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ABSTRACT

How can we localize ourselves within a building solely using
visual information, i.e, when no data about prior location or
movement are available? Here, we define place categorization
as a set of three distinct image classification tasks for view
matching, location matching, and room matching. We present
a novel image descriptor built on texture statistics and
dynamic image partitioning that can be used to solve all
tested place classification tasks. We benchmark the descriptor
by assessing performance of regularization on our own data-
set as well as the established Indoor Environment under
Changing conditionS dataset, which varies lighting condition,
location, and viewing angle on photos taken within an office
building. We show improvement on both the datasets against
a number of baseline algorithms.

INTRODUCTION

Humans possess the remarkable ability to reliably localize
themselves in the world under a multitude of conditions:
Indoors and outdoors, in unknown terrain, with reduced
senses during different weather conditions, and even under
cognitive load while processing other tasks. But how do we
solve this problem? Answering this question will not only
give crucial insight into mechanisms of spatial cognition
in the human brain but may also be important for self-
localization of mobile robots.

For humans, the dominant sensory information used for place
recognition is vision [1]. However, the mechanisms that lead
from visual input to knowledge of a place are poorly under-
stood. What are the features we look at to determine where
we are? Or to detach the question from its anthropological
context: What are the features that best discriminate between
places? Optimal features for this task would have to be spe-
cific for a certain place but invariant to different views within
the location [2].

It is important to distinguish these requirements from the
requirements for vision-based Simultaneous Localization and

Mapping (SLAM; see Section 1.1 for a more detailed discus-
sion). The features required there (tracking features) need to
be stable across successive camera frames and recognizable
from slightly different viewpoints, whereas the features suit-
able for vision-only place recognition have much stronger
invariance requirements. For example, place features need to
be matched across completely different views from a place,
and they need to be stable over long periods of time with
varying illumination conditions. Consequently, successfully
matching place features is a much harder task than matching
tracking features.

But what are suitable place features for this task? On larger
scales, simple, global image statistics have been found to be
discriminative between places. In particular, a global texture
histogram descriptor has been shown to work for place clas-
sification tasks ranging from city-scale to world-scale localiza-
tion [3]. For indoor localization [4], also use histograms over
relatively simple orientation descriptors on the Indoor
Environment under Changing conditionS (INDECS [5])
database.

However, these features are very generic, and confusion may
arise if the same texture feature is found in multiple areas of
an image, e.g., at the ceiling and on the floor. In this paper, we
present an approach that circumvents this problem by parti-
tioning the image according to texture occurrences.

Related work

The problem of one-shot vision-based place categorization
has mostly been investigated on a larger scale level for urban
locations, e.g,, by [6-9] for discrimination within a city and
[10] for discrimination between two cities. In these studies,
authors usually rely on visual features useful for the recogni-
tion of house facades to enable the discrimination between
locations. However, if and how the above results can be trans-
ferred to the problem of a room-level indoor place classifica-
tion is not clear.


https://www.scienceopen.com/user/9786b57e-c2b5-41c2-ab62-9d42aa8be98e
https://www.scienceopen.com/user/9786b57e-c2b5-41c2-ab62-9d42aa8be98e
mailto:sven2@uni-bremen.de
https://www.scienceopen.com/document/vid/5ed76ab3-2063-449e-8645-7066417ce021

S. Eberhardt: Indoor place categorization based on adaptive partitioning of texture histograms

In localization tasks in robotics, this question is often over-
shadowed by the development of vision-based SLAM (see
[11] and [12] for a review). In SLAM applications, an auto-
nomous, mobile agent is placed into and moved through an
environment with no prior information about its location or
surroundings. The agent then simultaneously builds a map of
its surrounding and places itself within this map.
Vision-based SLAM typically operates by tracking salient
features between successive camera frames and deriving
self-movement from shifts and deformations of these tracked
features, which is sometimes also called visual odometry [13].
Typically, tracked features are simple image patches, which
are determined as unique landmarks in an environment (e.g.,
[14]) to avoid confusion with other locations.

Indoor place categorization is sometimes assessed in the ‘lost
robot’ (also called ‘kidnapped robot’)-problem [15], where a
mobile robot is placed at a random position and needs to find
its place in a previously recorded map. Typically, this is done
based on map features over the course of several frames, e.g,
by RATSLAM [16]. However, in this study, we try to solve the
lost robot problem in a one-shot approach using visual data
only. There are other studies which employ a holistic visual
descriptor, e.g., by [17] using color histograms, [4] and [18]
using image statistics and [19] using Scale-invariant feature
transform (SIFT [20]) descriptors.

Textons are histograms over densely sampled cluster assign-
ments on Gabor filter responses, which have been primarily
developed for image segmentation [21]. Despite this, they
have been shown to be surprisingly strong in scene classifica-
tion [22] as well as in some outdoor self-localization
tasks [3].

One problem with using texture histograms for high-level
image classification tasks is that the same texture may be
found in multiple regions of an image where they belong to
completely different elements of a scene. A common approach
is therefore to partition an image (as, for example, in Spatial
Pyramids by Lazebnik et al. [23]) and handle individual image
portions separately. This is a very crude approach as parti-
tions do not necessarily coincide with contentual segments of
an image.

Here, we will address this issue by partitioning images
adapted to their contents.

Task definitions

Finding a suitable measurement for the quality of a localiza-
tion descriptor is not trivial. In the context of robot tracking,
measurements of deviation from the ground truth position
are commonly used [11], but this does not make sense in
one-shot place categorization problem where neither metric
information nor connectivity between places is known.

We define indoor place categorization as a classification
problem, where labeled images of a location are used as
training data for a classifier. Performance is evaluated as

percent correct PC, sometimes also called recall [24], on test
images. With true positives of class i as tp; and false negatives

as fn;:
Z tpi

1 PC= "
W > tpi+fui

Chance level of this measure is simply ¢ = 1/n, where n is the
number of classes.

The definition of place categorization depends very much on
the definition of a place, which may be interpreted as categor-
ization of only different views from one specific location [2]
or may be defined as broadly as counting all images of a
whole city as one place that is being categorized against other
cities [10].

To assess indoor place categorization, we define three differ-
ent conditions on which feature descriptors will be tested.
Room classification means that given a number of training
images from each room, a classifier needs to determine the
room of a test image. The spatial distance between sample
images of each room may be up to a few meters and all view-
ing angles may occur, as well as different lighting conditions.
Location classification means that each location is one class,
and variations within the class include only viewing direction
and lighting.

View classification means that sample images are taken from
the same location and in the same viewing direction. The
same objects will be visible in images of the same class and
only variations in illumination and slight shifts might occur.
This condition is not strictly place categorization since it
regards different views from the same location as different
places but serves as a sensible control condition here.

METHODS
Adaptive partitioning of texture histograms

The proposed descriptor is calculated in four steps:

(1) All image pixels are assigned into texture clusters
(Textons).

(2) Textons are partitioned by their occurrence in differ-
ent image regions.

(3) Images are partitioned
partitioning.

(4) Separate Texton histograms are calculated for each
image partition.

according to Texton

Textons is a term coined by Julesz in 1981 for small image
patches described by second-order statistics that play a role
in human peripheral vision [25]. Textons have later been
introduced for image segmentation and texture classification
by Malik et al. [21].

In the implementation by Malik which is used here, a
vector of Gabor filter responses is assigned to each pixel in an
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image (for details, see [21]). A set of ny = 256 clusters is
precomputed on a training dataset, and each pixel is assigned
the cluster with the least square distance to its response
vector.

We also use a generalization to colored Textons similar to the
approach described by [26]. Image RGB values are trans-
formed to the opponent color space as described in [27]:

E 0.06 0.63 027 Ryy
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Filters are run on all output channels (ie., luminance (£),
blue-yellow (£,), and green-red (£,,) channel) separately, and
the filter outputs are concatenated before the clustering step.
Texton partitioning. In the next step, we partition Textons
into their typical occurrence in different vertical parts of an
image, such as floor, ceiling, or central area.

Let c,; be the Texton assignment from the previous step
for image position x,y on indexed image i. We then build
histograms per row (y) counting how many times a Texton
was assigned to a Texton cluster C; in all unlabeled test
images 1x(x) is the indicator function which is 1 if x € X and
0 otherwise.

(3) Tjiy = Zlq(cxy,i)

From this, we derive an average vertical position of occur-
rence y; for each Texton cluster:
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We sort the clusters by y; and split the sorted list into n parti-
tions such that the total histograms counts are approximately
equal in each partition. Let }~ be the sorted list of y; and 7(])
the sorting indices, then the normalized cumulative sums of
Texton counts along their vertical positioning are:

~

j
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R~ ranges from 0 to 1. This range is split into n partitions, and
exton clusters C; are assigned to a partition p based on their
placement in R:

) R =
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Image partitioning. Depending on camera angles, field of
view, and objects in the scene, different portions of each
image may be taken up by ceiling, floor, and central areas.

We therefore partition each image n according to the total
amount of Textons T;(P) from each partition P.

(7) Ti(P) = Z 1p(p(cxy.))
xy

The splits between partitions S; (P) of an image i of height h
are put at:

p
Z Ti(p)
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n
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Texton histograms. Texton histograms are calculated sepa-
rately for each partition. Histograms are normalized by divid-
ing them by the height of their respective sections. The
resulting vectors are concatenated into one feature vector of
length n - ny.

Baseline feature vectors

For baseline performance, we also evaluate several estab-
lished visual feature descriptors derived from the biologically
inspired vision models.

Hierarchical MAX (HMax)-model is an object recognition
model based on the neocognitron [28] and popularized by
Serre et al. [29], which has been used to model neuron
receptive field properties found in the ventral stream of the
primate visual cortex by Hubel and Wiesel [30]. We use the
Cortical Network Simulator (CNS) [31] implementation of
HMax with parameter settings and dictionaries as chosen by
Serre et al. [29]. Details of the implementation can be found
in [29].

HMax features are included in this comparison because they
have been shown to be able to discriminate well between
object categories [29], which make them a good representat-
ive of landmark-based feature vectors. Based on the assump-
tion that the presence or absence of object classes (like, for
example, dishes in a kitchen, chairs in a conference room) are
discriminative for places, HMax features might perform satis-
factorily for self-localization as well.

Gist is a low-dimensional feature vector designed to capture
the gist of a scene developed by Oliva et al. It consists of the
first few principal components of spectral components on a
very coarse grid (8 x 8) as well as on the whole image. Gist
features are of special interest here because the algorithm
has developed in for scene recognition task. For instance,
Oliva et al. have found in [32] that Gist features successfully
distinguish between scene categories like forest and city, and
it has been hypothesized that humans use similar features for
rapid scene classification tasks [33].
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Since there is a strong relation between scenes and locations,
Gist features are promising candidates for localization.

Spatial pyramids

Spatial pyramids have been introduced by Lazebnik et al.
[23]. In this approach, histograms over low-level features in
image regions of different size are calculated and concate-
nated to one large feature vector. The features used here are
densely sampled SIFT [20] descriptors, and we test a three-
level pyramid. For the sake of comparability, we omit the
custom histogram matching support vector machine (SVM)
kernel used by Lazebnik and use the same linear kernel and
regression method also employed for other models.
Luminance histogram. As an additional control to test whether
the task can be completed on very simple features, we also
test a simple luminance histogram over the grayscale values
of the image.

Room, place, and view categorization

To test how well potential place feature discriminates
between rooms, places. and views, we evaluate performance
as PC labels in one-versus-all classification, where all images
taken from one room/place/view (see section on Task defini-
tions) are samples of one class. Classification is performed as
linear regression with leave-one-out cross-validation for para-
meters on the feature vector, which has been reduced to 128
components using principal component analysis (PCA) to
ensure all descriptors have the same dimensionality. Each
test is repeated 50 times with different random splits
between test and training data to determine mean perform-
ance and mean error. All classifications are performed using
the Grand Unied Regularized Least Squares (GURLS) classi-
fication package for MATLAB [34].

All source codes, datasets, and trained dictionaries
required to reproduce the results of this study can be
freely downloaded from http://www.informatik.uni-bremen.
de/cog neuroinf/indoorstudy. We also provide data on para-
meter tuning as applicable to the models in the supplemental
materials.

Test datasets

INDECS database. The INDECS database by Pronobis et al. [5]
is a collection of 3252 indoor photos taken from five different
under three different lighting conditions (sunny, cloudy, and
night). Photos are sorted by the position they are taken from,
viewing angle and lighting condition (see Figure 1). We use
subsets of the database sorted into different categories to test
the different place categorization conditions:

For the room classification task, five rooms with 216 images
per room are randomly selected. Ten images per class are
used for training and the rest for testing. The place classifica-
tion task picks 90 locations with 12 images per class, of
which five are used for training and the rest for testing. The
view classification task runs on 50 different views, where
location and viewing angle are fixed, so only three samples
per class are available. One sample is used for training and
the rest for testing.

3Rooms. To ensure that our results are not specific to one
dataset, we created an additional image dataset consisting of
pictures taken from three connected rooms (see Figure 2).
For the classification, we took 543 pictures at human eye level
from different locations and different view directions from
the three rooms.

RESULTS
INDECS classification

For the classification tasks on the INDECS database, there is a
strong dependence of performance on task condition (see
Figure 3). Although samples were taken from the same image
dataset, feature vectors rank differently depending on how
the classes are defined. Performance on luminance histogram
is generally very low and near chance level for all three tasks.
Our proposed model (Adaptive partitioning of texture histo-
grams, APTH) as well as the variant running on colored
Textons (Adaptive partitioning of color texture histograms,
APCTH) performs well on all three place categorization tasks.
For room classification (Figure 3 left), we achieve 48.10 *
0.53% correct on APCTH, which outperforms the colored tex-
ton approach of 46.34 + 0.56% and lies well above all other
control models. Both runs were performed with n = 2
partitions.

Figure 1. Example images from the INDECS database for cloudy (A), night (B), and sunny (C) condition.
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Figure 2. Example images from kitchen (A), hallway (B), and printer area (C).

On location classification performance is much lower, which
can be explained by the higher number of classes and also
the higher confusion between locations within the same
room. Adaptive partitioning again leads to stronger perform-
ance (APTH: 14.20 + 0.32%, APCTH: 10.39 * 0.29%) than
classification on holistic Texton histograms (Texton: 11.88 +
0.31%, Colored texton: 9.76 * 0.31%). Interestingly, using
color leads to higher performance on room classification but
is derogatory for performance on location classification.

On view classification, all Texton-based approaches are out-
performed by the control models that employ fixed image
partitioning (Gist: 89.48 + 0.49%, Spatial Pyramids: 84.36 *
0.57%). However, adaptive partitioning of Textons still leads
to a huge improvement over raw Texton histograms (APTH:
64.24 + 0.76%, Texton: 42.56 + 1.05%).

3Rooms classification

In the 3Rooms dataset, we test room categorization perform-
ance on a dataset that has fewer (3) but more diverse rooms,

where a larger number of image samples per room is
available. Performance results for the room classification
task are shown in Figure 4. Again, room classification fails on
the luminance histogram, for which performance remains
at chance level. For a low sample count (Figure 4 left),
APTH yields only a slight improvement over Textons (APTH:
56.62 + 1.37%, Textons: 54.79 * 1.69%), and both are
outperformed by unpartitioned colored Textons (60.96 *
2.00%).

However, as more samples become available (Figure 4 right),
APTH performance picks up leads to near perfect labeling
(94.94 £ 0.36%), hinting that after partitioning, more task-rel-
evant information is encoded in the descriptor.

DISCUSSION

We have shown that adaptive partitioning of texture histo-
grams can provide a powerful image descriptor to perform
several different place recognition tasks and find that our
descriptor outperforms all tested baseline models in most of
the tested place classification conditions.
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Figure 3. Classification performance of room, location, and view classification task in PC by feature vector. Dashed lines mark chance
levels. APTH: Adaptive partitioning of texture histograms. APCTH: Adaptive partitioning of color texture histograms. SpPyr: Spatial
Pyramids. LumHist: Luminance histogram. CTexton: Colored Textons.
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Figure 4. Classification performance of room classification task in PC by feature vector for different number of training samples.

Dashed line marks chance level.

The performance gain over vanilla global Texton histograms
can be attributed to reduced confusion when the same
Texton assignment appears in different areas of the image
where they represent different contentual elements.

The rejection of both Gist and Spatial Pyramid features
may be surprising, as they have both been introduced in
a scene recognition context, which is often closely linked
to place recognition. A possible explanation is that Gist
has been tested on scenes downloaded by a keyword
from photographic image databases [32]. However, when a
photographer pictures a certain scene, there is often a default
view that is taken which is specific to the scene at hand [35,
36]. For example, a tropical beach is commonly portrait with
the vanishing point along the shore, the sun across the sea
and a number of palm trees on the opposing side. Such artifi-
cial features may be caught by Gist, but they are not inherent
to the location when photos are taken in random angles. A
similar argument may be made for the Spatial Pyramid
descriptor.

The poor performance on HMax descriptor may be attributed
to the fact that the hierarchical HMax architecture picks on
complex features that are unique to certain objects [32]. For
example, in a kitchen, a typical HMax feature might be
responsive to a pot or an oven. Since these are valuable track-
ing features, they lead to a strong performance in the view
matching task. But individual, tracked objects would only be
present in a limited number of views at the location and so
they do not generalize well to other views from the same
place.

Our results therefore highlight that place recognition is a task
which is different from other tasks typically solved in pattern
recognition problems such as object detection, scene categori-
zation, or feature tracking between successive camera frames
as found, e.g., in SLAM applications.

But why do Texton histograms in general and adaptively par-
titioned Texton histograms in particular generalize? The
mechanisms are still poorly understood and should be a sub-
ject of future studies. However, one possible explanation is
that Textons are designed to discriminate between surface
textures and therefore attributes such as material types of
the surrounding environment. Surface types are common to a
more generic class of objects found at certain places than
individual objects themselves. For example, the existence of
metallic surfaces may be indicative of a kitchen because many
metallic objects may be found there, and they are distributed
across the whole room.

Therefore, we hypothesize that a suitable visual place
descriptor should be geared at recognizing surface structure
instead of objects.
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