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Abstract

CD19-targeted chimeric antigen receptor (CAR)-T cell therapy has shown high potential for treating B-cell 
hematological malignancies and has been approved by the US FDA. However, CAR-T cell therapy for T-cell hematologic 
malignancies poses feasibility challenges, including the difficulty of obtaining sufficient healthy cells from patients, 
CAR-T cell fratricide, and the risk of immunodeficiency. In this review, we discuss bottlenecks and possible solutions 
in CAR-T cell therapy for T-cell acute lymphoblastic leukemias, as well as future directions in this field.
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1. INTRODUCTION

T-cell acute lymphoblastic leukemia (T-ALL), a highly 
aggressive and invasive hematological malignancy, 
accounts for approximately 25% of adult and 15% 
of pediatric acute lymphoblastic leukemia (ALL) cases 
[1, 2]. T-ALL is more likely to relapse than B-cell acute 
lymphoblastic leukemia (B-ALL) [3]. Treatment of mul-
tiple relapsed/refractory (r/r) T-ALL is challenging, and 
patients have dismal prognoses [4, 5]. The estimated 
5-year survival is currently 70–85% in T-ALL but 7% in 
relapsed T-ALL [6, 7]. Allogenic hematopoietic stem cell 
transplantation (SCT) is an ideal cure for T-ALL, which 
is recommended for patients who experience the first 
relapse and may induce complete remission (CR) [8, 9]. 
CAR-T cell therapy has been widely used for B-ALL 
[10-13]. To date, the US FDA has approved five CAR-T 
cell therapies for hematological malignancies that 
express the CD19 or BCMA antigen. However, CAR-T cell 
therapy for non-B hematologic malignancies is more 
challenging and remains in an early exploration stage 
[10-14].

Herein, we summarize clinical studies exploring CAR-T 
cell therapy for T-cell malignancies, and also discuss lim-
itations and potential future research directions in this 
field.

2. Targeting the main antigens

2.1 CD7
CD7 is a membrane glycoprotein expressed on T lympho-
cytes and NK cells [15, 16]. Studies have demonstrated 
that 95% of T-ALL and T-cell lymphomas are CD7 pos-
itive [17]. A case report has described autologous CD7 
CAR-T cell therapy leading to CR in a high-risk patient. 
The patient experienced a manageable cytokine release 
syndrome (CRS). CAR-T cells persisted for approximately 
40 days in vivo [18]. In autologous CD7 CAR-T cell ther-
apy, difficulties in isolating and obtaining a sufficient 
number of healthy T cells without tumor cell contami-
nation may be encountered [19]. CAR-T cell-mediated 
targeting of the same antigen can cause endogenous 
T cell depletion or CAR-T cell fratricide. The case study 
used CAR with inducible caspase 9 to withdraw CAR-T 
cells if needed. Unexpectedly, the fratricide effect was 
not observed in the patient [18]. In addition, Dai et al. 
have used autologous CD7 CAR-T cells to treat a patient 
with early T cell precursor lymphoblastic leukemia/
lymphoma (ETP-ALL/LBL) with the TP53 mutation. The 
patient achieved TP53 mutation-negativity on day 91 
after receiving CD7 CAR-T cells [20]. In another ongoing 
clinical trial, researchers have treated nine patients: six 
with r/r T-ALL/LBL and three with r/r ETP-ALL/LBL with 
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autologous CD7 CAR-T cells. The CR rate at 3  months 
was 71.4% in the patients who were followed up for 
3 months. Of the first six patients, two experienced grade 
2 CRS, and the remainder developed grade 1 CRS [21]. In 
this trial, CD7 CAR-T cells with the CD7 protein expres-
sion blocker (PEBL) structure overcame fratricide [22]. In 
a related meeting abstract, Yang et  al. have reported 
findings in 14 patients with r/r T-ALL who received 
autologous CD7 CAR-T cells, of whom 13 achieved CR 
or incomplete count recovery by 28 days post-infusion. 
Only one patient experienced grade 3 CRS, whereas 
others experienced grade 1 or 2 CRS. CD7 CAR-T cells 
persisted in the peripheral blood for a median of 52.5 
days at the last evaluation [23].

Use of donor-derived CAR-T cells rather than autol-
ogous CAR-T cells can circumvent the challenges of 
obtaining adequate healthy T cells from patients and 
tumor cell contamination. Donor-derived CAR-T cells are 
not affected by patient disease status, but may cause 
graft-versus-host disease (GVHD) and rejection [24]. In 
our center, we have treated 20 patients with r/r T-ALL 
with CD7 CAR-T cells derived either from new donors or 
from prior transplantation donors [25]. When patients 
received new donor-derived CAR-T cell therapy, they 
underwent SCT derived from the same donors to alleviate 
long-term hematologic toxicity [25]. However, this strat-
egy is limited to patients who have received prior SCT 
or those who are eligible for transplantation and have 
matched donors. A total of 90% of patients achieved 
CR, whereas only 10% of patients developed grade 3 or 
higher CRS. CD7 CAR-T cells proliferated effectively and 
persisted in vivo for more than 3 months [25].

The CAR construct also incorporated a PEBL sequence 
causing retrograde transport of CD7 protein to the 
endoplasmic reticulum (ER). Consequently, the antigen 
was entrapped in the ER/Golgi, thus blocking its normal 
expression and minimizing fratricide [25, 26]. Previously, 
other researchers advocated for a similar technique for 
decreasing CD7 expression and preventing fratricide [27]. 
CD7 CAR-T cells can still target endogenous CD7-positive 
T and NK cells, thus increasing infection risk. A total of 
25% of patients developed viral activation, and one 
patient with a fungal infection died of fungal pneumo-
nia. In vitro analysis showed that the CD7-negative T cells 
reacted to fungi and viruses, thus indicating that they 
might have had some immunoprotective activities [25]. 
A total of 60% of patients had grade 1 or grade 2 GVHD, 
but all adverse effects were managed with ruxolitinib 
and/or methylprednisolone [25]. The above evidence 
indicates that donor-derived CD7 CAR-T cell therapy is 
highly efficient, but care should be taken to manage the 
related adverse effects, including infections and GVHD.

Universal CAR-T (UCAR-T), as an “off-the-shelf” prod-
uct, is under intensive investigation. Gene-editing sys-
tems such as TALEN and CRISPR/Cas9 have been used 
to delete endogenous TCR and MHC genes to prevent 
GVHD and rejection [28, 29]. UCAR-T cells may offer the 
benefit of preventing tumor cell contamination in T-cell 

malignancies. UCAR-T cells are not affected by patient 
disease status, thus allowing patients to receive standard 
and timely treatment. In 2018, Cooper et al. used CRISPR-
Cas9 to eliminate TCR alpha chain and CD7 expression on 
CD7 CAR-T cells. Consequently, the CD7 CAR-T cells not 
only demonstrated efficient tumoricidal activity against 
T-ALL primary cell lines without GVHD but also increased 
proliferation efficiency in  vitro [30]. However, to date, 
UCAR-T cell amplification and persistence in  vivo and 
the possible safety issues associated with gene-editing 
remain limitations of UCAR-T cell therapy. In 2020, Li 
et al. used CD7 UCAR-T cells to treat two patients with 
T-ALL, both of whom achieved CR. One patient had been 
in remission for more than 1 year after infusion of CAR-T 
cells [31]. Because T and NK cells express CD7, CD7 CAR-T 
cells target patients’ alloreactive T and NK cells, thereby 
preventing rejection [32]. However, UCAR-T cells may 
have less ability to persist in vivo than autologous and 
donor-derived CAR-T cells [25, 31].

From the above-mentioned CAR-T cell targeting of 
CD7, the persistence of autologous and donor-derived 
CAR-T cells appears to be much higher than that of 
UCAR-T cells. The efficacy of autologous CAR-T cells has 
been confirmed, although tumor cell contamination 
remains a challenge. Donor-derived CAR-T cell therapy 
has achieved convincingly high efficacy, but it involves 
donors, thus posing obstacles under some conditions 
(such as a lack of suitable donors) [33]. The efficacy of 
UCAR T cell therapy, despite its ability to avoid tumor 
cell contamination, fratricide, and GVHD, requires con-
firmation through more clinical trials. Nonetheless, 
endogenous T-cell depletion is a common problem 
awaiting resolution.

2.2 CD5
CD5 is a glycoprotein with an extracellular domain that 
spans the cell membrane. CD5 is expressed on thymo-
cytes, T lymphocytes, and B-1a cells [34, 35]. In 2015, 
Mamonkin et al. revealed that CD5 CAR-T cells exhibit 
partial and temporary fratricide, and mediate antitu-
mor activity in  vitro [36]. Unlike CD7 CAR-T cells, CD5 
CAR-T cells can proliferate without knockdown of CD5 
gene expression. In 2018, Mamonkin et  al. found that 
CD5 CAR-T cells with the 4-1BB co-stimulatory domain, 
instead of CD28, can enhance antitumor activity but may 
enhance CAR-T cell fratricide [37]. However, stringent 
CD5 knockdown may favor CAR-T cell proliferation [38].

Hill et al. have performed a clinical trial in which four 
patients with T-ALL and five patients with T-cell non-Hodg-
kin lymphoma received autologous CD5 CAR-T cell ther-
apy. Three of nine patients achieved CR, one of whom 
had T-ALL. Three of nine patients experienced grade 1 or 
2 CRS [39]. Interestingly, fratricide was not a major prob-
lem, because CAR-T cells expanded in the patients from 
0.7 to 6 months, according to polymerase chain reaction 
(PCR) detection, and normal CD3-positive T cells were 
not completely depleted. This result might have been 
because CD28-costimulation and CD5 down-regulation 
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on T cell surfaces cause CAR-T cells to experience only 
transient fratricide. In 2021, the same team updated their 
data and reported that four of nine patients with T-cell 
lymphoma achieved responses. CR was observed in two 
patients (22.2%): one with angioimmunoblastic TCL and 
one with peripheral T-cell lymphoma. Grade 1 CRS and 
grade 2 CRS were observed in three patients and one 
patient, respectively. No other neurotoxicity events were 
observed in this clinical trial [40]. Despite these encourag-
ing findings, more trials are needed to verify the safety 
and efficacy of CD5 CAR-T cell therapy.

In 2020, Feng et al. treated a patient with T-LBL with 
donor-derived CD5 CAR-T cells [41]. The researchers 
produced CD5 CAR-T cells that secreted IL-15 protein to 
potentiate CD5 CAR-T cell function [42]. Blasts in the cer-
ebrospinal fluid decreased from approximately 80% to 
approximately 2% 1 week after CD5 CAR-T cell infusion 
and were undetectable by the fourth week. GVHD was 
not observed in this patient. The patient subsequently 
underwent SCT [41].

Table 1 summarizes the above-mentioned preliminary 
results from several clinical trials of CD5 or CD7 CAR-T 
cell therapy.

3. Targeting other antigens

CD3 is a pan-T cell antigen, and cytoplasmic CD3 is con-
sidered an indicator of T-cell lineage [43]. CD3 is not an 
ideal antigen target for CAR-T cell therapy, because of 
fratricide. Researchers have used TALEN to knock out the 
endogenous TCRαβ/CD3 before modifying CD3 CARs. 
CD3 CAR-T cells have been found to kill primary T cells 
with high specificity and potency [44]. CD1a is expressed 
on cortical T-ALL cells, but not on normal T cells or CD34-
positive progenitor hematopoietic cells [45-48]. These 
characteristics makes this antigen suitable for cortical 
T-ALL. CD1a CAR-T cells have shown robust anti-tumor 
activity in preclinical investigations, but more clinical tri-
als are needed [48].

T-cell-derived hematologic malignancies may come 
from CD4+ T cells [49]. CAR-T cells targeting CD4 may 
spare endogenous CD8 T cells, thus avoiding complete 
T cell immunodeficiency after infusion in patients. 
Preclinical assays have demonstrated that CD4 CAR-T 
cells can efficiently eliminate CD4-positive leukemic cells 
in co-culture assays [50]. However, we did not see any 
evidence of CD4 CAR-T cell therapy in clinical trials.

Most T cells express the TCR chain, which is encoded 
by the T cell receptor beta constant 1 (TRBC1) or TRBC2 
gene [51]. TCR is expressed in more than 95% of periph-
eral T cell lymphoma (PTCL) and 30% of T-ALL cases 
[52, 53]. TRBC1 CAR-T cell therapy may decrease fratri-
cide to some extent by sparing TRBC2 T cells [54]. CAR-T 
cell therapy is currently being developed for PTCL. In 
clinical trials, CD30 CAR-T cell therapy for Hodgkin lym-
phoma has been demonstrated to be effective. CD30 
is also present on a subset of PTCL, including anaplas-
tic large cell lymphoma, and may serve as a promising 

target [55,  56]. In one clinical trial, two patients with 
anaplastic large cell lymphoma received CD30 CAR-T cell 
therapy, but the efficacy was limited [57].

4. Limitations of CAR-T therapy for T-ALL/T-LBL

4.1 Difficulty in obtaining autologous healthy T cells
Normal and malignant T cells usually have some overlap 
in phenotypes. Therefore, obtaining healthy T cells with-
out tumor cell contamination from patients who have 
tumor cells in the peripheral blood or considerable lym-
phopenia after intensive therapy may be difficult [19]. 
The incorporation of tumor cells may cause the emer-
gence of treatment-resistant cells, through a mechanism 
of antigen masking, as previously reported in CD19 CAR-T 
cell therapy [19]. As described earlier, generating alloge-
neic CAR-T cells from transplantation donors or healthy 
third-party donors may be a viable option. Furthermore, 
UCAR-T cells also serve as good sources.

4.2 CAR-T fratricide
The developed targeted antigens in CAR-T cell therapy 
to treat T-ALL, such as CD7 and CD5, are expressed on 
healthy T cells and CAR-T cells [58, 59]. CAR-T cell frat-
ricide results, thus decreasing CAR-T cell amplification 
[30, 32]. As described earlier, researchers have used the 
PEBL system, composed of a target-targeting scFv asso-
ciated with a retention domain, which entraps antigen 
in the ER/Golgi and hinders expression [27]. In addition, 
UCAR-T cells are resistant to fratricide after deletion of 
the antigen via a gene-editing system [30].

4.3 Immunodeficiency
T-cell aplasia and severe immunodeficiency occur 
when CAR-T cells deplete endogenous normal T cells. 
Exogenous immunoglobulin replacement therapy can 
be used to treat B-cell aplasia caused by CAR-T cell per-
sistence in patients with B-ALL [60, 61]. In contrast, T-cell 
aplasia may be more serious or even life-threatening 
and have no effective treatment [62]. T-cell aplasia 
may be prevented through several suggested methods. 
Targeting an antigen that is absent on normal T cells or 
is expressed on only a small percentage of normal T cells 
may leave at least some of the normal T cells intact [63]. 
Using CAR-T cells with a regulated lifespan or activity 
whose anti-tumor effects are limited can be advanta-
geous for preventing the onset of T-cell aplasia [64]. In 
addition, bridging to SCT after CAR-T cell therapy may 
be an additional choice that can be made to decrease 
the risk of CAR-T-associated T-cell aplasia [65,  66]. The 
ultimate strategy to circumvent this problem may involve 
deletion of the target antigen gene from hematopoietic 
stem cells to differentiate T cells lacking target antigen 
expression. In a preclinical study by Kim et al., stem cells 
with CD7 deletion have been transplanted into recipient 
mice before CD7 UCAR-T cell therapy. Stem cells can suc-
cessfully differentiate into CD7-negative T cells and CD7-
negative NK cells in vivo without dysfunction, and these 
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CD7-negative cells can tolerated well to CD7 UCAR-T 
cells [67]. Transplantation of gene-edited stem cells may 
be applied to other targets, such as CD5. However, gene-
editing of stem cells is in the immature stage poses safety 
concerns and may require further optimization before 
widespread use in clinics.

These bottlenecks and strategies in CAR-T cell therapy 
for T-ALL/T-LBL are illustrated in Figure 1.

5. CONCLUSION

Currently, chemotherapy and SCT are recommended for 
ALL therapy but are limited by the problem of relapse 
[3]. CAR-T cell therapy has been found to improve out-
comes in patients with r/r B-ALL, but the difficulties in 
obtaining sufficient healthy T cells from patients, CAR-T 
cell fratricide, and the risk of immunodeficiency limit its 
clinical applications in T-ALL.

Preliminary outcomes have been obtained for CD7, 
the most common target of CAR-T cell therapy for 
T-ALL. However, the same antigens shared by malignant 
T cells, CAR-T cells, and healthy T cells can cause tumor 
cell contamination, fratricide, and immunodeficiency. 
As previously described, allogeneic CAR-T cell therapy 
has demonstrated several advantages over autologous 

CAR-T cell therapy in overcoming the problem of tumor 
cell contamination in manufacturing CAR-T cells [25, 31]. 
The problem of fratricide can be solved by decreasing 
the expression of the target antigen on CAR-T cells with 
PEBL or a gene-editing system [27, 30]. Furthermore, 
major efforts should be focused on finding solutions to 
prevent immunodeficiency. Screening for novel and spe-
cific antigens restricted to malignant cells, equipping 
CAR-T cells with safety switches, and post-CAR SCT may 
be beneficial in controlling immunodeficiency [63-66]. In 
addition, transplanting stem cells with deletion of target 
antigen genes before CAR-T cell infusion may be a prom-
ising strategy to prevent immunodeficiency [67]. All these 
strategies will require in-depth evaluations to validate 
their safety and efficacy in preclinical and clinical trials.
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Figure 1  |  Bottlenecks and proposed solutions of CAR-T cell therapy for T-ALL/T-LBL.
a) Proper separation and purification T cells without tumor cell contamination is challenging. Strategies using donor-derived CAR-T or UCAR-T 
cells should be considered. b) The shared expression of antigen leads to CAR-T cell fratricide. Proposed solutions include the use of a CAR 
construct with KDEL to retain antigen protein in the endoplasmic reticulum and the use of a gene-editing system to delete antigen genes in 
CAR-T cells. c) The shared expression of target antigens by endogenous healthy T cells results in off-tumor/on-target toxicity. Proposed solu-
tions include rebuilding the T-cell compartment from HSCs lacking expression of target antigens (such as CD7) or screening for truly specific 
tumor-restricted antigens. Abbreviations: CAR, chimeric antigen receptor; CRISPR, clustered regularly interspaced short palindromic repeats; 
KDEL, endoplasmic reticulum retention signal; KDELR, endoplasmic reticulum retention signal receptor; scFv, single-chain fragment variable; 
T-ALL/T-LBL, T-cell acute lymphoblastic leukemia/T-cell lymphoblastic lymphoma; HSC, hematopoietic stem cell; KO, knockout; RNP, ribonucleo-
protein; TCR, T cell receptor; UCAR, universal chimeric antigen receptor.
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