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Abstract

Background: Adverse drug reactions (ADRs) are common and are the underlying cause of over a million serious injuries and
deaths each year. The most familiar method to detect ADRs is relying on spontaneous reports. Unfortunately, the low reporting
rate of spontaneous reports is a serious limitation of pharmacovigilance.
Objective: The objective of this study was to identify a method to detect potential ADRs of drugs automatically using a deep
neural network (DNN).
Methods: We designed a DNN model that utilizes the chemical, biological, and biomedical information of drugs to detect
ADRs. This model aimed to fulfill two main purposes: identifying the potential ADRs of drugs and predicting the possible ADRs
of a new drug. For improving the detection performance, we distributed representations of the target drugs in a vector space to
capture the drug relationships using the word-embedding approach to process substantial biomedical literature. Moreover, we
built a mapping function to address new drugs that do not appear in the dataset.
Results: Using the drug information and the ADRs reported up to 2009, we predicted the ADRs of drugs recorded up to 2012.
There were 746 drugs and 232 new drugs, which were only recorded in 2012 with 1325 ADRs. The experimental results showed
that the overall performance of our model with mean average precision at top-10 achieved is 0.523 and the rea under the receiver
operating characteristic curve (AUC) score achieved is 0.844 for ADR prediction on the dataset.
Conclusions: Our model is effective in identifying the potential ADRs of a drug and the possible ADRs of a new drug. Most
importantly, it can detect potential ADRs irrespective of whether they have been reported in the past.
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Introduction

An adverse drug reaction (ADR) [1,2] is a serious problem that
refers to side effects that occur despite the administration of a
regular dose of a drug. It is estimated that over 2 million serious
ADRs occur among hospitalized patients, which causes

>100,000 deaths each year [3,4]. Unfortunately, it is difficult
to identify or predict potential ADRs owing to insufficient data.

Spontaneous reporting in pre- and postmarket stages are the
most familiar methods to identify ADRs early on. Specifically,
safety reports from clinical trials are used to list common ADRs
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in the premarket stage [5], while data collected and analyzed
from various databases and marketing surveys, such as
pharmacovigilance and risk management, are used in the
postmarket stage. Although most new ADRs are identified from
spontaneous reports, >90% go unreported [6,7]; this is
recognized to be a major limitation. Pharmaceutical companies
are trying to avoid side effects in the development stage of drugs.
However, although they can identify and address common side
effects, it is generally not feasible to identify or predict rare and
serious side effects. To overcome these limitations, several
studies have utilized a substantial amount of data and various
information sources to predict ADRs using statistical methods
[8] and machine learning approaches [9].

The fundamental method for identifying ADRs pertains to
identifying the relationship between drugs and their side effects
from diverse sources of information [10-12] such as clinical
trials, electronic medical records (EMRs), social media, and
biomedical literature. For instance, PubMed contains valuable
information that could aid ADR detection. Karimi et al [13]
reviewed data mining and techniques related to computer
science, which have been studied in the area of drug safety to
identify reports of ADR from different sources. Tatonetti et al
[14] proposed a novel algorithm for building a predictive model
that can detect hidden interactions in adverse event reports to
infer unreported adverse events. Wang et al [15] developed a
model for identifying ADRs using data mining to extract
information from millions of EMRs. It used clinical notes with
information on specific drugs and known adverse drug events
(ADEs) that have been preprocessed using statistical methods
to compute the probability that a given drug-disorder pair
represents a valid ADE association. This method automatically
determines whether a specific adverse event is caused by a
specific drug based on the content of PubMed citations [16].
Finkelstein et al [17] developed a tool to automatically detect
and summarize information on ADRs from journal papers. It
then ranked the ADRs of a drug on a user-friendly interface for
physicians.

Several studies have utilized either chemical or molecular
pathways of drugs to predict ADRs [18]. Cami et al [19]
developed a novel approach to predict ADEs by using
information on specific drugs and the adverse event to predict
likely unknown ADEs. Lorberbaum et al [20] hypothesized that
systems biology and chemical genomics data can improve drug
safety surveillance by highlighting drugs with a mechanistic
connection to the target phenotype and by filtering those which
do not. They presented an algorithm, the modular assembly of
drug safety subnetworks, to combine systems pharmacology
and pharmacovigilance data. The algorithm markedly improved
drug safety monitoring for 4 clinically relevant ADRs. Huang
et al [21] proposed a framework for predicting ADR profiles
by integrating protein-protein interaction networks with drug
structures. Some researchers utilized the chemical, biological,
and phenotypic characteristics of drugs to predict the ADRs.
Liu et al [22] proposed a machine learning approach for
predicting the ADRs by integrating the phenotypic

characteristics, which included chemical structure, biological
properties, and protein target and pathway information.

However, most of those approaches rely on heavily handcrafted
features and treat ADR identification as a classification problem,
which does not take the order of the ADRs discovered into
consideration. Therefore, the process tends to be more expensive
and leads to the loss of significant information on drug-ADR
relationships in the model training phase. Furthermore, these
approaches are unable to predict the ADR of new drugs, thus
rendering the detection of ADR more difficult [19].

To address these limitations, we used a deep neural network
(DNN) model for the detection of ADRs of drugs. The model
has 2 purposes: the identification of ADRs, which entailed the
discovery of potential ADRs of a drug from known ADR
records, and the prediction of ADRs, which pertained to
predicting the possible ADRs for a new drug. We used the
word-embedding approach and mapping function to process
new drugs that did not appear in the dataset. Furthermore, we
examined the overall performance of the model with various
feature combinations and the number of hidden layers in the
DNN architecture.

Methods

Data Description
To develop and evaluate a DNN model, we used data from Side
Effect Resource (SIDER) [23], a database of drugs with side
effects, which contains information on medicines in the market
since 2009 and their recorded ADRs [24]. We collected the
ADR information from 2009 and 2012 from SIDER to represent
the simulated prospective approach. In total, 746 drugs and 1325
side effect terms related to these drugs were recorded in both
years. Additional 232 drugs appeared only in the 2012 dataset
as new drugs. It is important to monitor the ADRs of drugs
throughout their life cycle, from the preclinical research phase
to postmarket surveillance. The fundamental properties of drugs
rely on preclinical in vitro safety profiling that involves the
testing of compounds with chemical and biological properties.
Therefore, we extracted these properties as a part of the features
in the model. We extracted the 17 molecular descriptors of drugs
from PubChem [25] (Textbox 1). We utilized the biological
features from DrugBank [26] to represent the biomolecular
interactions and pathways. These features contain the targets,
enzymes, transporters, and carriers of each drug and their
actions.

For enriching the scientific evidence and enhancing the detection
of ADRs, we collected millions of papers from the Medical
Literature Analysis and Retrieval System Online (MEDLINE)
[27] to be used as auxiliary data to enrich the information about
each drug. We used the name of each drug as the query term
and selected all the papers related to the drug, published before
2009, such as case reports, clinical trials, and observational
studies. The reason for collecting the papers published before
2009 is that we wanted to simulate the progress of drug
surveillance from 2009 to 2012.
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Textbox 1. The 17 molecular descriptors for the chemical features identified in this study.

1. Molecular Weight

2. XLogP3

3. Hydrogen Bond Donor Count

4. Hydrogen Bond Acceptor Count

5. Rotatable Bond Count

6. Exact Mass

7. Monoisotopic Mass

8. Topological Polar Surface Area

9. Heavy Atom Count

10. Formal Charge

11. Complexity

12. Isotope Atom Count

13. Defined Atom Stereocenter Count

14. Undefined Atom Stereocenter Count

15. Defined Bond Stereocenter Count

16. Undefined Bond Stereocenter Count

17. Covalently- Bonded Unit Count

Features of Drug Description
We treated ADR identification as an information retrieval
problem, such that our model could discover the potential
relationships between each drug and the 1325 side effects
recorded. We represented the prediction target of 1325
dimensions with a binary profile of elements corresponding to
the presence or absence of side effects with 1 or 0, Y ∈ ℕn×1325

with n being the number of drugs. Each drug was associated
with 3 types of features: the chemical properties, biological
properties, and information from the literature. In addition, the
known ADR records of drugs were included. After
preprocessing, we filtered out 2 empty properties: the Isotope
Atom Count and the Undefined Bond Stereocenter Count.
Subsequently, the feature of chemical properties was represented
using a 15-dimensional vector, with XChem ∈ ℝn×15 for each
element. The biological properties, extracted from DrugBank,
contained 4 phases of information including the carriers,
enzymes (for drug metabolism), protein targets, and transporters
(for drug transportation). After preprocessing, we utilized the
biological information to represent each drug with the
1048-dimensional vector, which included 788 protein targets,
162 enzymes, 85 transporters, and 13 carriers, with
XBio ∈ ℕn×1048 for different action types in each element. The
known ADR records of a drug played an important role in
identifying potential ADRs. Thus, we leveraged this information
to predict potential ADRs that appeared in 2012.

The biomedical literature played an important role in this study
because it contains a large amount of information related to
drugs and ADRs such as clinical notes and case reports.
However, one of the issues in extracting the drug information
from biomedical literature is the uncertainty regarding which
words or documents represent the drug. Therefore, we trained
the model to understand the semantic features of drugs from
2.3 million biomedical papers on 764 drugs introduced before
2009 by utilizing one of the most popular embedding methods
Word2Vec [28-30] to model it using the skip-gram model.
Subsequently, we used the vector of the drug name as the drug
vector (drug2vec, D2V), XD2V ∈ ℝn×400, with n being the number
of drugs. We observed that the features represented by D2V
were more comprehensive than the intrinsic features in the
experiments. However, as we used drug names as the query
term, we could not identify papers related to 232 new drugs. To
address drugs that were not observed during the embedding
training step, we expanded the D2V by introducing a drug
description mapping function. Using VD2V to denote the
word-embedding space of the drug vector existing in the training
and VDDV to denote the new drug description vector the
summation of each word vector related to the new drug in the
papers, the mapping function f (v): VDDV→ VD2V was developed
and parameterized by a W, such that v′=Wv for v ∈ VDDV and
v′ ∈ VD2V [31] using the least absolute shrinkage and selection
operator regression for training the W [32]. This expansion
method enabled the model to process new drugs, making it more
flexible.
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Figure 1. The architecture of the deep neural network model for predicting and identifying the possible adverse drug reactions (ADRs) of a drug. After
predicting, we generated a list of possible ADRs of a drug by ranking the probability of ADRs from the output in the model.

Figure 2. Feature representation of adverse drug reaction (ADR) identification and prediction.

Adverse Drug Reaction Detection Deep Neural
Network Model Description
We designed a DNN model that can identify and predict the
ADRs of a drug with different requirements. This model (Figure
1) was based on one of the common DNN architectures,
multilayer perceptron [33], which has been successfully applied
in several prior studies. We added the dropout layer between
each dense layer to avoid model overfitting in the training step
[34,35]. The process of the nonlinear transformation in each
layer ensured that the model could learn more information from
the input data. The model aimed at identifying and predicting
potential ADRs of a drug. The identification function is fulfilled

by seeking the potential ADRs of drugs by using known records
of ADRs and various features of drugs. The prediction function
pertains to the detection of potential ADRs of new drugs. We
designed 2 kinds of feature representations (Figure 2) to
distinguish the tasks of identification and prediction. In
prediction, we assumed that the ADR record for a new drug
was empty. Therefore, the feature of known ADR records with
zero indicated that the possible ADRs of new drugs relied only
on the semantic feature (drug2vec), chemical properties, and
biological properties.

We treated the identification task as an information retrieval
problem because drugs may have more than one ADR.
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Therefore, we designed the last layer with 1325 hidden nodes,
which was equal to the number of ADRs in the dataset.
Evaluating the probability of ADR y of a given drug x, we
defined the p (y ∣ x) = σ(Wh + b), σ as the sigmoid function, to
transfer the hidden vector h to the value between 0 and 1. We
learned the p (y ∣ x) by minimizing the cross-entropy with D.
When θ denoted all parameters of the model, the objective
function ℒ(D, θ) was formulated as follows:

ℒ(D, θ) = −Summation (yi log [p (y|x)] + [1−yi] log
[1−p (y|x]) / N

Results

In this study, we present a detailed analysis of the performance
of our DNN model. Let Q denote the number of drugs in the
dataset. We evaluated the model using the area under the
receiver operating characteristic curve, shown in Table 1, and
the mean average precision (MAP) AvePrecision (q)/Q, which
has been widely used in multilabel problem and information
retrieval evaluation. First, we assessed the abilities of different
feature combinations to detect the ADRs of drugs. We examined
the performance of our model with reference to the features
presented in Figure 3 (image on the left). The drug features
included the biological, chemical, and D2V features. The
chemical feature was found to perform poorly because of the
duplicate and indistinguishable chemical properties extracted.

Moreover, we removed the D2V and kept the other features to
train the model. The results showed that the D2V was most
informative, possibly because the D2V learned the valuable
information from millions of papers. We then focused on method
comparison with several common methods. We compared the
abilities of 3 machine learning methods, namely, probability
matrix factorization (PMF), Linear Support Vector Classifier,
and Gaussian Naïve Bayes [36,37], to predict and identify the
ADRs of drugs. Figure 3 (image on the right) shows the

performance of different models based on 5-fold cross-validation
using all biological, chemical, and D2V properties as features,
except PMF. The PMF exhibited the worst performance because
it considered the relationship between drugs and ADRs only
based on latent information. One of the reasons why our model
outperforms others is that the features of a drug enrich the
information via the nonlinear transformation in deep learning.

Subsequently, we investigated whether our model could process
the specific tasks of prediction and identification. The
performance on the prediction task (Figure 4, image on the left)
exceeded that on the identification task. The identification task
is more difficult than prediction because the former entails the
detection of potentially rare ADRs. Although the identification
function of this model could be improved, its overall
performance revealed its capacity to address both tasks
simultaneously.

In addition, we plotted the performance of the model with a
different number of hidden layers (Figure 4, image on the right).
The performance of the model did not improve with an increase
in the number of hidden layers. The model with 2 hidden layers
was better than the others. Specifically, with the limited data
size for 3 hidden layers, the model was unable to learn the good
parameters from the data. Evidently, the number of hidden layers
relies on data properties and the amount of data in the DNN.

To evaluate our mapping function, we examined the drug
expansion through the transfer of drug description to the D2V.
The results, shown in Table 2, indicated that our mapping
function could fit the performance of the D2V. The performance
of the drug description through the mapping function was
slightly better than that of D2V, possibly because some drugs
did not exist in the space of D2V. This finding indicates that
this model cannot predict the ADRs of such drugs without the
mapping function. Accordingly, the mapping function was found
to render the model more flexible to address new drugs.

Table 1. The result showing the performance of model evaluated by area under the receiver operating characteristic curve (AUC).

AUCModel

0.500Probability matrix factorization

0.523Linear Support Vector Classifier

0.597Gaussian Naïve Bayes

0.641Deep neural network adverse drug reaction (DNN ADR) without hidden layer

0.823DNN ADR with 1 hidden layer

0.844aDNN ADR with 2 hidden layers

0.814DNN ADR with 3 hidden layers

0.823DNN ADR without Bio features

0.837DNN ADR without Chem features

0.803DNN ADR without drug2vec features

0.844DNN ADR

aThe italicized values indicate the best results in this comparison.
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Figure 3. Left: Effects of different feature combinations to detect the adverse drug reactions (ADRs) of drugs; right: A comparison of our deep neural
network (DNN) model with various machine learning approaches. PMF: probability matrix factorization; LinearSVC: Linear Support Vector Classifier;
GaussianNB: Gaussian Naïve Bayes.

Figure 4. Left: Performance of the deep neural network (DNN) model on the adverse drug reaction (ADR) identification and prediction tasks and the
overall performance; right: In this experiment, we showed the performance of the model with several different layers. GaussianNB: Gaussian Naïve
Bayes; LinearSVC: Linear Support Vector Classifier.

Table 2. The results showing the ability of the mapping function to transfer the drug description to drug2vec with Mean Average Precision at Top N
(MAP@N).

201510531MAP@N

0.4620.4620.4620.2720.1790.068aMapping function

0.4530.4530.4530.2670.1740.065drug2vec

aThe italicized values indicate the best results in this comparison.

Discussion

Principal Findings
In this study, we aimed to increase the diversity of information
on drugs to improve our ability to detect ADRs. Accordingly,
we extracted information from the chemical and biological
properties of drugs and from the existing biomedical literature.
The MEDLINE was selected as the source for biomedical
literature to identify important auxiliary data because it contains
several types of biomedical papers, such as clinical trials, case
reports, and observational studies, related to drugs. However,
it was difficult to use keywords to identify specific drugs from
millions of papers and words. Therefore, we utilized 2.3 million
biomedical papers to identify the semantic features of drug using
the skip-gram model in Word2Vec. In particular, for a central
word wt under consideration, the probability p (wt±i∣ wt) of
predicting the surrounding word wt±i depended on the wt. The

subscript t indicates a target word, such as the drug name
“Dantrolene,” and the i represented the windows size of the
target word. This feature helped us extract the latent information
of each word, including the words comprising the drug’s name.
After this word-embedding training, we investigated whether
the semantic feature (D2V) could represent the properties of
drugs, such as biomedical and chemical properties. We
visualized the relationships between the learned drug-embedding
vectors based on their similarity (Figure 5). This graph included
746 drugs and presented the relationship of these drugs with
those of the latent information learned from the semantic feature.
Each node presents a drug and the edge represents the similarity
between other drugs. The more similar the drugs in each pair
were, the closer they were in the graph. The larger nodes
represented the drugs that were more similar to other drugs. We
found that the model seems to cluster the drugs used in specific
treatments.
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Figure 5. Relationship between drugs using the semantic feature (drug2vec) of the deep neural network model. There were 746 nodes in this graph,
each representing a drug. The clusters indicated the drugs with a specific treatment. Top: The cluster comprised antidepressants; middle: The cluster
contained antibiotics; bottom: The cluster included ophthalmic medications.

For instance, the drugs in the cluster with the blue circle shown
in Figure 5 (image on the top) comprised antidepressants such
as trazodone, citalopram, clomipramine, and paroxetine. The
cluster to the right contained antibiotics such as ampicillin,
ceftazidime, cefpodoxime, and cefotaxime shown is Figure 5
(image in the middle). Moreover, the cluster at the bottom
included ophthalmic medications such as fluorometholone,
levocabastine, brinzolamide, and dipiverfrin (Figure 5, image
at the bottom). There were other small clusters with their own
specific treatment. Thus, we learned the relationships among
drugs and the latent information from the papers included in
the embedding function at the text-level. Accordingly, the
semantic feature had a great effect on the performance of our
model.

Subsequently, we examined the ability of this model to perform
its identification and prediction functions with reference to
serious ADRs defined by the Micromedex. Using the
identification function of the model, we ranked the potential
ADRs in a list by the probability of their occurrence (Table 3).
One of the reasons why the probability of ADR presented in
Table 3 was not highly prominent was that the positive samples
of these ADRs were rarely reported in this dataset. However,
our model could identify that hydroxychloroquine led to muscle
cramps, which is a serious ADR that occurs in severe
neuromuscular disease. In addition, we extracted 5 drugs that
were recorded only in 2012 to examine the prediction function
of this model.
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Table 3. The adverse drug reaction (ADR) prediction and identification results of the model.

ProbabilityRankSerious ADRDrug

Identification results of drugs with known ADR records

0.01212AnemiaDantrolene

0.00915Congestive heart failureDantrolene

0.9971Muscle CrampHydroxychloroquine

0.01716PhotophobiaHydroxychloroquine

0.1504Serum cholesterol raised19-nortestosterone

0.6903Retinal detachmentCarbachol

Prediction results of drugs without ADR records

0.92017AnemiaAtazanavir

0.45314AgranulocytosisCarbinoxamine maleate

0.34016Anemia, HemolyticCarbinoxamine maleate

0.75020HyperglycemiaDarunavir

0.97420InfectionTemsirolimus

0.9617Myocardial infarctionZoladex

0.92012HypersensitivityZoladex

Findings revealed that our model has the capacity to predict the
serious ADRs of new drugs. For instance, the model predicted
that Zoladex could lead to a serious ADR, myocardial infarction,
which is one of the commonest causes of death in developing
countries.

Limitations
This study has several limitations that need to be addressed in
future studies. First, data diversity plays an important role in
the model. We only used the data published in SIDER. Our
model will be more persuasive and reliable if we can include
more data from different datasets. Because the chemical and
biological properties of drugs contribute most to their effects
on human, the more the databases of drug properties included,
the better the performance of our model. On the other hand, if
we have access to more open-source data, including clinical
trials, spontaneous reporting systems, and EMRs with support
from government and pharmaceutical industry, our model will
have better prediction. Furthermore, our model focused on the
ADR prediction and identification. To identify the probability
of occurrence of each ADR, we set 1325 hidden nodes and the
total number of ADRs in the dataset in the output layer. In other
words, although we had a mapping function to address new
drugs, this model could only predict existing ADRs. Therefore,
in the future work, we plan to utilize more detailed features such
as drug-ADR interaction [13], drug-drug interaction, and
ADR-ADR interaction networks for the prediction of ADRs.

Furthermore, we also plan to investigate other embedding
approaches to represent the ADRs to help predict the
relationships between drugs and new ADRs.

Conclusions
We developed a novel ADR detection model based on the
biological and chemical properties of drugs and the D2V (the
semantic feature). After discussing the drug similarities with
domain experts from the National Cheng Kung University
Hospital and the Institute of Clinical Pharmacy and
Pharmaceutical Sciences, we found out that the D2V can
represent a characteristic of the drug. Our model could not only
discover the potential ADRs of drugs but also predict the
possible ADRs of new drugs. To discover potential ADRs based
on the previous records, our model could identify the hidden
relationship between ADR-ADR interactions. Furthermore, to
predict the possible ADRs of a new drug without any previous
ADR records, using the D2V feature, our mapping function
exhibited good profiling for transferring the drug description
into the D2V. The model exhibited good performance on both
tasks and generated the most suitable results. It will help
pharmacists and health care providers to understand the potential
risk of side effect of drugs and address the issue of
underreporting of spontaneous reports. Above all, our model
will aid pharmacovigilance by identifying and predicting
potential ADRs.
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