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Background. Lung adenocarcinoma is the most common lung cancer subtype and accounts for the highest proportion of cancer-related
deaths. The tumor microenvironment influences prognostic outcomes in lung adenocarcinoma (LUAD). Materials and Methods. We
used the ESTIMATE algorithm (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) to
investigate the role of microenvironment-related genes and stromal cells in lung adenocarcinoma prognosis. This analysis was done
on lung adenocarcinoma cases from The Cancer Genome Atlas (TCGA). The cases were divided into high and low groups on the
basis of immune and stromal scores, respectively. Results. There were close correlations between immune scores with prognosis and
disease stage. There were 367 differentially expressed genes. Combining the Gene Expression Omnibus (GEO) database, we found 14
prognosis-related genes. Results. Based on the enrichment levels of the immune cell types, we clustered LUAD into Immunity_H and
Immunity_L subtypes. Most of these genes were upregulated in Immunity_H subtype. Finally, using the Human Protein Atlas
(HPA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases, most of the proteins corresponding to
prognostic genes were verified to be differentially expressed between the tumor and normal groups. Conclusions. The key genes
identified in this study are involved in molecular mechanisms of LUAD.

1. Introduction

Globally, lung cancer is the most common tumor type and
the leading cause of tumor-related deaths. Non-small-cell
lung cancer (NSCLC) accounts for more than 80% of all lung
cancer cases. Lung adenocarcinoma (LUAD) is a common
class of NSCLC [1]. LUAD constitutes half of all lung can-
cers and is associated with high morbidity rates.

Despite advances in screening, diagnosis, and lung can-
cer management, clinical outcomes remain poor. Lung
tumors with different genetic and biological features may
have different prognoses and drug responses. Genomic and
biological features have been considered for prediction of
cancer risks [2, 3]. However, tumorigenesis is driven by
multiple factors and mechanisms. Tumor tissues comprise
the parenchyma and interstitium. Tumor cells make up the
parenchyma and are the main components of the tumor

while the interstitium, which is composed of connective tis-
sues, blood vessels, and immune cells and provides support
and nourishment. Coevolution of tumor cells and the tumor
microenvironment (TME) provides the basis for cancer cell
proliferation and metastasis. Tumor cells have a remarkable
ability for infinite proliferation, escape from the immune
system, local invasion, and distant metastasis. Various fac-
tors in the TME promote cancer progression [4]. Stromal
cells influence tumorigenesis and cancer progression [5]
and drug fast [6]. Tumor cells and recruited immune cells
in the tumor microenvironment contribute to cancer
outcomes [7]. As such, assessing TME functions has been
proposed as a diagnostic strategy [8]. Currently, the role of
the TME, which is composed of immune and stromal cells,
in cancer progression is vaguely understood. In LUAD, it
has not been fully established how tumor biomechanisms
and TME variations affect patient outcomes.
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Figure 1: Continued.

2 Disease Markers



Innate tumor genes determine tumor occurrence and
development. The TME influences gene expressions and
cancer outcomes [9, 10]. The TME can be evaluated by
methods based on mRNA expression data. The ESTIMATE
(Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression data) algorithm was used
to assess immune and stromal cell infiltrations [10]. Gene
expression and clinical data were obtained from The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus
(GEO) database [11].

Using LUAD gene expression data from TCGA,
ESTIMATE was applied to evaluate the infiltrations of cells
constituting the TME and screened a series of TME-
associated genes. Further, survival analysis of these genes
was performed using TCGA and GEO databases. Finally,
corresponding protein expressions of each prognostic gene
were validated.

2. Materials and Methods

2.1. Data Acquisition and Screening. Patient information for
LUAD gene expressions as of May 2020 was downloaded
from TCGA database [11] (https://portal.gdc.cancer.gov/).
We analyzed 594 samples, of which 59 were normal lung tis-
sues while 535 were tumor tissues. Clinical data included
gender, age, and prognosis. Gene IDs were annotated in
the gene transfer format. For validation analysis, gene
expression data for LUAD patients were downloaded from
the GEO database (GSE3141, GSE30219, and GSE31210

datasets) (http://www.ncbi.nlm.nih.gov/geo) along with dis-
ease outcome data. The above cases with expression data
were included in the study. For survival analysis, only cases
with survival information were selected.

2.2. Evaluation of Immune Cells and Acquisition of
ESTIMATE Scores. The ssGSEA procedure was used to
obtain enrichment scores for each specific term. Marker
genes for 29 immune cell subtypes were obtained from
published literature (Table S1). The ESTIMATE score
system consists of the immune and stromal scores [12].
ESTIMATE analyzes bulk tumor data and predicts tumor
purity and immune as well as stromal cell infiltrations by
single-sample gene set expression analysis (ssGSEA) [10].
Immune and stromal scores denote immune and stromal
cell infiltrations, respectively. ESTIMATE analysis was
performed using “ESTIMATE” in R (https://bioinformatics
.mdanderson.org/estimate/rpackage.html). Patients were
assigned into different groups depending on ESTIMATE
scores. Survival time for patients in different groups was
compared by survival analysis. Differences in ESTIMATE
scores among clinical stages were also investigated.

2.3. Identification of Differentially Expressed Genes (DEGs).
The limma R package [13] for analysis of high-throughput
genomic data was used to analyze the corresponding dataset.
With the mean of immune and stromal scores as the
boundary values, all cancer cases were assigned into low
and high groups. The original P values were adjusted. False
discovery rate (FDR) and fold changes (FC) were calculated
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Figure 1: ESTIMATE scores in clinical stages and survival curves. (a) Comparison of stromal scores across clinical stages. (b) Comparison
of immune scores across clinical stages. (c) Survival curve of stromal scores. (d) Survival curve of immune scores. ESTIMATE: Estimation of
STromal and Immune cells in MAlignant Tumor tissues using Expression data.
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to identify DEGs. The intersection of DEGs obtained by
immune score and matrix scores was determined by Venn
diagram analysis.

2.4. GO and KEGG Enrichment Analysis. GO term analysis
was performed to elucidate on the biological processes
(BP), cellular components (CC), and molecular functions
(MF) in which the genes were enriched. GO and KEGG
enrichment analyses were performed using clusterProfiler
and DOSE packages in R [14]. P < 0:05 indicated signifi-
cantly enriched pathways.

2.5. Overall Survival Analysis of DEGs. The relationship
between survival time and gene expression levels of DEGs
was determined by the log-rank test. Kaplan-Meier curves
were plotted to visualize the relationships.

2.6. Clustering Analysis. Based on enrichment levels
(ssGSEA scores) of the 29 immune cells, hierarchical cluster-
ing of LUAD was performed to identify different patterns of

immune cell infiltrations and divided the LUAD cases into
Immunity_H and Immunity_L subtypes. Then, differences
in ESTIMATE scores and prognostic gene expressions
between the immune subtypes were compared.

2.7. Assessment of Prognostic Gene Expressions at the Protein
Level. Protein expressions of prognostic genes were validated
using the Clinical Proteomic Tumor Analysis Consortium
(CPTAC, https://proteomics.cancer.gov/programs/cptac) and
the Human Protein Atlas databases (HPA, https://www
.proteinatlas.org). Immunohistochemical and proteomic
results were explored to verify their differential expressions
in tumor and normal tissues. This study was conducted
according to the flow chart shown in Figure S1.

2.8. Statistical Analysis. The R software (version 3.5.3;
https://www.r-project.org/) was used for statistical analysis
and to visualize the results. ESTIMATE package was used
to run ESTIMATE analysis. Through the GSVA package in
R software, ssGSEA was used to quantify the infiltration
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Figure 2: Venn diagram of DEGs based on immune and stromal scores. (a) Venn diagram showing upregulated DEGs. (b) Venn diagram
showing downregulated DEGs. DEGs: differentially expressed genes.

4 Disease Markers

https://proteomics.cancer.gov/programs/cptac
https://www.proteinatlas.org
https://www.proteinatlas.org
https://www.r-project.org/


Immune response-regulating cell surface receptor signaling pathway

Immune response-activating cell surface receptor signaling pathway

T cell activation
Regulation of lymphocyte activation

Lymphocyte proliferation

Regulation of lymphocyte proliferation
Regulation of mononuclear cell proliferation

Regulation of leukocyte proliferation

Leukocyte proliferation
Mononuclear cell proliferation

External side of plasma membrance
Secretory granule membrance

Receptor complex
Tertiary granule

Tertiary granule membrance
Specific granule

Specific granule membrance
Ficolin-1-rich granule

Ficolin-1-rich granule membrance
Collagen trimer

Carbohydrate binding
Cytokine activity

G protein-coupled rece ptor binding
Cytokine receptor binding
Cytokine receptor activity

Chemokine receptor binding

CCR chemokine receptor binding

Chemokine activity
Immunoglobulin binding

Coreceptor activity

0.160.120.080.04

Gene ratio

BP
CC

M
F

Count
10

20

30

40

50

p. adjust

0.01

0.02

0.03

(a)

Cytokine-cytokine receptor interaction
Chemokine signaling pathway

Hematopoietic cell lineage
Neuroactive ligand-receptor interaction

Cell adhesion molecules (CAMs)
Osteoclast differentiation

Phagosome
Staphylococcus aureus infection

Tuberculosis
Leishmaniasis

Systemic lupus erythematosus
Primary immunodeficiency

B cell receptor singnaling pathway
Pertussis

Complement and coagulation cascades
NF-kappa B singnaling pathway

Toll-like receptor singnaling pathway

Intestinal immune network for lgA production
Measles

Rheumatoid arthritis
T cell receptor signaling pathway

Graft-versus-host disease
Malaria

Leggionellosis
Arachidonic acid metabolism

Allograft rejection
Type I diabetes mellitus

0.05 0.10 0.15

Gene ratio

count

10
20

30

P.adjust

0.01

0.02

0.03

0.04

(b)

Figure 3: GO and KEGG pathway analysis for DEGs based on TME scoring model. (a) GO term enrichment; top ten pathways of each
category with P < 0:05 are shown. (b) KEGG pathway enrichment. Top thirty pathways with P < 0:05 are shown. GO: Gene Ontology;
KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Figure 4: Continued.

6 Disease Markers



0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Survival curve (p = 0.023)

Time (Year)

Su
rv

iv
al

 ra
te

CPA3 high expression
CPA3 low expression

(e)

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Survival curve (p = 0.035)

Time (Year)

Su
rv

iv
al

 ra
te

CYSLTR2 high expression
CYSLTR2 low expression

(f)

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Survival curve (p = 0.019)

Time (Year)

Su
rv

iv
al

 ra
te

DNASE2B high expression
DNASE2B low expression

(g)

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Survival curve (p = 5.201e − 04)

Time (Year)

Su
rv

iv
al

 ra
te

FAM129C high expression
FAM129C low expression

(h)

Figure 4: Continued.
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Figure 4: Continued.
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levels of immune cell types (http://www.bioconductor.org/
packages/release/bioc/html/GSVA.html). The limma R
package was used to identify DEGs. DEGs were identified
by comparing gene expressions between low and high score
groups using the criteria: mRNA expression values of jlog
2 FCj > 1 and FDR < 0:05. GO and KEGG enrichment
analyses were performed using clusterProfiler and DOSE
packages. Hierarchical clustering of LUAD was performed
using the sparcl package. Survival analyses were performed
using Kaplan-Meier survival analysis while log-rank tests
were performed using survival R package. Comparisons
of prognostic gene expressions between groups were per-
formed by the T test. P ≤ 0:05 was the threshold for statis-
tical significance.

3. Results

3.1. Immune Scores Were Significantly Associated with
LUAD Clinical Stages. Data on a cohort of 522 LUAD cases
with mRNA expression profiles and corresponding clinical
data were downloaded from TCGA. Of these, 280 cases were
female while 242 male. In this analysis, immune scores
ranged from -942.51 to 3442.08 while stromal scores ranged
from -1789.62 to 2097.96. In various LUAD stages, immune
scores were significantly high in stages I and II, relative to
stages III and IV, indicating higher TME immune infiltra-
tions in stages I and II (Figure 1(b)). There were no signifi-
cant differences in stromal scores among different stages
(Figure 1(a)). Clinical characteristics for all cases in this
study are shown in Table S2.

3.2. Immune Score as a Potential Prognostic Marker for
LUAD. To determine the effects of ESTIMATE scores on

overall survival, cases were assigned into high and low score
groups based on median ESTIMATE scores. Differences in
survival time between high and low ESTIMATE score groups
are presented using survival curves. Immune score analysis
revealed a high survival rate, relative to the high score within
five years (P = 0:019 in log-rank test, Figure 1(d)). A similar
trend was observed for stromal scores, although the differ-
ences were insignificant (P = 0:099) (Figure 1(c)).

3.3. Differentially Expressed Genes with Immune and Stromal
Score Groups in LUAD. Venn diagram analysis was used
to identify co-DEGs in immune and stromal categories
(Figure 2). There were 300 simultaneous upregulated genes
in high score groups based on immune and stromal scores
and 67 downregulated genes.

3.4. GO and KEGG Enrichment Analysis. To explore the
functions of DEGs in LUAD, GO term and KEGG analyses
were performed using R packages. Significantly enriched
GO terms for DEGs were in BPs of immune responses
regulating signaling pathways, lymphocyte proliferation,
and mononuclear cell proliferation. Enriched MF processes
included carbohydrate binding, immunoglobulin binding,
and chemokine activity. Enriched CCs included external side
of the plasma membrane, tertiary granule membrane, and
tertiary granule (Figure 3(a)). Go term analysis revealed that
the DEGs were predominantly correlated with immune
functions. These findings are in agreement with previous
reports that immune cells and the extracellular matrix are
involved in lung TME [15]. KEGG pathway analysis
indicated that DEGs were mainly enriched in cytokine-
cytokine receptor interactions, hematopoietic cell lineage,
and chemokine signaling pathway (Figure 3(b)).
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Figure 4: Prognostic value of mRNA expression (Kaplan-Meier plotter) of DEGs based on TME scoring model in LUAD patients.
(a–n) Show the relation of mRNA expression of DEGs with the prognosis in LUAD patients from TCGA cohort using Kaplan-Meier
plotter. Kaplan-Meier survival curves were generated for selected DEGs from high (red line) and low (blue line) gene expression groups.
DEGs: differentially expressed genes; TME: tumor microenvironment.
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Figure 5: Continued.
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3.5. Survival Analysis with Gene Expressions of DEGs. To
elucidate on the effects of DEGs on overall survival out-
comes of LUAD patients, TCGA database was used to
generate Kaplan-Meier survival curves. P ≤ 0:05 indicated
significant differences in survival outcomes. Among the
367 DEGs, 119 were significantly correlated with survival
time, as revealed by log-rank test (Table S3). To validate
the observations made in TCGA LUAD cohort in a
different cohort, we analyzed the gene expression data for
369 LUAD cases in GEO. It was validated that 66 genes
were significantly associated with LUAD prognosis
(Table S4), while 14 genes were at the intersection of TCGA
and GEO databases, which have relationships with survival
(Figures 4 and 5).

3.6. Immune Landscape of Immune Clusters. Based on ESTI-
MATE and ssGSEA, immune characteristics of immune
subtypes were visualized in the heat map (Figure 6(a)).
Immune and stromal scores were significantly high in
Immunity_H subtype and low in Immunity_L subtype. This
indicated that the finding from ESTIMATE analysis was
consistent with ssGSEA. Furthermore, expressions of the
14 prognosis-associated genes were compared in different
immune subtypes. Expressions of most of these genes signif-
icantly increased from Immunity_L subtype to Immunity_H
subtype (all P < 0:001; Figure 6(b)).

3.7. Differential Expressions of Prognostic Genes at the
Protein Level. In the CPTAC database, ABI3BP, IL16, and
CPA3 were found to be significantly downregulated in
LUAD samples (Figure 6(c)). In the HPA database, protein
expressions of the seven genes (ADAMTS8, CCR2,

CYSLTR2, FAM129C, FCER1A, GAPT, PKHD1L1, and
ZNF831) were markedly low in tumor tissues with less
intense antibody staining and fewer stained cells in LUAD
(Figure 7). GPIHBP1, CD300LG, and DNASE2B were not
shown in either CPTAC or HPA databases.

4. Discussion

In this study, we identified 14 tumor microenvironment-
related prognostic genes in lung adenocarcinoma from
TCGA and GEO databases. Based on enrichment levels of
immune cell types, we clustered LUAD into Immunity_H
and Immunity_L subtypes. These genes were upregulated
in Immunity_H subtype, indicating that they were closely
associated with immune cell infiltrations in LUAD.

LUAD is often diagnosed in advanced stages. It is char-
acterized by high metastasis and poor prognosis. Despite
advances in LUAD treatment, long-term prognosis remains
poor. In recent years, efforts have been made to identify
potential prognostic markers for LUAD. For instance, the
prognostic potential of LUAD gene expression signatures
has been extensively studied [16].

Currently, TNM staging is the main basis for determin-
ing lung cancer prognosis. However, its effectiveness is
limited by the fact that clinical outcomes for different
patients at the same TNM stage can vary significantly [17].
Disease progression is influenced by immune cell infiltra-
tions in the TME. In several cancers, immune-related indica-
tors correlate better with clinical outcomes, relative to TNM
staging [18–20]. Therefore, immune scores associated with
TME are essential components of the staging system [21].
Development of immune checkpoint inhibitors, including
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Figure 5: Prognostic value of mRNA expression (Kaplan-Meier plotter) of DEGs based on TME scoring model in LUAD patients.
(a–n) Show the relation of mRNA expression of DEGs with the prognosis in LUAD patients from GEO cohort using Kaplan-Meier
plotter. Kaplan-Meier survival curves were generated for selected DEGs from high (red line) and low (blue line) gene expression
groups. DEGs: differentially expressed genes; TME: tumor microenvironment; DEGs: differentially expressed genes.

13Disease Markers



iDCs
Mast_cells
Type_II_IFN_reponse
MHC_class_I
Type_I_IFN_reponse
aDCs
Neutrophils
T_helper_cells
DCs
Macrophages
HLA
APC_co_inhibition
Parainflammation
pDCs
APC_co_stimulation
CCR
Treg
NK_cells
B_cells
Tfh
Th2_cells
CD8+_T_cells
Cytolytic_activity
Inflammation−promoting
Th1_cells
Check−point
T_cell_co−stimulation
T_cell_co−inhibition
TIL

Subtype
Stromal score 
Immune score
ESTIMATE score

ESTIMATE score
4000

−2000

Immune score
3000

0

Stromal score
2000

−1500

−4

Sub type
Immunity_H
Immunity_L

−2

0

2

4

(a)

ABI3BP
ADAMTS8

GPIHBP1
CD300LG
PKHD1L1

CCR2
FAM129C

IL16
CPA3

ZNF831
FCER1A

GAPT
DNASE2B
CYSLTR2

Gene expression 

0 2 4 6

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

Sub type
Immunity_L
Immunity_H

(b)

p < 0.0001 p < 0.0001 p < 0.0001

–1.0

–0.5

0.0

0.5

1.0

1.5

IL
16

 p
ro

te
in

 ex
pr

es
sio

n

Norm
al

LUAD
–4

–2

0

2

4

CP
A

3 
pr

ot
ei

n 
ex

pr
es

sio
n

Norm
al

LUAD

Norm
al

LUAD
–3

–2

–1

0

1

2

A
BI

3B
P 

pr
ot

ei
n 

ex
pr

es
sio

n

(c)

Figure 6: Immune landscape of immune subtypes. (a) Stromal score and immune score in different immune subtypes. The red and blue colours
used on the heat map indicate the high and low relative activity of immune cells, respectively. (b) Comparison of prognostic gene expression
levels between immune subtypes. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001. (c) Comparisons of the expression at protein level of the three
genes between lung adenocarcinoma (LUAD) and normal tissues in CPTAC. CPTAC: the Clinical Proteomic Tumor Analysis Consortium.
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antibodies against the PD-1/PD-L1, has greatly improved
cancer treatment and outcomes [22], especially for NSCLC
[23]. Various studies have revealed the TME of NSCLC con-
sists of various immune cells, indicating the prognostic value
of TME immune cells [24]. In this study, we determined
whether ESTIMATE scores of TME are indicative of overall

survival and investigated the prognostic value of stromal and
immune infiltration scores in LUAD. These scores predict
patient clinical outcomes. Higher immune scores were asso-
ciated with better LUAD prognosis, consistent with previous
findings [25–27]. Tumors with high immune cell infiltra-
tions in the TME exhibit favorable prognosis [28]. Our data

A
D

A
M

TS
8

Normal LUAD

Staining: low Staining: not detected

(a)

CC
R2

Normal LUAD

Staining: low Staining: not detected

(b)

FA
M

12
9C

Normal LUAD

Staining: low Staining: not detected

(c)

FC
ER

1A

Normal LUAD

Staining: medium Staining: not detected

(d)

G
A

PT

Normal LUAD

Staining: medium Staining: not detected

(e)

PK
H

D
1L

1

Normal LUAD

Staining: low Staining: not detected

(f)

ZN
F8

31

Normal LUAD

Staining: high Staining: low

(g)

CY
SL

TR
2

Normal LUAD

Staining: medium Staining: low

(h)

Figure 7: Relative immunohistochemistry results of 8 prognostic genes in LUAD tissues and normal lung tissues form the Human Protein
Atlas database. The protein expression levels of 8 prognosis-related DEGs in LUAD and normal lung tissues by IHC images.
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indicates that immune scores reflect survival and clinical
outcomes in LUAD. It should be determined whether ESTI-
MATE immune scores are potential prognostic biomarkers.

The prognostic potential of stromal and immune scores
has been determined for multiple cancers [29, 30]. Immune
and stromal cells are the most important nontumor compo-
nents in tumor tissues. Lung tissues contain infiltrating
immune cells from innate and acquired immune compo-
nents. The type, concentration, and localization of these
immune factors may indicate prognostic outcomes for
cancers and other pathologies. Tumor cells and other TME
constituents secrete chemokines and chemokine receptors
[31], which modulate the proliferation and invasion of
malignant cells. The association between immune scores
obtained by ESTIMATE analysis and disease prognosis
across cancer types has been determined. Higher scores
indicate better prognosis for breast cancer, melanoma,
and ovarian cancer but poor prognosis for hepatocellular
carcinoma [30]. The lung cancer TME is rich in immune
cells [32]. In LUAD, high immune scores and high infil-
trations by adaptive immune cells are associated with
favorable outcomes.

FPR2 is a G protein coupled receptor (GPCR) that plays
an important role in antibacterial inflammation. Upregu-
lated FPR2 suppresses epithelial-mesenchymal transition of
lung cancer cells [33]. Interestingly, certain genotypes of
interleukins can predict the risk of death and progression,
in NSCLC patients [34]. However, the mechanisms through
which interleukins influence prognosis in NSCLC have not
been established. We established that CCR2 is a hub and
prognostic gene. CCR2 recruits precursors for exudative
macrophages and inflammatory DCs into the lung. Until
recently, biological functions of CCR2 in lung cancer had
yet to be established. CCR2 induces macrophage and can-
cer cell crosstalk, an essential mechanism for driving lung
cancer progression [35]. CCR2 is involved in promotion
of tumor-supportive immune microenvironment [36]. In
this study, elevated CCR2 levels correlated with longer
survival time, consistent with previous findings [37].
Therefore, the role of CCR2 in lung cancer requires fur-
ther investigations.

Although our study explored the prognostic genes based
on TME of LUAD, their prognostic significance as well as
the involved mechanisms were not determined. Moreover,
our findings are based on bioinformatics analyses, and fur-
ther validation should be performed in future studies.

This study elucidates on the prognostic potential of TME
in LUAD and provides the foundation for further studies on
prognostic biomarkers in LUAD.
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