL GLMM, Table 2) [47,48]. Such frameworks
permit modelling of explanatory variables acting on a var-
iety of scales; from climatic (meteorological) data acting at
the macro-spatial scale, to temporally-dependent factors
acting below the level of the (longitudinally sampled) units
of observation. This potential of the PDL GLMM frame-
work has not been applied to the analysis of data on vector
abundance, and consequently little is known about the
relative importance and predictive capacity of variables
acting on multiple hierarchical scales.

In this paper, mixed (containing random effects) PDL
models (Table 2) are used to analyse longitudinal data
on the abundance of Anopheles gambiae and A. funestus,

Table 1 Descriptive statistics of the three sampled study villages in Kilifi district, Kenya

Village  Number of Mean®/range visits  Mean®/range distance Mean®/range Total/mean®/variance® number
samples/households  per household from nearest mosquito  household occupancy  of female Anopheles collected
larval habitat (m) A. gambiae A. funestus
Jaribuni 786/12 66/4-95 350/52-620 3.1/1-9 2422/3.1/58 5,199/6.6/380
Majajani  948/23 41/1-86 220/52-630 2.9/1-9 1,911/2.0/52 495/0.52/11
Mtepeni  926/19 49/1-96 170/40-540 2.8/1-12 1,187/13/14 411/044/2.5

?Arithmentic mean (or variance) rounded to 2 significant figures. Mean values are per household.
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Figure 1 Locations of the studied communities, households and anopheline larval habitats. Panel A depicts the locations of the studied
communities of Jaribuni, Majajani and Mtepeni within Kilifi district, which is located in south-east Kenya (inset). The location of the national weather station
(within the town of Kilifi) from which the meteorological data were collected is also indicted (grid marker). Panels B, C and D are, respectively, satellite
images of Jaribuni (yellow markers), Majajani (pink markers) and Mtepeni (green markers) overlaid with the locations of the sampled households (square
markers) and anopheline larval habitats. Larval habitats are classified as permanent (e.g. riverbanks, large ponds and swamps; circles); semi-permanent

(eg. streams, pools, and small ponds; triangles), or temporary (e.g. small streams, and small pools created by tire tracks and damaged infrastructure; crosses).

collected between 2000 and 2002 from households lo-  1990s [23,49-54], has identified the importance of envir-
cated in Kilifi district, adjoining the Kenyan coast, an  onmental heterogeneity in affecting the abundance and
area endemic for falciparum malaria. Research on ano-  productivity of mosquito larval habitats [55], the distri-
pheline mosquitoes in Kilifi, ongoing since the early bution of adult mosquitoes, and the incidence of malaria
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Table 2 Polynomial distributed lag generalized linear mixed models (PDL GLMM:s)

Generalized linear mixed models (GLMMs)

Generalized linear models (GLMs) extend general linear
regression models to the analysis of data with non-normally
distributed error structures arising from the exponential family
of probability distributions. Discrete (count) distributions within
this family include the binomial, Poisson, and negative binomial
distribution with known overdispersion parameter k.
Generalized linear mixed models (GLMMs) are GLMs that
include both fixed and random effects. Fixed effects are
represented by a measured explanatory variable (covariate) and
are quantified by regression coefficients. By contrast, random
effects embody the unmeasured or unmeasurable
characteristics of a unit of observation which induce correlation
(clustering) among data collected from the same unit; e.g.
numbers of mosquitoes collected from the same household.
Random effects are quantified in terms of variability (variance)
among data collected from distinct units of observation.

VIS

Polynomial distributed lag models (PDLMs)

Polynomial distributed lag models (PDLMs) are suitable for
analysing data where one or more explanatory variables exert a
lagged effect on the collected (response) data; e.g. rainfall at
some point in the past affects mosquito abundance now.
Moreover, PDLMs assume that this effect is distributed over the
entire lag period; e.g. rainfall over the past several weeks affects
mosquito abundance now. Treating every point in the past as a
separate explanatory variable with its own unique coefficient
becomes infeasible for all but very short lag periods; it is
impractical to estimate a large number of coefficients of often
highly correlated explanatory variables (e.g. rainfall yesterday is
correlated with rainfall today). This problem is avoided by
PDLMs using a polynomial functional form with ample flexibility
to capture the shape of the distributed effect.

due to Plasmodium falciparum [23,56], the latter having
declined in recent years [57,58].

The PDL GLMM models presented here incorporate
the (lagged) meteorological covariates of daily rainfall
and maximum temperature, and the household-level co-
variates of distance from the nearest aquatic larval habi-
tat and occupancy (number of people in the household)
with the aim of: a) exemplifying the flexibility and power
of the PDL GLMM framework to analyse longitudinal,
hierarchical and overdispersed count data; b) identifying
factors underlying the observed spatial and temporal
patterns as a source of baseline information prior to the
recent decline in malaria transmission and vector density
in Kilifi [59], and c) providing information which may
influence the design and application of targeted, cost-
effective and preventative anti-vectorial interventions for
malaria control.

Methods

Study area, household sampling, and ethical
considerations

The study was conducted in the villages of Jaribuni (39°
44°E 3°37'S) (site 1), Majajani (39°74'E 3°40°S) (site 2),
and Mtepeni (39°45'E 3°53'S) (site 3) in Kilifi District,
along the Kenyan coast over the period from May 2000
through April 2002 (Figure 1A). Random samples of ap-
proximately 30% of all households in each community
were selected for potential inclusion in the study. Writ-
ten informed consent was sought from the heads of
households to permit mosquito collection after the study
was explained in their local language. Households that
did not consent did not participate further. The initial
study design was to perform mosquito catches in each
participating household fortnightly throughout the two-year
study period. However, due to householders sometimes
being absent and, more commonly, requesting additional
catches, the mean number of catches performed per house-
hold varied between 41 and 66 (Table 1). Most households

were visited and sampled on multiple occasions over the
study, but not more than once per week. The maximum
number of visits to a household was 96, the minimum
was 1 (Table 1). The study was reviewed and approved by
the Institutional Review Board of the Kenya Medical Re-
search Institute (KEMRI), Nairobi, Kenya.

Entomological data

Anopheles mosquitoes were sampled using the pyreth-
rum spray catch (PSC) method [60]. Mosquitoes from
each household were held separately in labelled paper
cups, stored in a cool box, and transported to the labora-
tory. In the laboratory, all mosquitoes were immediately
transferred to a —20°C freezer for approximately 10 mi-
nutes. Each mosquito sample was allocated a unique iden-
tification number and separated by morphospecies into A.
gambiae and A. funestus using the morphological criteria
of Gillies and Coetzee [61]. The legs and wings of each
Anopheles female were then detached from the rest of the
body and stored dry on silica gel in labelled vials before
being processed for molecular differentiation of the A.
gambiae and A. funestus sibling species using the methods
of Scott et al. [62] and Koekemoer et al. [63]. Only A.
gambiae sensu stricto (s.s.) (henceforth referred to simply
as A. gambiae) was identified among the A. gambiae s.1.
samples (i.e., these contained no A. arabiensis or A. merus,
the other members of the gambiae complex that have
been reported along the Kenyan coast [23]). Likewise, A.
funestus was found to comprise A. funestus s.s. and is
henceforth referred to as A. funestus.

Household covariates

All households participating in mosquito sampling were
mapped using a hand held global positioning system
(GPS) device (Garmin International Inc., Olathe, KS USA).
Larval habitats within a 1 km distance from the study
households were also mapped (Figures 1B, 1C, 1D). Sam-
ples of mosquito larvae were collected from each habitat
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and were morphologically identified as anophelines (as op-
posed to other culicines). Larvae were not disaggregated
by Anopheles species (complexes). Distance from the larval
habitats to the nearest household was calculated using R
[64]. In addition, the number of individuals sleeping in the
household the night before mosquito sampling was re-
corded on field data forms during mosquito sampling. Note
that the number of individuals sleeping in a household
changed over time and so was included at the observation-
level (rather than the household-level) in the statistical
model.

Meteorological data

Daily meteorological data on the rainfall and minimum
and maximum temperatures were obtained from the na-
tional weather station located at the Kilifi Institute of
Agriculture (3°37'15"S 39°50°45"E) within the town of
Kilifi (Figure 1A). The weather station lies 10.8, 11.5 and
34.1 km to the north east of Jaribuni, Majajani and Mtepeni
respectively. This weather station serves the whole of Kilifi
district and represents the most accurate source of data
available on the climate in the three study communities.
For the fewer than 1% of days that data were missing,
values were imputed by linearly interpolating to the mid-
point between the preceding and following days for which
data were recorded. There were no instances of missing
data on more than one consecutive day. It was assumed
that the meteorological data represent accurately the cli-
matic conditions in the surrounding study sites.

Statistical framework

Data on the number of A. gambiae or A. funestus were
modelled separately using a generalized linear mixed
model (GLMM). Let Y;; denote observation j (number of
mosquitoes) collected from household i. It was assumed
that Y;; was Poisson distributed with mean and variance,
tij, given by the following log-linear mixed effects model,

Inp; = ax; + Bz; + & + ey,
Ei ’VJ\[(O7 6]—[), (1)
ei,» “’N(O, 50)

Here x;; and z; are observation-level and household-
level vectors of covariates respectively. The covariate
vector x; comprises the number of people sleeping in
the household the night before day ¢; after the start of
the study, and the daily rainfall and temperature lagged
from pnin to pmax days into the past. For example, if
Pmin = 5 and ppa. = 10, x;; would include the daily rainfall
and temperatures 5-10 days prior to day t; Day ¢; is
also included as a continuous covariate in x;;. The inclu-
sion of t; accounts for any systematic (non-seasonal) lin-
ear changes in the density of the mosquito population

over the study period. Furthermore, this relationship was
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permitted to vary among sites by including an appropri-
ate interaction term. The household-level covariate vec-
tor, z;, comprises the distance of the household from the
nearest mosquito larval habitat, and the location (site) of
the household (Jaribuni, Majajani or Mtepeni). In the log-
linear model the coefficients measure the multiplicative
effect on the mean number of mosquitoes per household
of the covariate in question.

The error term ¢; in Eqn. (1) is a household-level, nor-
mally distributed random effects term that accounts for
the possibility that mosquitoes cluster within house-
holds. On the natural logarithmic scale, the magnitude
of this clustering is quantified by the variance &% . Con-
verting to the scale of counts (as opposed to log counts),
the clustering is quantified by o7 = exp(ZS%[)—exp(Si[).
Household clustering causes extra-Poisson variation (over-
dispersion) in the numbers of mosquitoes per household. It
was particularly important to account for household clus-
tering in this analysis due to the potential for heavily
infested households to have been sampled somewhat dis-
proportionately (some householders received by request
additional unplanned mosquito catches, see Methods, Study
area, household sampling, and ethical considerations). The
residual overdispersion that is not due to household
clustering is accounted for by the random effects term
e;; in Eqn. (1); this parameter is normally distributed, in-
dependent of ¢; and specific to each observation. That
is, it is an observation-level random effect. On the nat-
ural logarithmic scale, the residual overdispersion is
quantified by 6%. On the original scale of the counts, it
is quantified by o = exp(26é)—exp(5é). Modelling re-
sidual (within household) overdispersion using an
observation-level random effect [65,66] has two principal
advantages over alternative methods such as negative bino-
mial or quasi-Poisson regression. First, the model is main-
tained as a GLMM, permitting likelihood-based fitting and
coefficient estimation within a well-developed framework
[47,48]. Second, overdispersion is modelled in a hierarchical
manner (observations nested within households) permitting
direct comparison of the relative contribution of random
variation at observation and household levels (viz. compari-
son of 0% and ¢?).

Polynomial distributed lag model

In the model described by Eqn. (1), the number of coeffi-
cients to estimate for a particular meteorological covariate
is equal to the number of lags considered. For example, if
daily rainfall and temperature were lagged from 5 to
15 days into the past (Pin = 5, Pmax = 15), it would be ne-
cessary to estimate 10 coefficients for each meteorological
covariate. Coefficients estimated using this so-called un-
constrained lag structure are unstable because of collin-
earity among different lags of the same variable [45]. A
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solution to this is to constrain the coefficients by forcing
them to take the shape of a function of the lag. The
Almon lag model [67] uses an #n™ degree polynomial as
this functional form,

k=n
EDI (2)
k=0

Here f; represents the coefficient of a variable at lag /.
That is, f3; is a coefficient of either rainfall, or maximum
temperature / days in the past. Parameter 6y is the k™
coefficient of the #™ degree polynomial. Thus, the number
of estimated coefficients (the 6;s) associated with each
lagged meteorological covariate is reduced from the num-
ber of lag days to the order of the polynomial, n, giving
rise to the PDL.

Model fitting

The model was fitted to the data using GLMM tech-
niques [47,48] implemented using the Ime4 package for
R [64]. Following Teklehaimanot et al. [34], the polyno-
mial describing the relationship between the number of
lag days and the coefficients of rainfall and temperature
was set to order 4 (n =4). Preliminary analyses indicated
that this order polynomial gave ample flexibility to capture
variously shaped relationships. The range of lags consid-
ered was motivated by mosquito biology. The time from
oviposition of eggs in an aquatic habitat to the develop-
ment of an adult mosquito depends on temperature, vary-
ing between about 7 days (1 week) at 40°C to 47 days
(approximately 7 weeks) at 16°C [34,68,69].

Results

Descriptive statistics

Table 1 gives descriptive statistics of the three study
sites; the villages of Jaribuni, Majajani and Mtepeni in
Kilifi district, Kenya (Figure 1). Majajani was the most
sampled village; 948 mosquito catches were performed
in 23 households. The least sampled village was Jaribuni,
with 786 catches undertaken in 12 households. The dens-
ity of Anopheles mosquitoes was highest in Jaribuni; the
mean number of A. gambiae and A. funestus per house-
hold was 3.1 and 6.6 respectively. Overall, Table 1 indi-
cates that there was considerable heterogeneity in the
mean Anopheles densities among the three sites. In par-
ticular, the mean density of A. funestus was thirteen-fold
and fifteen-fold larger in Jaribuni compared with Majajani
and Mtepeni respectively. The distances of households
from the nearest mosquito larval habitats were also het-
erogeneous among sites. For instance, the average distance
of a household from a larval habitat in Mtepeni was ap-
proximately half that of the corresponding mean distance
in Jaribuni. The average number of people sleeping in a
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household the night prior to mosquito sampling was
broadly similar among sites (Table 1).

Fitted model

Figure 2 depicts the observed and model-predicted mean
Anopheles densities per household in the three study
sites. In general, the model fits the observed A. gambiae
data well; the model-predicted mean falls within the 95%
confidence intervals of the majority of the observed data
across all sites. Similarly, the model also fits well to the
observed A. fumestus data from Majajani and Mtepeni.
The least good fit is to the data on the household dens-
ities of A. funestus from Jaribuni, where the mean dens-
ity was particularly high compared with Majajani and
Mtepeni (Table 1).

Meteorological covariates

Rainfall and maximum temperature from 7 weeks before
the start of the study period, in April 2000, to its end in
April 2002 are depicted in Figure 3. This timeframe is in
accordance with the 7-week range of lags considered for
these meteorological covariates in the statistical model.
The data indicate two pronounced rainy seasons, peak-
ing around May or June. Temperatures tend to be high-
est between, approximately, November and May, and
lowest between, approximately, June and October. It is
also clear from Figure 3 that minimum and maximum
daily temperature are strongly positively correlated
(Pearson’s correlation coefficient = 0.77). This produced
problems of multicollinearity [70] when both variables
were included in the statistical model. Preliminary ana-
lysis indicated that maximum daily temperature was a
better predictor of mosquito density than minimum
daily temperature and so only the latter was included in
the final model.

The strength and statistical significance of the associ-
ation between the meteorological data (daily rainfall and
maximum temperature) and Anopheles density is shown
by the results of an analysis of deviance given in Table 3.
These results indicate that daily rainfall and maximum
temperature are strongly and statistically significantly as-
sociated with the density of A. gambiae and A. funestus.

The structure of the association between the meteoro-
logical covariates and mosquito density over the 7-week
lag is depicted in Figure 4. A statistically significant asso-
ciation is suggested at lags (days in the past) where the
confidence interval for the multiplicative effect on mean
mosquito density does not include 1. Bearing this in
mind, rainfall between 4 and 47 days lag is positively (an
increase in rainfall leads to an increase in mosquito
density) and statistically significantly associated with the
density of A. gambiae (4A). For the density of A. funes-
tus, the association is also positive and statistically sig-
nificant between 4 and 27 days lag (4C). Maximum
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Figure 2 Observed and model-predicted household densities of Anopheles mosquitoes. Depicted in each panel are the observed and
model-predicted mosquito densities (the number of mosquitoes per household) in the different sampled sites within Kilifi district; the villages of
Jaribuni, Majajani and Mtepeni. Squares represent the observed data averaged (arithmetic means) by month, and the vertical lines indicate the
respective 95% confidence intervals. The solid black lines indicate the mosquito densities predicted from the fitted statistical model. Note that the
statistical model was fitted separately to species-specific mosquito counts.
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Figure 3 Mean daily rainfall and temperature between April 2000 through April 2002 in Kilifi district, Kenya. The x-axis indicates time
from 7 weeks before the start of the study period through to the end in accordance with the maximum and minimum lag periods considered in
the statistical model (see main text). The grey bars indicate the mean daily rainfall whose scale is given by the grey y-axis on the left hand side.
The black solid and dashed lines indicate, respectively, the maximum and minimum mean daily temperatures whose scale is given by the black
y-axis on the right hand side.
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Table 3 Analysis of deviance of covariates associated
with the household density of Anopheles mosquitoes

Covariate DF* Species® ADev"® P-value®®
Rainfall’ 5 A. gambige 80 <0.001

A. funestus 24 <0.001
Maximum temperaturef 5 A. gambiae 57 <0.001

A. funestus 27 <0.001
Days since study start 5 A. gambiae 120 <0.001
date x village

A. funestus 180 <0.001
Household occupancy the night 5 A. gambiae 89 0.11
before mosquito collection

A. funestus 31 <0.001
Distance of household from 6 A. gambiae 52 0.51
nearest mosquito larval habitat

A. funestus 12 0.070

“Degrees of freedom.

PModels fitted separately to species-specific counts per household.

“Difference between the (residual) deviance of the model with all covariates
and the model without the covariate in question [46].

9Rounded to 2 significant figures.

Calculated assuming that, under the null hypothesis (of no statistically significant
association between the covariate and the numbers of mosquitoes per
household), ADev is y* distributed with the indicated degrees of freedom [71].
fincluded as a 4th order polynomial distributed lag term yielding 5 degrees

of freedom.

temperature is negatively and statistically significantly
associated with the density of A. gambiae between 5 and
24 days lag (4B), and with A. fumestus density between
17 and 35 days lag (4D). A statistically significant posi-
tive association between maximum temperature and A.
gambiae density occurs between 29 and 47 days in the
past, and marginally between 45 and 48 days for the
density of A. funestus.

Household covariates

The results in Table 3 indicate that the number of people
sleeping in the household during the night prior to sam-
pling—hereafter referred to as household occupancy—is
strongly and statistically significantly associated with the
density of A. funestus but not significantly associated with
the density of A. gambiae. Figure 5 shows that the density
of A funestus increases sharply from household occupan-
cies of 1 to 2, thereafter remaining relatively constant. The
relationship between household occupancy and the dens-
ity of A gambiae is more linear (and positive), albeit not
statistically significant (Table 3 and Figure 5A).

Overall, the distance of the household from the nearest
mosquito larval habitat is not a statistically significantly pre-
dictor of the density of either Anopheles species (Table 3
and Figure 6). However, the density of A. funestus in house-
holds situated over 600 metres from the nearest larval habi-
tat is statistically significantly lower (P-value =0.0032) than
that in households located in the baseline distance category
of 101-200 metres for the nearest larval habitat (Figure 6B).
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Figure 4 Distributed lag structure of the association between
daily rainfall and maximum temperature on the density of
Anopheles mosquitoes. The solid lines in each panel represent the
model-predicted multiplicative effect on the mean number of
mosquitoes per household (mosquito density) associated with either
a 1 mm increase in daily rainfall (Panels A and C for A. gambiae and
A. funestus respectively), or a 1°C increase in daily temperature at
each lag time (Panels B and D for A. gambiae and A. funestus
respectively). The grey shaded areas indicate 95% confidence
intervals. The structure of the relationship between the coefficient
and the lag time is constrained by a 4th order polynomial.

Household clustering and overdispersion

The total amount of extra-Poisson variation (overdisper-
sion) in the observed numbers of mosquitoes per house-
hold is quantified by the sum of the variance terms, 0%
and ¢%. Parameter o7 quantifies the amount of overdis-
persion induced by the clustering of mosquitoes within
households. Parameter o2 quantifies the residual over-
dispersion having accounted for that induced by house-
hold clustering. Thus, from the estimates of o7; and o2
given in Table 4, it can be seen that 0.55% [0.4/(72 +
0.4)] and 0.06% [0.22/(380 + 0.22)] of the total overdis-
persion in, respectively, A gambiae and A. funestus num-
bers per household was accounted for by household
clustering. Despite this low contribution to the overall
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with household occupancy (the numbers of people sleeping in the
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degree of overdispersion, household clustering for both
Anopheles species is statistically significant (Table 4).

Discussion

The mixed PDL models, or PDL. GLMMs (Table 2), ap-
plied in this analysis have been used to elucidate factors
influencing micro-spatial and temporal heterogeneity in the
distribution of anopheline vectors of malaria caught within
households in Kilifi district, Kenya. Temporal variation in
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Figure 6 The association between mosquito density and the
distance of a household from the nearest mosquito larval
habitat. The squares in each panel (A for A. gambiae and B for A.
funestus) represent the model-predicted multiplicative effect on the
mean number of mosquitoes per household (mosquito density)
associated with the distance of a household from the nearest
mosquito larval habitat. Error bars indicate 95% confidence intervals.
Squares are plotted at the mean distance within each category.

the abundance of A. gambiae and A. funestus is driven by
seasonal changes in climate, specifically the amount of rain-
fall from 4 to 47 days in the past (depending on Anopheles
species), and maximum daily temperature. The PDL com-
ponent of the statistical framework has enabled the distrib-
uted shape of these relationships to be elucidated for the
first time. Micro-spatial variation is related to the distance
of households from the nearest anopheline larval habitat,
and whether such households have single- or multiple-
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Table 4 Likelihood ratio tests of household clustering and overdispersion in household densities of

Anopheles mosquitoes

Parameter DF® Species Estimate® LRsP< P-value®

Household clustering, o7, 1 A. gambiae 040 51 <0.001
A. funestus 0.22 18 <0.001

Overdispersion, o3 1 A. gambiae 72 6300 <0.001
A. funestus 380 8100 <0.001

“Degrees of freedom.
PRounded to 2 significant figures.
“Likelihood ratio statistic.

“Calculated assuming that, under the null hypothesis (of the parameter in question not statistically significantly improving the log-likelihood of the fitted model),

the LRS is x? distributed with the indicated degrees of freedom [71].

occupancy by people pernoctating in them on the night
prior to sampling. Despite accounting for these explanatory
variables, the abundance of mosquitoes is highly overdis-
persed and clustered among households, effects which were
quantified by the GLMM component of the modelling
framework.

Strong empirical associations between anopheline abun-
dance and seasonal variations in rainfall and temperature
have been demonstrated previously [5,23,72], as have dif-
ferences in these associations among species [73], al-
though not using a PDL GLMM approach. The PDL
models used here permitted a detailed description of the
temporally distributed (lagged) nature of these associa-
tions which have not been previously elucidated (although
the distributed lagged relationship between meteorological
variables and cases of clinical malaria have been investi-
gated in a similar fashion [34]). For example, for A. gam-
biae, rainfall was positively associated with mosquito
abundance between 4 and 47 days in the past, with a peak
in magnitude at approximately 11 days, and for A. funes-
tus, between 4 and 27 days, with a peak at approximately
14 days. Rainfall acts principally to create and maintain vi-
able larval habitats [74], but the exact shapes of these as-
sociations (Figure 4A for A. gambiae, Figure 4C for A.
funestus) are likely to be the products of a multitude of
interacting factors such as the local topology, cumulative
effects of rainfall and heterogeneity in mosquito biology,
the type, size and shape of larval habitats, in addition to
other meteorological variables such as temperature, hu-
midity and evaporation rates.

The distributed association of anopheline abundance with
maximum daily temperature is more complex (Figure 4B
for A. gambiae, Figure 4D for A. funestus); a negative asso-
ciation is indicated at short to medium lags—as observed
previously in this area [72]—while a positive association
arises at longer lag times. The effect of temperature on
mosquito abundance is well documented for the extremes
of the species tolerance levels [75,76]. This study sits within
these extremes, where the mechanisms by which lagged
temperatures may affect mosquito abundance are many
and more nuanced, complicating interpretation of statistical

(phenomenological) associations. High temperatures may
reduce the size and abundance of larval habitats, not
only affecting opportunities for breeding, but also alter-
ing local ecology, affecting regulatory factors such as the
severity of density-dependent competition, the concentra-
tion of resources, and water quality among others. Fur-
thermore, temperature influences the development time of
anopheline aquatic stages [38-40], possibly interacting with
the length of lags for other meteorological variables, such
as rainfall. Temperature may also affect adult survival
[77,78] and behaviour [79], the latter potentially altering
the chance of an individual mosquito being trapped.

Among the micro-spatial determinants of household
anopheline abundance, distance to the nearest suitable
larval habitat was not, overall, statistically significantly as-
sociated with either species (although the density of A.
funestus was statistically significantly lower for households
located over 600 m from a larval habitat compared with
households situated closer to larval habits, see Figure 6).
Previous studies have shown that distance to larval habitat
is negatively associated with anopheline density [80,81].
The lack of association in this analysis probably reflects, at
least in part, a limitation of the GPS data, which were only
recorded to an accuracy of approximately 31 metres. A
further limitation is that the statistical framework does
not include explicit spatial structure. That is, the distribu-
tion of larval habitats around individual households could
not be considered. This led to the implicit modelling as-
sumption that the dominant source of anophelines was
the larval habitat nearest to a household. In principle, the
PDL GLMM framework could be incorporated into spatial
statistical models. This would permit more powerful inter-
rogation of geo-referenced data and improve the capacity
of existing spatial frameworks to capture accurately the ef-
fects of meteorological variables.

The intensity of human-derived sensory cues, such as
carbon dioxide [82], probably underlies the association
between the number of household inhabitants the night
prior to mosquito sampling (household occupancy) and the
number of anophelines caught; more inhabitants generate
more intense cues, attracting more mosquitoes. However,
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the observed strength of this association may be diluted
somewhat because houses inhabited by more people tended
to be larger (although most houses comprise 2—3 rooms
only), catches were made in a single room, and mosquitoes
presumably distribute, at least to a certain extent, through-
out the house. Moreover, the association may be con-
founded by the number of occupants in nearby households,
which serve to make clusters of high-occupancy households
more attractive than low-occupancy household clusters
[31]. These factors may explain the lack of a statistically
significant association with A. gambiae, a result which is
surprising in the context of the highly anthropophilic,
anthropophagic and endophagous nature of this species.
A lack of association has been observed between the num-
ber of inhabitants in a house and malaria prevalence in
the region [83].

The species-specific heterogeneity in abundance among
the villages is consistent with previous studies in this area
[72]. In particular, the markedly greater abundance of A.
funestus in Jaribuni is attributable to local ecological het-
erogeneities [23]. Jaribuni lies next to a permanent river
(Figure 1B), which provides plentiful and persistent larval
habitats. Such habitats are more favourable to A. funestus
which tolerate larger, more permanent larval habitats,
whereas A. gambiae prefers more localised and transient
fresh water habitats [2,84].

Identifying factors driving micro-spatial and temporal
heterogeneity in the distribution of anopheline mosquitoes
facilitates understanding of the causal pathway which drives
the coupled dynamics of malaria transmission. In this re-
gard, this study would have benefited from collecting add-
itional public-health oriented outcome data. For example,
measurement of standard entomological indices such as
the entomological inoculation rate (EIR) during the study
period would have improved our understanding of how the
results relate to the incidence of falciparum malaria in the
region. Nevertheless, in the context of malaria vector con-
trol, understanding spatial and temporal determinants of
anopheline abundance can assist with judicious identifica-
tion of high-risk communities [8,85], or even households,
improving the cost-effectiveness of targeted interventions
[81,86]. Moreover, the lagged nature of meteorological pre-
dictors of anopheline abundance can be exploited to predict
when malaria outbreaks are likely to occur [32], guiding
pre-emptive interventions.

Malaria epidemiology in sub-Saharan Africa has under-
gone significant changes in recent years [87]. Kilifi, like
many areas, has seen a large increase in the distribution of
insecticide-treated bednets (ITNs) since these entomo-
logical surveys were undertaken [88,89]. In other areas
changes in bednet use has been associated with changes in
entomological ecology, such as declines in A. gambiae s.s.
[90]. The influence of the changing intervention landscape
on A. funestus is less well understood. This study therefore
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provides an important baseline assessment of the entomo-
logical situation prior to scaling up of ITN distribution
and provides a valuable comparative source for ongoing
studies in the region.

Conclusions

The statistical framework applied in this analysis, created
by bringing together PDL models and GLMMs, represents
a powerful tool for understanding factors underpinning
the temporal and spatial distribution of anopheline mos-
quitoes, vectors of falciparum malaria in the study area.
The PDL component of the framework permits modelling
of past (lagged) seasonal changes in climate, which affects
current mosquito density by mediating the abundance of
aquatic larval habitats on a large, macro-spatial scale. The
GLMM component permits simultaneous incorporation
of finer, micro-spatial determinants of mosquito density
while handling robustly any clustering of mosquito counts
within units of observation (here, households) and re-
sidual overdispersion (extra-Poisson variation).

Continued development and application of appropriate
and powerful statistical methods to understand better the
determinants of anopheline abundance and malaria inci-
dence will facilitate refinement of public health interven-
tions. Detailed understanding of the impact of spatially
and temporally heterogeneous explanatory variables will
help to identify and target communities most at risk of
malaria, improving the efficiency and cost-effectiveness of
control efforts. In particular, a better understanding of the
lagged effect of seasonal changes in climate on vector
abundance will improve temporal targeting of vector con-
trol and other interventions. In turn, including this type of
information into early warning systems may assist in the
deployment of preventative anti-vectorial measures for
malaria control, facilitating better allocation of resources
in often resource-poor settings.
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