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Abstract

Background: Patients with COVID-19 in the intensive care unit (ICU) have a high mortality rate, and methods to assess patients’
prognosis early and administer precise treatment are of great significance.

Objective: The aim of this study was to use machine learning to construct a model for the analysis of risk factors and prediction
of mortality among ICU patients with COVID-19.

Methods: In this study, 123 patients with COVID-19 in the ICU of Vulcan Hill Hospital were retrospectively selected from the
database, and the data were randomly divided into a training data set (n=98) and test data set (n=25) with a 4:1 ratio. Significance
tests, correlation analysis, and factor analysis were used to screen 100 potential risk factors individually. Conventional logistic
regression methods and four machine learning algorithms were used to construct the risk prediction model for the prognosis of
patients with COVID-19 in the ICU. The performance of these machine learning models was measured by the area under the
receiver operating characteristic curve (AUC). Interpretation and evaluation of the risk prediction model were performed using
calibration curves, SHapley Additive exPlanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), etc, to
ensure its stability and reliability. The outcome was based on the ICU deaths recorded from the database.

Results: Layer-by-layer screening of 100 potential risk factors finally revealed 8 important risk factors that were included in
the risk prediction model: lymphocyte percentage, prothrombin time, lactate dehydrogenase, total bilirubin, eosinophil percentage,
creatinine, neutrophil percentage, and albumin level. Finally, an eXtreme Gradient Boosting (XGBoost) model established with
the 8 important risk factors showed the best recognition ability in the training set of 5-fold cross validation (AUC=0.86) and the
verification queue (AUC=0.92). The calibration curve showed that the risk predicted by the model was in good agreement with
the actual risk. In addition, using the SHAP and LIME algorithms, feature interpretation and sample prediction interpretation
algorithms of the XGBoost black box model were implemented. Additionally, the model was translated into a web-based risk
calculator that is freely available for public usage.

Conclusions: The 8-factor XGBoost model predicts risk of death in ICU patients with COVID-19 well; it initially demonstrates
stability and can be used effectively to predict COVID-19 prognosis in ICU patients.
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Introduction

COVID-19 is a new and severe infectious disease that has spread
to 34 provinces and cities in China and over 30 countries
worldwide [1,2]. After the entire nation of China fought against
COVID-19, by early May 2020, the numbers of patients with
COVID-19 had greatly decreased in almost all provinces and
cities in China. However, in mid-June, a new outbreak of
COVID-19 cases occurred in Beijing, the capital of China.
Government efforts have now brought the overall spread of
COVID-19 under control. It is clear that COVID-19 is an
infectious disease that requires ongoing attention from the
medical community, governments, and the public to prevent
future outbreaks. As of the end of June 2020, more than
10,000,000 COVID-19 cases had been recorded worldwide.
Therefore, an evaluation and early warning system for
COVID-19 prognosis is urgently needed, especially for critically
ill patients.

COVID-19 cases are classified as mild, moderate, severe, or
critical [3]. At present, most studies of COVID-19 have focused
on risk factor analysis and mortality prediction for mild and
moderate cases, which comprise a large proportion of patients
with COVID-19 [4-8]. However, 14% to 20% of cases are severe
or even critical [1,9], and the mortality rate of these patients is
as high as 50% [10]. Few studies have reported risk factor
prediction and mortality analysis for severe and critical patients
with COVID-19. COVID-19 predictive models are rapidly
entering the academic literature. These include predictive models
that are mainly used to identify high-risk groups in the general
population [11-13], diagnostic models that are used to detect
COVID-19 [14-16], and models used to predict mortality,
serious disease progression, etc [17-20]. The most common
predictors of the diagnosis and prognosis of COVID-19 are age,
body temperature, lymphocyte count, and lung imaging
characteristics. The estimated C indices of these predictive
models are between 0.65 and 0.99. Although the estimated C
indices of some models appear to be ideal, all the models are
rated as being at high risk of bias, mainly because of the high
risk of model overfitting. Moreover, many of the report
descriptions are vague. Most reports do not include a description
of the study population or the intended use of the model, and
very few evaluations of the calibration of model predictions
were made [21].

The theoretical core of machine learning analysis is the data
mining algorithm. Various data mining algorithms based on
different data types and formats can more scientifically represent
the characteristics of the data and can better penetrate the data
trends and recognized values [22]. On this basis, one of the most
important application areas is predictive analysis, which involves
identifying features (in machine learning, “features” refers to
individual characteristics of the data) from mechanical learning,
establishing models through science, and then running new data
through the models to predict future data [23]. In this study, we
clarify that the established model is used to predict the prognosis
of patients with COVID-19 in the intensive care unit (ICU).

The model must be continuously optimized and evaluated. In
terms of evaluation, we checked the accuracy and calibration
of the model. Moreover, to improve the interpretability of the
black box model, we also used SHapley Additive exPlanations
(SHAP) and Local Interpretable Model-Agnostic Explanations
(LIME) to explain the prediction model; therefore, the prediction
model not only predicts prognostic outcomes but also gives a
reasonable explanation for the prediction, which can greatly
enhance users’ trust of the model.

Methods

Study Design and Data Source
Vulcan Hill Hospital, located in Wuhan, Hubei Province, is a
special hospital that was built by the Chinese government to
treat patients with COVID-19. Construction on the hospital
started on January 24, 2020, and was completed on February
1; the hospital entered use on February 2, and it officially closed
on April 15. During this period, a total of 3063 patients with
laboratory-confirmed hospitalized cases of COVID-19 were
admitted. For this study, data of 3063 patients with COVID-19
admitted to Vulcan Hill Hospital were extracted from hospital
medical records and screened for eligibility. The study extracted
100 relevant variables, such as baseline patient information,
clinical diagnosis, vital signs, laboratory test results, medical
advice, and nursing care, as candidate variables for predictors
[24]. We established a study cohort of 123 critically ill patients
admitted to the ICU, and 2940 patients who did not enter the
ICU were excluded. Considering the problem of predictors and
the timing of the outcome measurement, we used the time the
patient entered the ICU to calculate the first test value of all
candidate predictors upon entering the ICU. The output of our
study is the prognostic outcome of these critically ill patients,
and this outcome is based on the ICU death record in the
electronic medical record. After further checking the admission
records, we included data of 123 critically ill patients admitted
to the ICU, including 65 (52.8%) who survived and 58 (47.2%)
who died. We randomly used 80% of these data as the training
set, and the remaining 20% were used as the validation set. For
the training set data, we completed the statistics and proper
processing of missing values, the identification and processing
of noise data, and the standardization of all predictive variables.
The validation set was processed in exactly the same way as
the training set. Then, we researched and analyzed the feature
selection, model training, model evaluation, and model
interpretation.

It is worth noting that this study adhered to the TRIPOD
(Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis) statement for reporting, and
completion of the model construction and verification was
guided by PROBAST (Prediction model Risk Of Bias
ASsessment Tool) [25,26]. This study was approved by the
ethics committee of Vulcan Hill Hospital; the requirement for
informed consent was waived.
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Predictor Variables and Data Preprocessing
In this study, a total of 100 candidate predictive features were
collected, and the test results were the first measured value after
the patient entered the ICU. Among these features, 5 features
with a missing ratio greater than 30% were excluded, and the
remaining features were filled with missing values using
appropriate methods. Because missing data may lead to loss of
useful information and even create instability of the model
realization, it is more difficult to analyze the model results with
missing data; therefore, we carried out a cautious missing value
interpolation strategy. We used the Iterative Imputer tool
developed by scikit-learn to perform multiple imputations for
missing values. The Iterative Imputer uses an algorithm to model
each missing value feature as a function of other features. It
uses the predicted value of the function as an estimate. In each
step, one feature is selected as the output y, and all other features
are selected as the input X. Then, a regressor is trained on X
and y to predict the missing value of y. The area under the

receiver operating characteristic curve (AUC) values
corresponding to each padding method were found to be
basically the same. We also applied the K Neighbors Regressor,
Decision Tree Regressor, Bayesian Ridge, and Extra Trees
Regressor regression algorithms as predictors to complete
missing value filling. Moreover, we attempted mean filling and
median filling and fed the above six imputation results into the
traditional logistic regression model to calculate and compare
the areas under the receiving operator characteristic curve (AUC)
of their respective prediction results. The results in Figure 1
show that the best filling method is multiple imputation, with
Decision Tree Regressor as the regression method; therefore,
this method was finally used to fill in the missing data for the
continuous features. The missing data are provided in
Multimedia Appendix 1. In addition, we drew box plots for
continuous features and used IQR criteria to filter and replace
outliers. Finally, to obtain more reliable prediction performance,
the continuous data were standardized by the z score
standardization method.

Figure 1. (A) Comparison of the AUC values obtained after using logistic regression as a carrier and filling in discrete features with multiple missing
filling methods. (B) Comparison of the AUC values obtained after continuous feature filling by multiple missing filling methods using logistic regression
as a carrier. AUC: area under the receiver operating characteristic curve.

Feature Selection and Statistical Analysis
The categorical variables of the queue data were expressed as
n (%). Continuous variables that satisfy normal distribution
were expressed as mean (SD); otherwise, medians and quartiles
were used. All characteristics were evaluated statistically, and
two-sided differences in P values <.05 were considered
statistically significant. Differences between categorical
variables were compared using the chi-square test or Fisher

exact test as needed. The independent sample t test was used to
compare continuous variables that satisfy normal distribution,
while the Wilcoxon test was used for nonnormally distributed
continuous variables. Statistically significant features were
selected for further correlation analysis. For redundant features
with strong correlation, factor analysis was used to confirm the
collinearity of the variables, classify the collinearity as a latent
factor, and then calculate the eigenvalues, visualize the gravel
map of the eigenvalues, and select the feature root. Values >1
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and the first few principal components where the slope decreases
were used as principal component factors to eliminate redundant
features and to find more efficient, concise, and precise feature
combinations, thereby improving the generalization and practical
capabilities of the model, as described previously [27]. Note
that factor analysis requires the data to be suitable according to
the Bartlett sphere test and Kaiser-Meyer-Olkin test.

Derivation and Validation of the Models
A conventional logistic regression method and four popular
machine learning classification algorithms, including adaptive
boosting (AdaBoost), gradient boosting decision tree (GBDT),
eXtreme Gradient Boosting (XGBoost), and CatBoost, were
applied in the present study to model the data. The model built
by the algorithm uses constant parameter optimization and
model evaluation to compare the fitting effects of each model
and to select the best model as the risk prediction model. Model
optimization is a method that combines grid search and five-fold
cross-validation to visualize the AUC values of the model and
the standard deviation with the parameters and selects the
parameter values corresponding to the best AUC value as the
model parameters [28].

A good model explanation must be presented for the black box
model. This study is based on the SHAP algorithm, which
calculates the marginal contribution of a feature when it is added
to the model and then considers whether the factor is different
in all factor sequences [29]. The marginal contribution fully
explains the influence of all factors included in the model for
model prediction and distinguishes the attributes of the factors
(risk factors and protective factors).

Finally, validation queue data were used to evaluate the
prediction performance of the model and calculate the AUC,
threshold, Youden index, 95% CI, SD, and P value of the AUC,
accuracy, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), positive likelihood
ratio (PLR), and negative likelihood ratio (NLR) of the model
for the test set. A calibration curve was drawn, the calibration
degree of the model was measured, and the degree of
consistency between the predicted risk and the actual risk of
the model was evaluated. A good calibration degree indicates
that the predicted value of the model is closer to the actual
probability of the outcome, from the interpretation of the model
to the prediction of random samples, as demonstrated previously
[30]. The model, code, and parameters are provided in
Multimedia Appendix 2.

Interpretation of the Model for Prediction of Random
Samples
Advanced machine learning models are usually “black boxes.”
When the internal operations of a model are unknown, users do
not trust the reliability of the model for making predictions.
Although it is known that the accuracy of cross-validation of
these models is very high, correlation is still sometimes found
between the verification data and the training data due to
improper methods, especially when there are few samples.
Therefore, cross-validation is no longer the only indicator for
evaluating trust. If the rationale by which a model predicts a
single sample can be intuitively perceived, users can better trust
or distrust single sample prediction. The LIME algorithm was
implemented with this concern in mind. This linear model is
used to locally approximate a black box model by giving weights
to the disturbance input; thus, the observation model gives a
basis for interpretation of the sample prediction results [31]. In
the present study, we randomly sampled the test set and used
the LIME algorithm to fit the predictive behavior of the model
to the sample to verify the rationality of the basis of the model
for predicting results.

Results

Study Population and Baseline Characteristics
Data from 3063 patients with COVID-19 treated at Vulcan Hill
Hospital from February 2 to April 15, 2020, were analyzed
retrospectively. A total of 69/3063 deaths occurred (2.3%). The
final analytic sample included 123 critically ill patients admitted
to the ICU, including 85 critically ill patients (69.1%), 65
surviving patients (52.8%), and 58 patients who died (47.2%).
The outcome variable was determined as the prognostic outcome
of critically ill patients, and the outcome was based on the death
record in the electronic medical record. 100 related variables
were established as candidate variables for predictors. Figure
2 shows a flowchart of the overall process of data and feature
screening. Figure 3 and Multimedia Appendix 3 list the results
comparing all potential risk factors in the study cohort. Overall,
the mean age of the patients in the cohort was 69.8 years (SD
11.1), and 79/123 patients (64.2%) were male. Data analysis
revealed significant differences between patients in 7 discrete
factors, namely ventilator use, critical illness, vasoactive drugs,
carbapenem use, antibiotic resistance, anti–gram-positive cocci,
and hemodiafiltration; significant differences were found in 46
continuous factors.
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Figure 2. Flowchart of the data and feature selection.
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Figure 3. Statistical analysis of the screening results of all potential risk factors in the study cohort. The figure shows the screening of candidate variables
in the five dimensions of patient baseline information, clinical diagnosis and vital signs, laboratory tests, medical advice, and nursing care.

Predictor Selection
By selecting the abovementioned statistically significant factors
for correlation analysis, the correlation coefficient matrix heat
map (Multimedia Appendix 4) of the features shows that the
top five features that were negatively correlated with the
outcomes are prothrombin time percentage activity, blood
oxygen saturation, lymphocyte percentage (LYM%), albumin
level (ALB), and percentage of basophils (BASO%); the top
five characteristics that were positively correlated with outcomes
are lactate dehydrogenase, alpha-hydroxybutyrate
dehydrogenase, C-reactive protein, neutrophil percentage
(NEUT%), and original thrombin time. In addition, strong
correlations were found between many features. For example,
the correlation coefficient between the prothrombin time (PT)

and international standardized ratio reached 0.999; therefore, it
was necessary to reduce redundant features.

Factor analysis and visualization of the characteristic root gravel
map and load matrix (Figure 4 and Multimedia Appendix 5)
revealed that the eight principal component factors were the
most predictive; for example, the correlation between the
characteristic prothrombin time and the second main factor
reached 0.97. Considering the convenience and practicability
of using the prediction model, clinical experience and actual
comparisons were combined to finally select eight features to
represent the eight principal component factors, namely LYM%,
PT, lactate dehydrogenase (LDH), total bilirubin (T-Bil) ,
eosinophil percentage (EOS%), creatinine (Cr), NEUT%, and
ALB. The Kaiser-Meyer-Olkin test gave a value of 0.5714 and
Bartlett's test of sphericity showed a significance level of
P<.001, indicating that the factor analysis is effective.

Figure 4. Distribution diagram of the correlations between the feature value and the number of features; when the feature value is >1 and the slope
change becomes slow, the number of features is 8.

J Med Internet Res 2020 | vol. 22 | iss. 11 | e23128 | p. 6https://www.jmir.org/2020/11/e23128
(page number not for citation purposes)

Pan et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Machine Learning Algorithm Comparison and Best
Model
Comparing the AUCs of the logistic regression and four machine
learning algorithms for 5-fold cross-validation on the training
set (Figure 5), it can be found that the AUC values of each
algorithm are similar; however, the AUC value of the XGBoost
algorithm is higher. The XGBoost algorithm reflects a good
learning curve on the training set, effectively preventing
overfitting. In terms of prediction performance, the results of
the logistic regression and four machine learning algorithms on

the test set show AUCs of 0.92 for XGBoost, 0.9133 for
CatBoost, 0.9133 for AdaBoost, 0.85 for GBDT, and 0.84 for
LR; the best prediction performance was observed with
XGBoost. In addition, the AUC, threshold, Youden index, 95%
CI, SD, and P value of the AUC, accuracy, sensitivity,
specificity, PPV, NPV, PLR, and NLR values of each model in
the test data set are listed in Table 1. In summary, the results of
the test data set show that the XGBoost model demonstrates the
best performance based on eight salient features. The Youden
index value of this model is 0.6667.

Figure 5. ROC curves showing the fitting performance (A) and prediction performance (B) of the LR, CatBoost, GBDT, XGBoost, and AdaBoost
prediction models based on the eight important features in the training data set and the test data set. (C) The learning curve on the training set showing
the learning process of the XGBoost model. The red line is the fitting effect of the model on the overall training set, and the green line is the fitting
effect of the model on the training set with 5-fold cross-validation. The two curves finally merge near 0.85, indicating that the model is well fitted for
training. AdaBoost: adaptive boosting; GBDT: gradient boosting decision tree; LR: logistic regression; ROC: receiver operating characteristic; XGBoost:
eXtreme Gradient Boosting.

Table 1. Summary of prediction results of multiple models on the test set.

ModelsValue

CatBoostXGBoostcGBDTbAdaBoostaLogistic regression

0.91330.920.850.91330.84AUCd

0.50630.44780.45830.42830.3962Threshold

0.76670.76670.63330.73330.6667Youden index

0.7997-1.00.8142-1.00.6997-1.00.8024-1.00.6556-1.095% CI of the AUC

0.0580.0540.07840.05660.094SD of the AUC

<.001<.001.002<.001.003P value of the AUC

0.840.840.760.760.76Accuracy

0.80.90.80.90.8Specificity

0.86670.80.73330.66670.7333Sensitivity

0.86670.92310.84620.90910.8462Positive predictive value

0.80.750.66670.64290.6667Negative predictive value

4.333383.66676.66673.6667Positive likelihood ratio

0.16670.22220.33330.37040.3333Negative likelihood ratio

aAdaBoost: adaptive boosting.
bGBDT: gradient boosting decision tree.
cXGBoost: eXtreme Gradient Boosting.
dAUC: area under the receiver operating characteristic curve.

Model Validation and Predictor Parameters
The prediction behavior of XGBoost in the test set was
visualized. The calibration curve (Figure 6) shows that the

predicted risk of the XGBoost model is in good agreement with
the actual risk. The predicted value of the model is close to the
actual probability of the outcome. The details of the optimal
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model parameters constructed by the XGBoost algorithm can be viewed in Multimedia Appendix 2.

Figure 6. Calibration curve reflecting the degree of consistency between the predicted risk and the actual risk of the XGBoost model. The predicted
curve of the model fits well with the diagonal, indicating that the predicted value of the model is basically close to the actual probability of the outcome.

Interpretation and Evaluation of the Machine Learning
Model
Based on the SHAP algorithm, the feature ranking interpretation
of the XGBoost model (Figure 7) shows that LDH, PT, Cr,
LYM%, NEUT%, EOS%, T-Bil, and ALB were the

characteristics of the XGBoost model with the greatest impact
in predicting outcomes. Overall, the characteristics of LDH,
PT, Cr, T-Bil, and NEUT% correlated positively with the
outcomes and are risk factors; meanwhile, LYM%, EOS%, and
ALB correlated negatively with the outcomes and are protective
factors.
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Figure 7. The XGBoost model based on the SHAP algorithm. (A) The attributes of the features in the black box model. Each line represents a feature,
and the abscissa is the SHAP value, which represents the degree of influence on the outcome. Each dot represents a sample. The redder the color, the
greater the value of the feature, and the bluer the color, the lower the value. (B) Ranking of feature importance indicated by SHAP. ALB: albumin level;
Cr: creatinine; EOS%: eosinophil percentage; LDH: lactate dehydrogenase; LYM%: lymphocyte percentage; NEUT%: neutrophil percentage; PT:
prothrombin time; SHAP: SHapley Additive exPlanations; T-Bil: total bilirubin.

Interpretation of sample prediction results requires random
drawing of samples to make model predictions and observe the
model through the LIME algorithm. The four prediction
scenarios are shown in Figure 8A. In addition, the prediction
results of the XGBoost model on all samples on the training set
and the test set were counted, and the distribution of the four
cases of the aggregated prediction results was visualized. Figure
8B shows that the XGBoost model has inappropriate prediction

behavior in that its judgment of the false positive prediction
results found through LIME is inaccurate; however, this situation
is very rare, which indicates that the performance of the
XGBoost prediction model is stable and reliable and that the
interpretation of random sample prediction is basically
reasonable. This is sufficient to confirm the practicability of the
XGBoost model and will help increase physicians’ trust in the
prediction model and help them make good auxiliary decisions.
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Figure 8. Interpretation of sample prediction results by randomly drawing samples to make model predictions and observing the model through the
Local Interpretable Model-Agnostic Explanations (LIME) algorithm. (A) The four different prediction behaviors of the model (true negative, true
positive, false negative, and false positive); (B) the ratios of the four prediction behaviors of the model on the training set and the test set. A:LB: albumin
level; CR: creatinine: EOS%: eosinophil percentage; LDH: lactate dehydrogenase; LYM%: lymphocyte percentage; NEUT%: neutrophil percentage;
PT: prothrombin time; T-Bil: total bilirubin.

Additionally, comparison of the results of our machine learning
model and the Acute Physiologic Assessment and Chronic
Health Evaluation II (APACHE II), Sequential Organ Failure
Assessment (SOFA), Multiple Organ Disfunction Score

(MODS), and Pneumonia Severity Index (PSI) scores indicated
that the AUC of the XGBoost model was higher than those of
the other four scores (Figure 9).
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Figure 9. Comparison between the risk prediction model of the present study and the ROC curves of various critical scores. APACHE: Acute Physiologic
Assessment and Chronic Health Evaluation; MODS: Multiple Organ Disfunction Score; PSI: Pneumonia Severity Index; ROC: receiver operating
characteristic; SOFA: Sequential Organ Failure Assessment; XGBoost: eXtreme Gradient Boosting.

Discussion

Principal Findings
The results of the present study show that the XGBoost method
is a more reliable and more accurate method for predicting
outcomes for critically ill patients with COVID-19 in the ICU
than conventional logistic regression and scoring. Especially,
the eigenvalues were reduced using the XGBoost model from
100 parameters to 8. Correlation analysis and characteristic
analysis showed that the LDH, PT, Cr, T-Bil, LYM%, ALB,
NEUT%, and EOS% indicators had strong correlations with
the prognosis of severe and critical patients with COVID-19 in
the ICU. Physicians should be wary of poor prognosis when
encountering such patients. After full verification by SHAP,
LIME, etc, the model was found to be accurate and stable. A
web-based calculator based on the risk model is available on
the internet [32].

According to the XGBoost algorithm model used in our study,
LDH, PT, Cr, T-Bil, and NEUT% correlated positively with
patients’ outcomes, indicating that these values are risk factors;
meanwhile, LYM%, ALB, and EOS% correlated negatively
with patients’ outcomes, indicating that these values are

protective factors. In addition to identifying risk and protective
factors, the results suggested that the XGBoost algorithm model
achieves a good prediction effect, with an AUC of 0.92,
sensitivity of 0.8, and specificity of 0.9. Based on the same data,
logistic regression analysis showed an AUC of 0.84, with a
sensitivity of 0.7 and specificity of 0.83. These results indicate
that the predictive effect of machine learning is more accurate
and sensitive than that of regression analysis. In contrast to our
study, other researchers tended to apply Cox regression and
logistic regression to analyze risk factors. Wang et al [19] found
that the risk factors for in-hospital mortality from COVID-19
were lymphopenia and LDH, as analyzed by multivariable Cox
proportional hazard regression models. Chen and colleagues
[20] studied 1859 patients with confirmed COVID-19 from
seven centers in Wuhan, China, of whom 1651 recovered and
208 died. Multivariable Cox regression analyses indicated that
increased hazards of in-hospital death were associated with one
indicator, log 10 serum creatinine (sCr) per μ mol/L increase
[33]. In another study that analyzed 167 confirmed patients with
severe COVID-19, the LDH concentration was higher and the
albumin concentration was lower in these patients, with
significant differences [34]. Recently, Liang et al [22] used
Least Absolute Shrinkage and Selection Operator (LASSO) and
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logistic regression to construct a predictive risk score
(COVID-GRAM), in which the AUC in the development cohort
was 0.88 (95% CI 0.85-0.91) and the AUC in the validation
cohort was 0.88 (95% CI 0.84-0.93) for predicting patients’ risk
of developing critical illness. The results in that study coincide
with our results to some extent, and the machine learning
algorithm can identify potential indicators better than the
conventional algorithm. Finally, Abdulaal et al [20] used a
neural network model to predict the prognosis of patients with
COVID-19, with an AUC of 90.12%. This study only used eight
indicators and achieved good predictive value; thus, it is more
convenient and efficient.

Elevated LDH was identified as a significant risk predictive
marker of COVID-19. Li et al [23] revealed that relatively high
levels of LDH play a crucial role in predicting mortality of
patients with COVID-19 when using an interpretable mortality
prediction model. LDH is an enzyme that is involved in energy
production through the conversion of lactate to pyruvate; it is
present in almost all body cell types (n=156), with the highest
levels in the heart, liver, lungs, muscles, kidneys, and blood
cells. LDH is released from cells upon damage to their
cytoplasmic membrane, and it is not only a metabolic marker
but also an immune surveillance prognostic biomarker [35].
LDH increases the production of lactate, which leads to
enhancement of immune-suppressive cells and inhibition of
cytolytic cells. These changes weaken the immune response
mounted against viral infection, which results in more severe
disease in patients with COVID-19 who have elevated LDH
[36]. PT is another typical indicator associated with patient
prognosis. Through pathological examination of patients who
died of COVID-19, researchers found that the virus can lead to
disorders of the coagulation system, resulting in a
hypercoagulable state and microthrombosis [37]. Moreover,
viral infections may induce even more severe complications,
such as acute respiratory distress syndrome and multi-organ
dysfunction syndrome, which are two conditions frequently
associated with hypercoagulation and disseminated intravascular
coagulation [38]. These processes and conditions help to explain
why PT was prolonged in patients with severe and critical
COVID-19. Approximately 14.4% of patients with COVID-19
have elevated sCr levels, and kidney disease has been associated
with in-hospital death of patients with COVID-19 [39].
SARS-CoV2 has been suggested to modulate the
renin-angiotensin-aldosterone system (RAAS). Evidence of
activation of the RAAS in patients with COVID-19 who have
acute kidney injury, leading to increased sCr, has been reported
[40]. Several studies have also reported that liver damage
occurred in severe cases of COVID-19 infection at rates ranging
from 58% to 78% [41,42]. COVID-19 uses angiotensin
converting enzyme 2 (ACE2) as the binding site to enter host
cells in the lungs, kidneys, and heart. A previous study [43]
showed that both liver and bile duct cells express ACE2; this

may result in elevated T-Bil levels, accompanied by slightly
decreased ALB levels. Hematologic and immunologic
impairment showed significantly different profiles between
survival and mortality of patients with COVID-19 with different
disease severities. The results of our study suggest that increased
NEUT% and decreased LYM% are risk factors for patient
prognosis. Interestingly, a decrease in EOS% was also a risk
factor, and we were surprised to find that the results of two
studies [44,45] were consistent with our results. In those studies,
it was found that eosinophils decreased at the early stage and
were associated with disease severity and clinical outcomes.
Impaired immune cell function leads to low lymphocyte levels
and immune system dysfunction, causing patients with severe
COVID-19 to be more sensitive to bacterial infection [46]. The
decline in eosinophils may be due to the patients’ response to
the stress of acute SARS-CoV-2 infection. However, whether
COVID-19 has a direct effect on eosinophils remains unknown.
In one study, it was found that the Clostridioides difficile
transferase toxin induces pathogenic host inflammation via a
toll-like receptor 2–dependent pathway, resulting in suppression
of the protective host eosinophilic response [47]. Additionally,
eosinophils can be reduced after an innate immune challenge
[48].

Limitations
This study has several limitations. First, data from only one
center were used, and the sample size was small, which may
indicate bias. However, Vulcan Hill Hospital is a large medical
center that focused on the treatment of COVID-19. The patients
are representative of all patients with COVID-19, providing a
reliable basis for the treatment of critical patients. Second, the
treatment of patients in the ICU is not necessarily the initial
treatment because the patients were transferred from different
hospitals and different medical treatment units; this may have
affected the baseline characteristics of the patients. In the future,
based on what we learned in this study, we will attempt to
correct defects of the model and the machine learning approach.
Also, we will collect more data to conduct external tests on the
prediction model and further improve the generalized prediction
ability of the model for multicenter data.

Conclusions
Machine learning has a good predictive effect on the mortality
of critically ill patients with COVID-19 in the ICU. The
XGBoost model has higher diagnostic performance than
conventional statistical methods and can be used to select and
simplify the core indicators for mortality prediction, such as
LDH, PT, Cr, T-Bil, LYM%, ALB, and the white blood cell
parameters NEUT% and BASO%. Machine learning may be a
valuable prognostic indicator for early warning of critically ill
patients; this warning plays a significant role in the allocation
of medical resources, triage of patients, formulation of treatment
decisions, and evaluation of progressive COVID-19.
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ACE2: angiotensin converting enzyme 2
AdaBoost: adaptive boosting
ALB: albumin level
APACHE II: Acute Physiologic Assessment and Chronic Health Evaluation II
AUC: area under the receiver operating characteristic curve
BASO%: basophil percentage
Cr: creatinine
EOS%: eosinophil percentage
GBDT: gradient boosting decision tree
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ICU: intensive care unit
LASSO: Least Absolute Shrinkage and Selection Operator
LDH: lactate dehydrogenase
LYM%: lymphocyte percentage
MODS: Multiple Organ Disfunction Score
NEUT%: neutrophil percentage
NLR: negative likelihood ratio
NPV: negative predictive value
PLR: positive likelihood ratio
PPV: positive predictive value
PROBAST: Prediction model Risk Of Bias ASsessment Tool
PSI: Pneumonia Severity Index
PT: prothrombin time
RAAS: renin-angiotensin-aldosterone system
sCr: serum creatinine
SHAP: SHapley Additive exPlanations
SOFA: Sequential Organ Failure Assessment
T-Bil: total bilirubin
TRIPOD: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis
XGBoost: eXtreme Gradient Boosting
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