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Abstract 

Deterioration and impoverishment of soil, caused by environmental pollution and climate change, result in reduced 
crop productivity. To adapt to hostile soils, plants have developed a complex network of factors involved in stress 
sensing, signal transduction, and adaptive responses. The chemical properties of reactive oxygen species (ROS) 
and reactive nitrogen species (RNS) allow them to participate in integrating the perception of external signals by 
fine-tuning protein redox regulation and signal transduction, triggering specific gene expression. Here, we update 
and summarize progress in understanding the mechanistic basis of ROS and RNS production at the subcellular level 
in plants and their role in the regulation of ion channels/transporters at both transcriptional and post-translational 
levels. We have also carried out an in silico analysis of different redox-dependent modifications of ion channels/
transporters and identified cysteine and tyrosine targets of nitric oxide in metal transporters. Further, we summarize 
possible ROS- and RNS-dependent sensors involved in metal stress sensing, such as kinases and phosphatases, as 
well as some ROS/RNS-regulated transcription factors that could be involved in metal homeostasis. Understanding 
ROS- and RNS-dependent signaling events is crucial to designing new strategies to fortify crops and improve plant 
tolerance of nutritional imbalance and metal toxicity.

Keywords:  Heavy metals, ion channels, nutrients, post-translational regulation, reactive nitrogen species, reactive oxygen 
species, signaling, transporters, transcriptional regulation.

Introduction

Currently, more than a billion people suffer from malnourish-
ment, while a similar number lack basic micronutrients, such 
as Zn, Fe, and Cu, in their diet. These deficiencies have a major 
impact on human health, and forecasts predict that this impact 
will become worse in the future (Semba et al., 2022). At the 

same time, one of the consequences of anthropogenic action is 
the accumulation of heavy metals, which are very harmful to 
all types of organisms (Huang et al., 2020). Soil pollution has 
become a major issue worldwide, with an increase of polluted 
areas in China, Australia, the USA, and Europe in particular 
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(Yang et al., 2022). Some of these contaminated farmlands are 
still used to cultivate crops, posing a high risk to human health 
(Yang et al., 2022).

Another major contaminant in the soil is high amounts of 
salts (predominantly NaCl), which accumulate as a result of 
either natural causes (e.g. rock weathering) or inappropriate 
agricultural practices such as the use of low-quality water 
for irrigation. Globally, the area of soil affected by salinity is 
increasing at an alarming rate of 2–3 ha min–1 (Shabala et al., 
2014), and soil salinity is expected to affect over 50% of the 
world population in the future (Liu et al., 2020). Salinity stress 
tolerance was present in the ancestors of crops but has been 
significantly weakened or lost during domestication (Palmgren 
et al., 2015; Lopez-Marques et al., 2020; Chen et al., 2021). As 
a result, all major staple crops (rice, wheat, maize) are highly 
sensitive to soil salinity.

An efficient way to deal with heavy metal contamination 
and salinity would be to develop crops that are able to take 
up significant quantities of heavy metals or salts from the soil 
without a yield penalty and, at the same time, prevent their 
accumulation in the edible plant parts. To achieve this aim, a 
deep understanding of the mechanisms that regulate the up-
take, translocation, and sequestration of salt and heavy metals 
is required.

When plants are exposed to hostile soil conditions (e.g. nu-
tritional deficiencies, salinity, or the presence of heavy metals), 
they increase their production of reactive oxygen species (ROS) 
such as ·OH, H2O2, O2·

–, and 1O2. These ROS originate as 
by-products of aerobic metabolism and their accumulation 
is determined by the balance between their production and 
their elimination by antioxidant systems (Sandalio et al., 2012; 
Halliwell and Gutteridge, 2015). Uncontrolled levels of ROS 
are toxic: they cause oxidative stress and result in damage to 
various macromolecules (lipids, proteins, and DNA). However, 
ROS (mainly H2O2) also have an important signaling role 
in the control of processes such as growth, development, or 
the response to different biotic and abiotic stress conditions 
(Sandalio et al., 2012; Peláez-Vico et al., 2022). Transcriptomic 
studies have shown the existence of specificity in ROS signal-
ing and responses induced by different stimuli (Gadjev et al., 
2006; Vaahtera et al., 2014). The mechanisms involved are not 
well known but require the intervention of Ca2+ signals and 
other molecules such as nitric oxide (NO) and various hor-
mones (Peláez-Vico et al., 2022; Shikha et al., 2022).

In the past years, an important role of ROS and NO in 
the regulation of ion channels and transporters of macro- and 
micronutrients as well as heavy metals has emerged (Zepeda-
Jazo et al., 2011; Hafsi et al., 2022), involving post-translational 
and transcriptional regulation, as well as hormone balance (Cui 
et al., 2018; Nieves-Cordones, et al., 2019; Shikha et al., 2022). 
However, the molecular mechanisms responsible for this regu-
lation remain elusive. In this review, we summarize the current 
standing in the field and discuss the progress made in under-
standing the mechanistic basis of ROS and RNS production 

and their role in the regulation of ion transporters and chan-
nels, at both the transcriptional and post-translational levels. 
This information could be of interest in designing new strate-
gies to develop fortified crops, improve plant tolerance of sa-
linity, and devise new phytoremediation methodologies based 
on redox biochemistry governed by ROS and RNS.

Production of reactive oxygen and nitrogen 
species at the subcellular level

Reactive oxygen species production and metabolism

The term ROS includes reduced oxygen species such as 
H2O2, radicals such as ·OH and O2·

–, and excited forms of 
oxygen, the singlet oxygen 1O2 (Halliwell and Gutteridge, 
2015; Sandalio et al., 2021). The chemical reactivity and bio-
logical functions of ROS differ considerably: H2O2 is the most 
stable form, which can even move between organelles and cells 
through aquaporins (Smirnoff and Arnaud, 2019; Peláez-Vico 
et al., 2022), whereas ·OH is the most reactive and short-lived 
of all ROS (Demidchik, 2014). ROS occur as a normal at-
tribute of aerobic life, and their production and removal needs 
to be balanced by specific antioxidant defenses (Halliwell and 
Gutteridge, 2015). ROS such as ·OH can be very reactive and 
oxidize almost all kinds of molecules, including proteins, lipids, 
and DNA, promoting oxidative damage that can even give rise 
to cell death (Halliwell and Gutteridge, 2015; Sandalio et al., 
2023). This situation can be triggered by changes in the envi-
ronment that alter ROS homeostasis, such as nutritional dis-
turbances, drought, salinity, high or low temperatures, or the 
presence of different pollutants (Nieves-Cordones et al., 2019; 
Cejudo et al., 2021). Cells have developed complex mecha-
nisms to detect and regulate these changes to maintain meta-
bolic functionality. ROS are also used as secondary messengers, 
operating in the detection of environmental changes and trig-
gering specific changes at the transcriptional and post-transla-
tional levels (Mhamdi and Van Breusegem, 2018; Sandalio et al., 
2019; Romero-Puertas et al., 2022).

ROS production and redox compartmentalization in organ-
elles is an effective evolutionary strategy to regulate physio-
logical process and the cellular response to stress conditions 
through site-specific ROS footprinting (Jones and Go, 2010; 
Romero-Puertas et al., 2022). The subcellular redox network 
facilitates rapid responses to changes in the intracellular redox 
equilibrium, which, in turn, regulates signaling processes and 
cell responses (Sandalio et al., 2021; Zoccarato et al., 2022). 
ROS production takes place in different cell organelles, such as 
chloroplasts, mitochondria, and peroxisomes, as a consequence 
of electron transport chains in these organelles, with the pro-
duction of O2·

– and further dismutation to H2O2 (Smirnoff 
and Arnaud, 2019; Phua et al., 2021; Sandalio et al., 2021) (Fig. 
1). However, ROS production is also associated with metabolic 
pathways such as photorespiration (glycolate oxidase, GOX), 
polyamine metabolism (polyamine oxidases, PAO; copper 
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amine oxidase, CuAO), catabolism of ureides (xanthine oxido-
reductase, XOR; urate oxidase, UO), and β-oxidation of fatty 
acids in peroxisomes (Acyl-CoA oxidase, ACX) (Sandalio et al., 
2021) (Fig. 1). In the apoplast, ROS are mainly produced in the 
plasma membrane by the NADPH oxidases (also called respira-
tory burst oxidase homologs, RBOHs; Pei et al., 2000; Peláez-
Vico et al., 2022) and peroxidases (Lüthje and Martinez-Cortes, 
2018; Smirnoff and Arnaud, 2019). Singlet oxygen is mainly 
produced in chloroplasts (Dogra and Kim, 2020). ·OH is pro-
duced by Fenton-type reactions requiring the participation of 
O2·

–, H2O2, and Fe or Cu, and therefore could be produced 
in any organelle (Demidchik, 2014; Halliwell and Gutteridge, 
2015). ROS levels in plants are tightly regulated by a range 
of enzymatic and non-enzymatic antioxidants (Smirnoff and 
Arnaud, 2019; Phua et al., 2021; Sandalio et al., 2021) (Fig. 1).

Signaling by H2O2 occurs through the reversible oxida-
tion of specific cysteine residues from proteins to sulfenic acid 
(Young et al., 2019; Sies et al., 2022). Owing to their tran-
sient nature, these sulfur modifications are considered as redox 
switches (Young et al., 2019). Redox post-translational modifi-
cation (PTM) of proteins, such as methionine oxidation, sulfe-
nylation, and sulfinylation, as well as intra- and inter-molecular 
disulfide bond formation, are rapid and reversible mechanisms 
that regulate protein function in living cells in response to 
changing redox states (Fig. 2) (Sandalio et al., 2019; Young et al., 
2019), while other modifications, such as sulfonylation and 

carbonylation, give rise to irreversible oxidation, inactivation, 
and further degradation of proteins (Sandalio et al., 2023). The 
reversible modifications can fine-tune protein function, local-
ization, stability, and interactions in response to redox changes, 
to adapt the cell to environmental changes and mitigate poten-
tial damage (Young et al., 2019). Protein PTMs also trigger cell 
signaling pathways and cross-talk among complex intercon-
nected signaling pathways by affecting protein–protein inter-
actions that underpin plant stress responses. These signaling 
events are coupled with ROS-activated MAP kinase cascades 
and transcriptional regulation in both plant and animal cells (Li 
et al., 2022; Sies et al., 2022).

Nitric oxide production and metabolism

The way NO is synthesized and sensed in plants as well as 
the signaling mechanisms underlying its regulatory functions 
is complex and remains controversial (León and Costa-Broseta, 
2020). NO can be synthesized from either oxidized or reduced 
N-containing precursors, with nitrate being the most abun-
dant and relevant source that is reduced by the cytosolic ni-
trate reductases (NRs) through nitrite as an intermediate 
(Yamasaki and Sakihama, 2000; Rockel et al., 2002; León and 
Costa-Broseta, 2020) (Fig. 1). Other molybdoenzymes, such 
as amidoxime reducing component (ARC) in the cytoplasm 
in Chlamydomonas (Chamizo-Ampudia et al., 2016), xanthine 

Fig. 1. Reactive oxygen and nitrogen species metabolism at the subcellular level in plant cells. ACX, acyl-CoA oxidase; APX, ascorbate peroxidase; 
AQP, aquaporin; ARC, amidoxime reducing component; CAT, catalase; CuAO, copper-containing amine oxidases; ETC, electron transport chain (p, 
peroxisomal; c, chloroplastidial; m, mitochondrial); Glyc, glycolate; Glyox, glyoxylate; GOX, glycolate oxidase; GPX, glutathione peroxidase; NiNOR, 
nitrite:NO-reductase; NiR, nitrite reductase; Nitr1, nitrite transporter; NOA1, NO-associated 1 protein; NR, nitrate reductase; NRT, nitrate transporter; 
PAO, polyamine oxidase; POD, peroxidase; PRX, peroxiredoxin; RBOH, respiratory burst oxidase homolog; SOD, superoxide dismutase; Tdh-CoA, trans-
2,3-dehydroacyl-CoA; UO, urate oxidase; XOR, xanthine oxidoreductase.
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oxidoreductases/dehydrogenases (XORs/XDHs) in the cy-
toplasm (Cantu-Medellin and Kelley, 2013), and peroxisomes 
(Sandalio et al., 2021, 2023), can also catalyze the biosynthesis 
of NO from nitrite. Other oxidized sources, such as xanthine, 
can be used under specific conditions in different photosyn-
thetic organisms (Godber et al., 2000; Maia and Moura, 2015) 
(Fig. 1). Although an oxidative pathway involving NOS has also 
been proposed to be operational in plants (Kolbert et al., 2019), 
no NOS orthologs have been identified in plants (Jeandroz 
et al., 2016). Peroxisomes have, however, been reported to be a 
source of NOS-like activity in plants (Sandalio et al., 2023), al-
though this needs further experimental support and the iden-
tification of the enzymes involved. Other oxidative pathways 
from polyamines or hydroxylamine, such as CuAOs, localized 
in the apoplast and peroxisomes have been proposed as alter-
native sources of NO in plants (Tun et al., 2006; Rümer et al., 
2009; Wimalasekera et al., 2011; Planas-Portell et al., 2013; Zhou 
et al., 2016; Groß et al., 2017; Sandalio et al., 2023) (Fig. 1). The 
only NOS identified in the marine green alga Ostreococcus tau-
rii (Foresi et al., 2010) was predicted to be a cytosolic enzyme 
(Gaudet et al., 2011), but experimental support is still needed. 
Under conditions of limited oxygen availability, mitochondria 
are an important source for NO production, with nitrite being 
an efficient electron acceptor (Fig. 1) (Planchet et al., 2005). 
The excess of NO produced in mitochondria in hypoxic con-
ditions is modulated by the action of the phytoglobin–NO 
cycle (Igamberdiev et al., 2005).

NO, as a free radical, tends to react with other molecules, 
such as ROS, although the resulting molecules, such as hy-
droxyl radicals (·OH), are centers of molecular damage (Nappi 
and Vass, 1998; Bright et al., 2006; Sandalio et al., 2019). Some 
of these reactions have a relevance for NO-triggered signaling, 

such as the reaction of NO with superoxide-yielding per-
oxynitrite (ONOO–) (Radi et al., 2001; Arasimowicz-Jelonek 
and Floryszak-Wieczorek, 2011; Vandelle and Delledonne, 
2011) (Fig.1), which is involved in the PTM of proteins by 
nitration of tyrosine residues (Lozano-Juste et al., 2011; León, 
2022). On the other hand, the metabolic reaction of NO with 
the redox regulator glutathione also has high relevance in 
NO-triggered signaling, as the resulting S-nitrosoglutathione 
(GSNO) (Fig.1) is an excellent NO donor in reactions of 
transnitrosylation, including the S-nitrosylation of the cys-
teine residues of proteins (Astier et al., 2012; Zaffagnini et al., 
2016) (Fig. 2). The master regulator of protein S-nitrosylation 
is the enzyme S-nitrosoglutathione reductase (GSNOR) 
(Fig.1) (Jahnová et al., 2019), which regulates GSNO levels 
(Feechan et al., 2005) and, at the same time, is regulated by the 
S-nitrosylation of key cysteine residues (Guerra et al., 2016; 
Zhan et al., 2018). Both NO-derived PTMs (Fig. 2) of pro-
teins have a deep impact on the regulation of growth and 
development as well as responses to stress (Lindermayr et al., 
2005; Astier and Lindermayr, 2012; Romero-Puertas et al., 
2013; Sami et al., 2018; Sandalio et al., 2019). In fact, PTMs 
are the mechanism of action of NO known to date, and the 
recent identification of NO-regulated chromatin-modifying 
histone deacetylases and transcription factors may explain the 
role of NO in epigenetic mechanisms and modulation of gene 
transcription (Wurm and Lindermayr, 2021). Furthermore, 
NO-mediated PTMs control the redox state of cells by acting 
on the enzymes of the most prominent antioxidant systems 
and NO biosynthetic and metabolic enzymes (Pietraforte 
et al., 2003; Romero-Puertas and Sandalio, 2016; Begara-
Morales et al., 2016; Sandalio et al., 2019; Costa-Broseta et al., 
2021).

Fig. 2. ROS- and RNS-dependent PTMs. Some of the most relevant redox-dependent PTMs associated with ROS and RNS are shown. These 
modifications include (A) cysteine oxidation (sulfenylation, sulfinylation, and sulfonylation), (B) cysteine disulphide bonds, (C) methionine oxidation, (D) 
cysteine S-nitrosylation, and (E) tyrosine nitration.
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Reactive oxygen- and nitrogen-dependent 
regulation of metal transporters and ion 
channels

The transport and accumulation of essential macronutrients 
(N, P, K, S, Ca, Mg) and micronutrients (e.g. Fe, Cu, Zn, Mn) 
is mediated by transporters and channels located at the plasma 
membrane and tonoplast. Some of these are highly selective for 
specific ions whereas others may allow the passage of a large 
number of ions. In addition, some of them may share transcrip-
tion factors or certain essential components of the signaling 
network that regulates their expression (Ohkama-Ohtsu and 
Wasaki, 2010). The above scenario is also applicable to non-
essential heavy metals. For example, cadmium (Cd) does not 
use specific transporters and accumulates in plants through 
transporters of other elements, such as Fe (IRT1, NRAMP) 
or Zn (ZIP, ZRT), among others (Tao and Lu, 2022). ROS 
seem to play an important role in the root response to nu-
trient deprivation (Nieves-Cordones et al., 2019) and excess 
of heavy metals (Hafsi et al., 2022). Furthermore, changes in 
the plant transcriptome in NO-related mutants or in response 
to NO donors also involve the transport category, where 
the ATP-binding cassette (ABC) transporter family is usu-
ally well represented (Parani et al., 2004; Besson-Bard et al., 
2009; Gibbs et al., 2014; Hussain et al., 2016) (Table 1). Only a 
few reports regarding the regulation of metal transporters by 
NO- and ROS-dependent PTMs are available, and informa-
tion regarding their functionality is even scarcer. A search in 
the Plant PTM Viewer database (https://www.psb.ugent.be/
webtools/ptm-viewer/index.php) resulted in 1317 proteins in 
Arabidopsis thaliana being the target of methionine oxidation, of 
which only five were identified as transporters; 3438 proteins 
that are targeted for reversible cysteine oxidation, five of which 
were identified as transporters; and 6836 proteins that can 
potentially experience sulfenylation, of which only 11 were 
identified as transporters and only two were related to metal 
transporters (ABC19 and ABCF1/GCN1; Huang et al., 2019). 
Among 1833 Arabidopsis proteins identified as possible targets 
of S-nitrosylation, only one of the three transporters identified 
in the gsnor1-3 mutant is associated with metal transport (Hu 
et al., 2015) (Table 1). To get an insight into the potential rel-
evance of post-translational regulation by NO-derived PTMs 
of the metal transporters, we performed an in silico analysis 
of the potential nitration and S-nitrosylation of Arabidopsis 
metal transporters. We took advantage of the available tools for 
computational prediction of NO-dependent PTMs by using 
GPS-SNO (https://sno.biocuckoo.org/; Xue et al., 2010) and 
GPS-YNO2 (https://yno2.biocuckoo.org/; Liu et al., 2011) 
for the prediction of S-nitrosylation and tyrosine nitration 
sites, respectively, and DeepNitro (http://deepnitro.renlab.org; 
Xie et al., 2018), which allows both predictions simultane-
ously. We analyzed 91 Arabidopsis metal transporters belong-
ing to the ABC, COPT, FRO, HMA, IRT, MRS2, NRAMP, 
OPT, POT, YSL, and ZIP families. Supplementary Table S1 

Table 1. Regulation of metal and ion transporters by ROS and 
NO

Channel/
trans-
porter 

Regulation 
by ROS

Regulation 
by NO

References 

TR PTM TR PTM 

AtNRAMP3 ⇧⇩ ⇧⇩ Gagnot et al. (2008); Farinati et 

al. (2010); Molins et al. (2013); 
Gibbs et al. (2014); Hafsi et al. 
(2022); Shee et al. (2022)

AtNRAMP4 ⇧ Shee et al. (2022)

OsNRAMP5 ⇧ Singh et al. (2016); A.P. Singh et 

al. (2017)
AtNRAMP6 ⇩ Hafsi et al. (2022)

AtIRT1 ⇧⇩ ⇧ Bahmani et al. (2019); Hafsi et 

al. (2022)
LeIRT1 ⇧ Graziano and Lamattina (2007); 

Jin et al. (2009); Liu et al. (2022)
OsIRT1 ⇧ Singh et al. (2016); A.P. Singh et 

al. (2017)
OsIRT2 ✓ Yang et al. (2016)
AtIRT3 ⇩ Shanmugam et al. (2011)

AtZIP5 ⇩ Gibbs et al. (2014)

AtZIP9 ⇧ Gibbs et al. (2014)

AtZIP11 ⇩ Gibbs et al. (2014)

AtABCC2 ⇩ Gibbs et al. (2014)

AtABCC3 ⇧ Farinati et al. (2010)

TaABCC3 ⇧ Bhati et al. (2015)

AtABCC4 ⇩ Gibbs et al. (2014)

TaABCC4 ⇧ Bhati et al. (2015)

AtABCC6 ⇧ Terrón-Camero et al. (2022)

TaABCC6 ⇧ Bhati et al. (2015)

AtABCC8 ⇩ Gibbs et al. (2014)

TaABCC9 ⇩ Bhati et al. (2015)

AtABCC10 ⇩ Gibbs et al. (2014)

TaABCC13 ⇧ Bhati et al. (2015)

AtABCC14 ⇧ Gibbs et al. (2014)

TaABCC14 ⇩ Bhati et al. (2015)

TaABCC16 ⇩ Bhati et al. (2015)

AtABCG36 ⇧⇩ ⇩ ✓ Hu et al. (2015); Jalmi et al. 
(2018); Bahmani et al. (2019); 
Sheng et al. (2019); Li et al. 
(2022)

AtABCG40 ⇩ Terrón-Camero et al. (2022)

AtCAX1 ⇩ Gibbs et al. (2014)

AtCAX3 ⇩ ⇩ Gibbs et al. (2014); Bahmani et 

al. (2019)
Ccc1 (VIT1 
ortholog)

✓ Li et al. (2010); Sorribes-Dauden 
et al. (2020)

AtVIT2 ✓ Jacques et al. (2015)
AtVTL1 ✓ ⇧ Gibbs et al. (2014); Jacques et 

al. (2015)
AtVTL2 ⇧ Gibbs et al. (2014)

AtCOPT5 ✓ Liu et al (2014)
OsOPT3 ✓ Yang et al. (2016)
AtHMA4 ⇧ Farinati et al. (2010)

https://www.psb.ugent.be/webtools/ptm-viewer/index.php
https://www.psb.ugent.be/webtools/ptm-viewer/index.php
https://sno.biocuckoo.org/
https://yno2.biocuckoo.org/
http://deepnitro.renlab.org
../FROM_CLIENT/Accepted_manuscripts/jexbot-310392/suppl_data/erad349_suppl_Supplementary_Tables_1-S1.pdf
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summarizes the predicted NO-dependent PTMs with either 
S-nitrosylation or tyrosine nitration sites, although their func-
tionality needs to be tested in direct experiments. Among the 
transporters predicted to be modified by both tools, ABCB25 
is potentially S-nitrosylated at C639, HMA3A and HMA3B at 
C384, HMA5 at C10, POT5 at C762, and ZIP8 at C41. We also 
identified with high confidence tyrosine nitration sites for sev-
eral transporters, including ABCC6 at Y695, ABCG36 at Y933, 
ABCG40 at Y891, HMA2 at Y10, MRS2-1 at Y259, and the high-
affinity potassium transporter POT5 at Y783. Other transporters, 
such as the vacuolar Fe exporters NRAMP3 and NRAMP4, 
were identified as nitrated in our in silico analysis by only one 
of the prediction tools. Unfortunately, there is no informa-
tion available on the functional role of the tyrosine residues 
that are potentially modified, so the relevance of these predic-
tions should be experimentally confirmed and their functional 
implications analyzed.

Natural resistance-associated macrophage proteins

Natural resistance-associated macrophage proteins (NRAMPs) 
are an evolutionarily conserved family of proteins that function 
as proton-coupled metal ion transporters that can transport 
Mn2+, Fe2+, Zn2+, Cu2+, Cd2+, Al3+, Co2+, and Ni2+ in pro-
karyotic and eukaryotic organisms (Nevo and Nelson, 2006; 
Banerjee and Datta, 2020; Yang et al., 2022). In Arabidopsis, 
six genes encode members of the NRAMP transporter family 
(NRAMP1–NRAMP6). AtNRAMP1 is located in the plasma 
membrane of root cells (Fig. 3) and functions as a high-affinity 
Mn2+ transporter under Mn deficiency (Cailliatte et al., 2010). 
AtNRAMP2 is a Mn2+ transporter localized in the trans-Golgi 
network; knock down of AtNRAMP2 promotes a reduction 
of cellular redox homeostasis under Mn deficiency (Alejandro 
et al., 2017; Gao et al., 2018). AtNRAMP3 and AtNRAMP4 
are functionally redundant and are involved in the release of 
metals from vacuoles; they are important for the retrieval of 
Fe2+ stores in seeds during germination, for the supply of Mn2+ 
to photosystem II in leaves, and for the response to Cd2+ stress 
(Thomine et al., 2003; Lanquar et al., 2004; Lanquar et al., 2010; 
Molins et al., 2013). AtNRAMP6 is localized to the Golgi/trans-
Golgi network (Fig. 3), like AtNRAMP2, and plays an impor-
tant role in intracellular Fe2+ homeostasis (Li et al., 2019) and 
Cd2+ distribution within the cell (Tao and Lu, 2022). Several 
pieces of evidence demonstrate that ROS can regulate the ex-
pression and content of some NRAMPs in Arabidopsis plants. 
Molins et al. (2013) showed that AtNRAMP3 protein levels 
were increased in roots when plants were grown in media sup-
plemented with Cd2+ and 1 mM H2O2 for 1 week, in agree-
ment with a survey of the publicly available microarray data 
indicating that AtNRAMP3 gene expression is up-regulated 
upon oxidative stress induced by H2O2, paraquat, and Fe excess 
(Gagnot et al., 2008). In fact, nramp3nramp4 Arabidopsis double 
mutants showed a hypersensitive phenotype when growing 

Channel/
trans-
porter 

Regulation 
by ROS

Regulation 
by NO

References 

TR PTM TR PTM 

AtHMA6 ✓ Hu et al. (2015)
AtHMA7 ⇧ Gibbs et al. (2014)

AtMTP1 ⇧ Gibbs et al. (2014)

AtEIN2 ⇧ Gibbs et al. (2014)

AT1G29820 ⇧ Gibbs et al. (2014)

AT5G23760 ⇩ Gibbs et al. (2014)

AtGORK ⇧⇩ ✓ Demidchik et al. (2003, 2010); 
Tran et al. (2013); Shabala et al. 
(2016); Wang et al. (2017); Hafsi 
et al. (2022)

PsGORK ✓ Zepeda-Jazo et al. (2011)
HvGORK ✓ Velarde-Buendía et al. (2012)
AtSKOR ✓ Garcia-Mata et al. (2010)
AtKUP5 ⇧ Gibbs et al. (2014)

AtKUP6 ⇩ Gibbs et al. (2014)

AtKUP8 ⇧ Hafsi et al. (2022)

AtHAK5 ⇧ ⇩ Gibbs et al. (2014); Hafsi et al. 
2022); Kim et al. 2010); Wang 
et al. (2021)

AtAKT1 ⇩ Xia et al. (2014)

AtAKT2 ⇧ Gibbs et al. (2014)

AtKT2 ⇧ Gibbs et al. (2014)

AtNHX2 ⇧ Gibbs et al. (2014)

AtKEA1 ⇧ Gibbs et al. (2014)

BnCNGC1 ⇩ Huang et al. (2022)

AtPmito-
KATP

✓ ✓ Chiandussi et al. (2002); Pastore 
et al. (2007)

AtTPC1 ✓ Pottosin et al. (2009)
AtANN1 ✓ Laohavisit et al. (2012)
Ca2+ chan-
nels

✓ Pei et al. (2000); Demidchik et 

al. (2003, 2007); Evans et al. 
(2005); Demidchik and Maathuis 
(2007); Breygina et al. (2016)

NSCCs ✓ Pei et al. (2000); Demidchik et 

al. (2003, 2010, 2018); Zepeda-
Jazo et al. (2011); Velarde- 
Buendía et al. (2012)

AtHIP06 ⇩ Gibbs et al. (2014)

AtHIP13 ⇩⇩ Gibbs et al. (2014)

AtHIPP20 ⇧⇧ Gibbs et al. (2014)

AtHIPP21 ⇧ Gibbs et al. (2014)

AtHIPP22 ⇧ Gibbs et al. (2014)

AtHIPP32 ⇧ Gibbs et al. (2014)

AtHIPP34 ✓ Liu et al. (2014)
AtHIPP35 ⇧ Gibbs et al. (2014)

AtHIPP39 ⇩ Gibbs et al. (2014)

AtHIPP43 ⇧ Gibbs et al. (2014)

PTM, post-translational modification; TR, transcriptional regulation. Up and 
down arrows indicate up- and down-regulation, respectively. ✓ indicates 
PTM by ROS or NO. 

Table 1. Continued
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on media supplemented with 0.5 mM H2O2, suggesting that 
these transporters may be regulated by H2O2 (Molins et al., 
2013). Furthermore, Arabidopsis mutants lacking RBOH C, 
D and F (rbohC, rbohD, rbohF), the most important sources of 
ROS associated with the plasma membrane (Mittler, 2017), 
showed up-regulation of AtNRAMP3 and AtNRAMP6 after 
24 h of 50 µM Cd2+ treatment, whereas no significant changes 
were observed in the wild-type (WT) genotype (Hafsi et al., 
2022). These results could explain the higher influx and ac-
cumulation of Cd observed in roots in response to 24  h of 
Cd treatment in Atrboh mutants, as well as the accumulation 
of Fe and Zn in roots, while translocation was inhibited for 
all three metals (Gupta et al., 2017; Hafsi et al., 2022). These 
results indicate the existence of an RBOH-dependent H2O2 
regulation of AtNRAMP3 and AtNRAMP6 expression under 
Cd stress conditions. In rice, OsNRAMP5 has been shown to 
be induced by NO donors and modulated by NO in the plant 
response to arsenic (As) (Singh et al., 2016; A.P. Singh et al., 
2017) (Table 1). Additionally, NRAMP3 is up-regulated in the 

triple mutant nia1nia2noa1-2 (Table 1), and NRAMP3 and 
NRAMP4 were predicted to be nitrated in our in silico analysis 
(Supplementary Table S1).

ZIP family

The zinc regulated transporter and iron regulated transporter-
like protein (ZIP) family (also known as ZRT, IRT-like pro-
tein) belongs to the IRT family (Yang et al., 2022). The ZIP 
transporters mediate the uptake of Zn, Fe, and Mn into the 
cytosol from the extracellular space (Fig. 3). Zn deficiency up-
regulates six ZIP family genes in Hordeum vulgare (Tiong et al., 
2015), and it has been suggested that ZIP transporters have an 
important role in plant adaptation to low and fluctuating Zn 
in soil in wheat (Niazkhani et al., 2021). Iron deficiency is one 
of the most important factors limiting crop production in the 
world, and IRT1 is the most important root transporter for the 
uptake of ferrous Fe from the soil (Zhang et al., 2019). IRT1 
is highly expressed in Fe-deficient root cells to improve Fe 

Fig. 3. Scheme of the uptake, accumulation, and translocation of metals in plants. Metals are absorbed by the roots through the apoplastic and 
symplastic pathways. They are transported into the cytosol by different transporters associated with the plasma membrane and can be further 
transported to the vacuole through tonoplast-associated transporters. In addition, metals are translocated to mesophyll cells through the xylem, where 
can they accumulate in the vacuole.
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absorption and therefore promote growth and development 
(Zhang et al., 2019). However, it can also mediate the uptake of 
other cations, such as Zn, Mn, Co, or Cd (Hu, 2021; Abuzeineh 
et al., 2022; Assunção, 2022; Tao and Lu, 2022). Overexpression 
of IRTI in Arabidopsis and rice increased their sensitivity to 
Zn and Cd (reviewed in Tao and Lu, 2022). Bahmani et al. 
(2019) have reported the up-regulation of AtIRT1 expres-
sion in Arabidopsis plants treated with H2O2 and NO donors 
for 24 h. In turn, the expression of the tobacco haemoglobin 
gene NtHb1, which acts as an NO scavenger, in Arabidopsis 
plants led to the down-regulation of IRT1, due to a reduc-
tion of NO and H2O2 in response to Cd exposure. Hafsi et al. 
(2022) showed differential expression of IRT1 in Arabidopsis 
WT plants and rboh mutant plants deficient in RBOH C, D, 
and F after 24  h of 50 µM Cd treatment. This suggests the 
existence of an RBOH isoform-dependent H2O2 regulation 
of IRT1 expression under Cd stress conditions. Other studies 
showed the NO-dependent induction of LeIRT1 in tomato 
roots grown under Fe deficiency under normal and elevated 
CO2 levels (Graziano and Lamattina, 2007; Jin et al., 2009), and 
in pear (Liu et al., 2022). By contrast, a repression of IRT1 in 
Arabidopsis roots under Cd stress to avoid Cd accumulation 
has been described (Connolly et al., 2002, 2003; Hafsi et al., 
2022) (Table 1). IRT1 repression was increased in the pres-
ence of a NOS-l inhibitor, also suggesting a role for NO in 
the regulation of IRT1 under Cd stress (Besson-Bard et al., 
2009). Similar results were described in tomato roots grown 
under an excess of Cd, where the NO-dependent up-regu-
lation of IRT1 was responsible for nitrate-facilitated Cd ac-
cumulation in plants (Luo et al., 2012). GSNO also induced 
Arabidopsis IRT1 (García et al., 2010). Transcriptomic analysis 
of the NO-deficient triple mutant nia1nia2noa1-2 (Gibbs et al., 
2014), showed several transporters that were differentially up- 
or down-regulated compared with WT plants (Table 1). In ac-
cordance with previous results, IRT1 is down-regulated in the 
NO-deficient mutant, while IRT3 is up-regulated (Table 1), 
probably to compensate for IRT1 down-regulation as overex-
pression of IRT3 in irt1-1 mutants recovers the irt1-1 iron-defi-
cient phenotype (Shanmugam et al., 2011). Interestingly, ZIP5 
and ZIP11 are up-regulated whereas ZIP9 is down-regulated 
in the triple mutant nia1nia2noa1-2 (Gibbs et al., 2014) (Table 
1). On the other hand, an iTRAQ-based proteomic analysis of 
plasma membrane-associated proteins in rice plants exposed to 
Cd stress after NO treatment allowed the identification of sev-
eral differentially regulated metal transporters, including the Fe 
transporter IRT2 (Yang et al., 2016). In addition, ZIP8, which 
is involved in metal transport in the rhizosphere and antioxi-
dant activity (Wu et al., 2016), is potentially S-nitrosylated at 
C41 based on our in silico analysis (Supplementary Table S1).

Vacuolar iron transporters

The vacuolar iron transporter (VIT) family are tono-
plast-localized transporters. They probably function as 

H+-dependent antiporters and are involved in fungi and 
plants in preventing the negative effects of Fe2+ excess (Yang 
et al., 2022) (Fig. 3). In rice plants, OsVIT1 and OsVIT2 
can transport Fe2+ and Zn2+ into the vacuole (Zhang et al., 
2012), while in wheat TaVIT2 may transport Fe2+ and Mn2+ 
(Connorton et al., 2017). The Ca2+-sensitive cross-comple-
menter 1 (Ccc1) is the VIT1 ortholog in yeast, and it has been 
suggested that ROS can increase the activity of Ccc1 trans-
porter (Li et al., 2010; Sorribes-Dauden et al., 2020). Similarly, 
ROS increase the activity of the vacuolar Ccc1 transporter 
in fungi (Sorribes-Dauden et al., 2020), although the under-
lying mechanism has not been established in any organism. 
Therefore, similar regulation could be applied to the VIT 
proteins of plants. In fact, Arabidopsis VACUOLAR IRON 
TRANSPORTER1-LIKE1 (VTL1) has been identified as 
a target of methionine oxidation by a functional protein-
bound methionine oxidation proteomic analysis using Atcat2-
2 mutants, and Arabidopsis VIT2 was identified as a target of 
oxidized cysteine that could be reversibly reduced (Jacques 
et al., 2015). The VIT1 gene, which is down-regulated under 
Fe deficiency in Arabidopsis, encodes a transporter involved 
in vacuolar Fe loading, while NRAMP4, a vacuolar Fe ex-
porter, is up-regulated. Therefore, Fe homeostasis is regulated 
by different ROS- and NO-modulated transporters. Many 
examples of ROS and Fe signaling cross-talk have been 
observed in photosynthetic organisms, with ROS being an 
important signal to regulate Fe homeostasis and vice versa in 
plants (Thi Tuyet Le et al., 2019). Together with NRAMPs, 
IRTs, and ZIPs, two VIT family proteins are also differen-
tially expressed in the triple mutant nia1nia2noa1-2 (Gibbs 
et al., 2014) (Table 1). All these data suggest the existence of 
an NO-dependent fine-tuned Fe and Zn homeostasis mech-
anism to achieve optimum levels of these metals, probably not 
only in the triple mutant nia1nia2noa1-2 but in general.

Cu transporters

The COPT/Ctr Cu transporters play an important role in 
Cu2+ uptake and homeostasis, and are localized in the plasma 
membrane of root tip cells (Shin et al., 2012). Arabidopsis 
COPT5 has been identified as a target of reversible cysteine 
oxidation by using OxiTRAQ, a quantitative redox proteomics 
approach (Liu et al., 2014), and therefore its activity could be 
regulated by ROS-dependent redox changes. Yang et al. (2016) 
also identified OPT3 as differentially regulated in an iTRAQ 
proteomic analysis of plasma membrane-associated proteins in 
rice plants exposed to Cd stress after NO treatment.

Heavy metal transport/detoxification superfamily 
proteins

Heavy metal transport/detoxification superfamily proteins 
(HMPs) play key roles in heavy metal transport and de-
toxification in plant cells. HMPs are metalloproteins or 
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metallochaperone-like proteins containing heavy metal-asso-
ciated (HMA) domains with two cysteine residues that bind 
and transfer Cu, Cd, Co, Zn, and other heavy metal ions (Li 
et al., 2020). Plant proteins containing HMA domains fall into 
several groups: HPPs (heavy metal-associated plant proteins), 
HIPPs (heavy metal-associated isoprenylated plant proteins), 
ATX1-like and P1B-ATPase (heavy metal ATPases; HMAs). 
HMAs have been widely studied in different species (Li et al., 
2020; He et al., 2020) and are mainly located at the plasma 
membrane, where they are involved in long-distance trans-
port of ion metals such as Cd, Zn, and/or Cu (Fig. 3). In 
Arabidopsis, HMA5 is induced by high Cu levels and causes 
the efflux of excess Cu from the cytosol to the plasma mem-
brane (Li et al., 2020); however, different HMPs can differ in 
their metal specificity and the organ in which they function (Li 
et al., 2020). Information on the regulation of HMPs by ROS 
is scarce; however, a transcriptomic analysis of Arabidopsis 
WT and acx1 mutant plants (Romero-Puertas et al., 2022) 
revealed ACX1-dependent differential regulation of HMP43 
and HMP20, thus suggesting a possible regulation by H2O2 
produced during β-oxidation in the cell. Interestingly, the 
analysis on the Arabidopsis gox2 mutant transcriptome (Terrón-
Camero et al., 2022) did not show any change in the expression 
of these genes, suggesting a differential regulation of HMPs 
depending on the ROS source. Less information is available 
on ROS-dependent PTMs of this group of proteins. HIPP34 
has been identified as a target of reversible cysteine oxidation 
in a functional OxiTRAQ analysis of Arabidopsis cultured 
cells exposed to H2O2 (Liu et al., 2014). However, the func-
tionality of this PTM requires further analysis. Interestingly, 
genes encoding the HMPs and HIPPs superfamily proteins are 
highly represented among the down-regulated genes in the 
nia1nia2noa1-2 triple mutant (Table 1). On the other hand, in 
our in silico analysis the Cd/Zn-transporting ATPases HMA3A 
and HMA3B were predicted to be S-nitrosylated in a cyto-
plasmic loop at C384, which is close to the D397 that seems to act 
as a binding site in the 4-aspartylphosphate intermediate. The 
probable Cu-transporting ATPase HMA5, which is involved 
in Cu detoxification in roots (Andrés-Colás et al., 2006), was 
predicted to be S-nitrosylated at C10, which in the AlphaFold 
three-dimensional structure is far from any of the C62, C65, 
C140, and C143 residues involved in Cu binding. Only C65 was 
also predicted to be S-nitrosylated, but by only one of the 
predictive tools (Supplementary Table S1). In turn, the nitra-
tion of HMA5 at C10, and of HMA2 at Y10, was also predicted 
with high confidence (Supplementary Table S1). Additionally, 
among the 926 endogenous S-nitrosylated proteins identi-
fied in Arabidopsis, the chloroplastic Cu-transporting ATPase 
PAA1 (HMA6, Q9SZC9) was identified (Hu et al., 2015).

ABC transporters

ABC transporters are a multimeric family of proteins that 
use ATP to transport a variety of substances (including 

carbohydrates, ions, lipids, xenobiotics, antibiotics, heavy 
metals, and drugs) to and from cells, mainly into the vacuole 
(Do et al., 2021). ABC transporters are classified into eight sub-
families based on their structure and function (Do et al., 2021). 
Only C-type ABC transporters (ABCC; classically referred to 
as multidrug resistance-associated proteins, MRPs) are found 
on the tonoplast, where they play a role in plant metal tol-
erance, maintaining the transport of metals into vacuoles to 
prevent their harmful effects (Jogawat et al., 2021) (Fig. 3). As 
an example, AtABCC3 takes part in transporting phytochelatin 
and its complexes with Cd (Brunetti et al., 2015), as well as 
other metals such as Mn and Zn, to the vacuole (Jogawat et al., 
2021), and ABCC4 transports Cd from the cytoplasm to the 
vacuole in Ophiopogon japonicus (Zhao et al., 2022). Moreover, 
AtABCC6, which is also involved in metal tolerance, is induced 
in Arabidopsis plants exposed to Cd treatment (Gaillard et al., 
2008). Some members of the ABC family can be transcrip-
tionally regulated by ROS. The up-regulation of AtABCC6 
in response to Cd treatment has been found to be GOX2-
dependent in Atgox2 mutants (Terrón-Camero et al., 2022), 
thus suggesting an H2O2-dependent regulation of this trans-
porter associated with photorespiration (Table 1). In wheat 
seedlings exposed to 10 µM H2O2, Bhati et al. (2015) showed 
up-regulation of the expression of TaABCC3, TaABCC4, 
TaABCC6, and TaABCC13, while TaABCC9, TaABCC14, 
and TaABCC16 were down-regulated, suggesting that these 
transporters can be differentially regulated by H2O2. ABCG 
is the largest ABC transporter subfamily in plants and plays 
a critical role in heavy metal tolerance. AtABCG36/AtPDR8 
is located at the plasma membrane of root cells and plays a 
role as a Cd extrusion pump (Kim et al., 2007). Bahmani et al. 
(2019) showed that PDR8 expression increased in response to 
Cd but decreased in plants treated with H2O2 and NO, and the 
opposite results were obtained in Arabidopsis plants express-
ing tobacco Hb1, with reduced production of ROS and NO. 
Wu et al. (2019) proposed a model in which Cd stress inhibits 
the expression of mitochondrial MMDH2 (malate dehydrogenase 
2), reducing ROS levels, in turn leading to increased expres-
sion of ABCG36, which finally reduces Cd accumulation. 
Furthermore, Arabidopsis AtABCG40/PDR12 is located at 
the plasma membrane and is strongly induced by Pb2+ treat-
ment, and its overexpression leads to plants being more Pb2+ 
tolerant due to Pb2+ efflux (Lee et al., 2005). Transcriptomic 
analysis of WT and Atgox2 mutant Arabidopsis after Cd stress 
for 24 h (Terrón-Camero et al., 2022) allowed the identification 
of GOX2-dependent differential expression of AtABCG40, 
AtABCG16, and ABCB12/PGP12, suggesting a possible reg-
ulation of these transporters by peroxisomal H2O2. ABCB1 
activity in rat brain capillaries is apparently regulated by NO 
produced by inducible NO synthase in combination with pro-
tein kinase C (PKC), with NO reducing the activity, although 
the underlying mechanism is not well known (Crawford 
et al., 2018). Interestingly, transporters from the ABC family 
have been shown to be modulated by NO in plant response 
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to As (P.K. Singh et al., 2017), and regulation of Cd transport 
through the activation of ABC transporters was shown to be 
one of the major mechanisms involved in NO-dependent 
Cd detoxification in tall fescue after an integrated transcrip-
tomic and metabolomic analysis (Zhu et al., 2020). The mito-
chondrial ABC transporter B family member 25 (ABCB25), 
which seems to be essential for exporting Fe/S cluster pre-
cursors from mitochondria into the cytoplasm (Bernard et al., 
2009) and mediates glutathione-dependent resistance to heavy 
metals (Kim et al., 2006), was predicted in our in silico anal-
ysis to be S-nitrosylated at C639, close to the C-terminus and 
not located in a transmembrane domain (Supplementary Table 
S1). As mentioned before, we also identified with high confi-
dence tyrosine nitration sites for several ABC transporters, in-
cluding ABCC6 at Y695, ABCG36 at Y933, and ABCG40 at Y891 
(Supplementary Table S1). Further analysis would be required 
to stablish the role of these tyrosine nitration sites in the regu-
lation of those ABC transporters.

Cation/proton exchanger (CAX) family

The cation/proton exchanger (CAX) family comprises vac-
uole-localized transmembrane antiporters that use secondary 
active transport to exchange cations from the cytoplasm with 
protons, transporting cations to the vacuole to maintain ion 
homeostasis in guard cells (Pittman and Hirschi, 2016; Yang 
et al., 2022). Some CAX isoforms have broad substrate spec-
ificity, providing the ability to transport trace metal ions such 
as Mn2+ and Cd2+. AtCAX3 has been shown to be involved 
in the efflux of Ca2+, Zn2+, and Cd2+ in Arabidopsis plants 
(Yang et al., 2022). In halophytic plants, CAXs have been re-
ported to play a role in salt tolerance (Pittman and Hirschi, 
2016). Bahmani et al. (2019) showed that the transcription of 
AtCAX3 was increased in response to Cd in Arabidopsis WT 
plants, whereas it was decreased in plants treated with H2O2 and 
NO for 24 h, and increased in NtHb1-expressing Arabidopsis 
plants, thus demonstrating a redox regulation of CAX3 expres-
sion (Table 1). The expression of NtHb1 in Arabidopsis regu-
lates Cd transporter expression by decreasing NO and ROS 
levels, down-regulating IRT1 and PDR8, while up-regulating 
CAX3, giving rise to a reduction in the Cd levels in roots and 
shoots (Bahmani et al., 2019). Additionally, CAX1 is among the 
genes differentially regulated in the NO-deficient triple mu-
tant nia1nia2noa1-2 (Table 1).

Non-selective cation channels

Ca2+-permeable channels have been shown to be activated 
by H2O2 in many plant systems, such as root epidermal cells 
(Demidchik et al., 2003, 2007), guard cells (Pei et al., 2000), 
and pollen tubes (Breygina et al., 2016). In intact plants, this 
activation leads to an increase in cytosolic free Ca2+, which 
occurs in a dose-dependent manner (Leshem et al., 2007; Ma 
and Berkowitz, 2011). However, in patch-clamp experiments 

H2O2 did not activate whole-cell currents in protoplasts iso-
lated from the Arabidopsis mature root epidermis (Demidchik 
et al., 2007), suggesting that the above stimulatory effects of 
H2O2 on the rapid rise in cytosolic free Ca2+ may be indirect 
and mediated by ·OH produced in the cell walls (Demidchik, 
2015). In addition, H2O2-induced activation of Ca2+ currents 
was observed only when H2O2 was applied to the cytosolic side 
of the membrane (Demidchik and Maathuis, 2007), implying 
a need for its transport (through aquaporins) across the plasma 
membrane for in planta operation. In mitochondria from 
mammalian cardiac muscle, the Ca2+ release channels/ryano-
dine receptors (RyR2s), which are cation-selective channels 
that have a high ion conductance for both monovalent (K+) 
and divalent (Ca2+) cations, can be regulated by oxidation and 
S-nitrosylation (Meissner, 2004). Twenty-one cysteine residues 
per RyR2 subunit were reported to be in a reduced state and 
could be potential targets for redox modifications including 
S-nitrosylation and disulfide cross-linking (Nikolaienko et al., 
2018). In mammalian tissues, SR/ER Ca2+-ATPase (SERCA) 
can also be modified by cysteine oxidation or tyrosine nitra-
tion, while plasma membrane Ca2+ ATPase (PMCA) is inhib-
ited either by its direct oxidation or by methionine oxidation 
in its binding partner calmodulin (O-Uchi et al., 2014).

While the above reports referred to Ca2+-permeable ion 
channels, no specific Ca2+-selective channels have been re-
ported so far in plants (Demidchik et al., 2018), and Ca2+ uptake 
across cellular membranes is mediated by non-selective cation 
channels (NSCCs). These NSCCs are permeable to a wide 
range of cations, including essential macronutrients (K+, Ca2+, 
Mg2+, NH4

+) and micronutrients (Zn2+, Fe2+) (Demidchik and 
Maathuis, 2007), as well as toxic nutrients such as Na+, Cd2+, or 
Al3+. The Arabidopsis genome contains 40 NSCCs in total, di-
vided into two main families: cyclic nucleotide gated channels 
(CNGCs; 20 genes in Arabidopsis) and ionotropic glutamate 
receptors (GLRs; 20 genes) (Maathuis, 2006; Demidchik and 
Maathuis, 2007). In addition, tonoplast-based TPC (Two-Pore 
Cation) channels and several types of mechanosensitive chan-
nels, such as MSL (MscS-Like), MCA (Mid1-Complementing 
Activity), and OSCA (hyperosmolality-gated Ca2+-permeable) 
are also classified as NSCCs (Basu and Haswell, 2017; Liu et al., 
2018).

Activation of NSCCs has been reported for several types of 
plant systems, both for H2O2 and for ·OH. In root epidermis, 
·OH activates NSCCs, triggering a simultaneous Ca2+ influx 
and K+ efflux (following the electrochemical gradient for these 
ions); this activation has been observed in both the mature root 
zone and the root apex of a large number of plants (Demidchik 
et al., 2003; Zepeda-Jazo et al., 2011;  Velarde-Buendía et al., 
2012). In patch-clamp experiments, ·OH-induced activation 
of Ca2+ influx and K+ efflux conductances was reported in 
Arabidopsis roots (Demidchik et al., 2003), although the mech-
anism has not been elucidated. The extent of ·OH-induced 
activation of NSCCs has often been negatively correlated with 
abiotic stress tolerance in plants, specifically with plants’ ability 
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to adapt to soil salinity (Bose et al., 2014; Wang et al., 2018; 
Liu et al., 2019). This is hardly surprising, as NSCCs are also 
permeable to Na+ (Demidchik and Tester, 2002) and salinity-
stress induced accumulation of ROS in root tissues may form 
a positive feedback loop exacerbating Na+ uptake into root 
epidermis. Exogenous H2O2 activates Ca2+-permeable NSCCs 
in protoplasts isolated from Arabidopsis guard cells (Pei et al., 
2000) and in the outside-out mode from the cytoplasmic side 
in root epidermis (Demidchik et al., 2003, 2007).

NO is also able to modulate Na and K nutrition in plants 
under salinity stress, as the Na transporter CNGC1 appears 
to be regulated by NO in Brassica napus (Huang et al., 2022). 
Moreover, the function of the AKT1 channel, via overproduc-
tion of an active form of vitamin B6 (pyridoxal 5ʹ-phosphate), 
is repressed by NO in Arabidopsis (Xia et al., 2014) (Table 1). 
The sodium exchanger-encoding gene NHX2 has also been 
identified as one of the genes that are differentially regulated in 
the NO-deficient triple mutant nia1nia2noa1-2 (Table 1). NO 
also selectively regulates abscisic acid-dependent Ca2+-sensitive 
K+ and Cl– channels of Vicia faba guard cells, inducing Ca2+ re-
lease from intracellular stocks (García-Mata et al., 2003) (Table 
1). Ciorba et al (1999), using ShC/B voltage-dependent K+ 
channels expressed in Xenopus oocytes as a model system, dem-
onstrated that NO slows down the time course of K+ channel 
inactivation by oxidizing a critical methionine residue in the 
inactivation ball domain of the channel protein. Additionally, 
the channel protein was protected from methionine oxida-
tion by methionine sulfoxide reductase and vitamin C (Ciorba 
et al., 1999).

K+-selective efflux channels

Shaker-type depolarization-activated outward-rectifying K+-
efflux GORK channels are present in both guard cells (hence 
their name—Guard Cell Outward Rectifying K+ channel) 
and root epidermis, and are known to be activated by ·OH. 
Discovered first in Arabidopsis (Demidchik et al., 2003, 2010), 
·OH-activated GORK channels have since been reported in 
pea root epidermis (Zepeda-Jazo et al., 2011) and in barley 
root cells, where their activation correlated with salt sensitivity 
(Velarde-Buendía et al., 2012); more recently, ROS-activated 
GORK channels were found to be essential for Arabidopsis 
responses to hypoxia stress (Wang et al., 2017). ·OH-induced 
K+ efflux was much stronger in the elongation zone than in 
mature epidermis (Shabala et al., 2016), and it was causally as-
sociated with cell fate determination under stress conditions 
(Demidchik et al., 2010). A similar scenario may be envisaged 
for plants exposed to toxic metals such as Cu2+ or Fe3+, as inter-
action between these transition metals and H2O2 may lead to 
the formation of ·OH through the Fenton reaction in the cell 
walls (Demidchik, 2015), triggering K+ loss through GORK. 
Cd triggers the down-regulation of GORK transcripts in 
WT Arabidopsis plants, whereas no significant changes were 
observed in RBOH C, D, and F mutants (Hafsi et al., 2022). 

Interestingly, the basal level of GORK transcripts in control 
conditions was reduced significantly in AtrbohC, and to a lesser 
extent in AtrbohD and AtrbohF, thus suggesting an RBOH-
dependent regulation of GORK at the transcriptional level 
and possibly at the post-translational level (Hafsi et al., 2022).

Tran et al. (2013) also reported that, in addition to a rapid ac-
tivation of GORK at the single-channel level, ROS-dependent 
post-transcriptional regulation of GORK channels may occur. 
The abundance of GORK channel transcripts increases in a 
time-dependent manner after ozone (O3) treatment, and Tran 
et al. (2013) attributed this effect to pre-mRNA GORK splic-
ing. It should also be noted that GORK transcript levels are 
increased in plants exposed to abiotic stresses, specifically sa-
linity (Adem et al., 2014).

Some reports on guard cells have shown that both inward- 
and outward-rectifying K+-selective channels in guard cells 
may be inhibited by H2O2 (e.g. in V. faba; Zhang et al., 2001; 
Köhler et al., 2003). At the same time, Laohavisit et al. (2012) 
have demonstrated the presence of an additional K+ efflux 
pathway that is catalyzed by annexins, as an Arabidopsis loss-
of-function mutant for annexin1 (Atann1) lacked ·OH- acti-
vated Ca2+- and K+-permeable conductance in root epidermis. 
Thus, at least two mechanisms seem to coexist and act in con-
cert to amplify ·OH-induced K+ efflux.

Other ROS-regulated channels and transporters

Exogenous H2O2 stimulates anion efflux in cultured 
Arabidopsis cells (Trouverie et al., 2008); however, this effect 
appears to be indirect and related to the activation of Ca2+ 
conductance, which in turn activates Cl– currents (Demidchik, 
2015). Kadono et al. (2010) demonstrated that 3 min of O3 
exposure was enough to activate anion currents in cell sus-
pensions and depolarize the plasma membrane. However, as 
the authors used a voltage-clamp approach on intact cells, it 
cannot be excluded that the reported effect was indirect and 
also mediated by O3-induced changes in cytosolic free Ca2+. 
More direct experiments on protoplasts are therefore needed.

Organelle-based ion channels also appear to be a target for 
ROS regulation. Pastore et al. (2007) showed that ROS can 
quickly stimulate the ATP-sensitive plant mitochondrial K+ 
channel (PmitoKATP) in wheat. The activity of mitochon-
drial K-ATP+ in pea was also modulated by NO and H2O 
(Chiandussi et al., 2002), leading to a release of cytochrome c 
and consequent programmed cell death. Activation of tono-
plast-based Ca2+-, K+-, and Na+-permeable SV (slow vacuolar) 
channels encoded by the TPC1 gene by physiologically rel-
evant concentrations of H2O2 has also been demonstrated in 
direct patch-clamp experiments (Pottosin et al., 2009).

To the best of our knowledge, no direct reports of ROS-
induced activation of members of the HAK/KUP family of 
high-affinity K+ transporters has been reported in plants, al-
though many papers have reported an apparent correlation be-
tween changes in the expression levels of these transporters 
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and ROS metabolism in plants. Overexpression of MiHAK14 
from Mangifera indica in Arabidopsis enhanced plant tolerance 
to K+ depletion and NaCl stress by improving ROS scaveng-
ing ability (Zhang et al., 2022). Similar findings were reported 
for Casuarina equisetifolia, where CeqHAK6 and CeqHAK11 
increased antioxidative defences (Wang et al., 2023). In 
turn, ROS accumulation may affect the transcript levels of 
HAK/KUP family genes. In Arabidopsis, plants overexpress-
ing RCI3, a member of a family of peroxidases, showed higher 
ROS production and increased AtHAK5 expression levels 
(Kim et al., 2010). AtHAK5 and AtKUP8 have been also re-
ported to be regulated by RBOH-dependent H2O2 (Wang 
et al., 2021; Hafsi et al., 2022). We have also identified C762 
from HAK5 as a target for S-nitrosylation (Supplementary 
Table S1). Arabidopsis Atkup8-2 mutant plants showed lower 
accumulation of H2O2 compared with WT plants when grown 
in the presence of heavy metals (Sanz-Fernández et al., 2021), 
and plants overexpressing PvHAK16 from seashore paspalum 
(Paspalum vaginatum) showed increased accumulation of ROS 
under salt stress (Dai et al., 2022). Members of the KUP family, 
such as KUP5 and KUP6 and the antiporter KEA1 for potas-
sium transport, are differentially regulated in nia1nia2noa1-2 
triple mutants compared with the WT (Table 1), implying a 
role for NO in their operation.

Additionally, some proteins can change their functionality 
after oxidation. This is the case for the heme transporter HmuR 
in the bacterium Burkholderia thailandensis T6SS4. HmuR is a 
redox-regulated dual-functional transporter that under normal 
conditions transports heme iron but can transport zinc under 
oxidative stress, following the formation of an intramolecular 
disulfide bond in the protein (Si et al., 2017).

ROS- and NO-sensing mechanisms 
involved in the regulation of ion channels 
and transporters

One of the intriguing questions in plant redox biology is the 
identification of ROS/redox sensors (Sierla et al., 2016). In 
general, ROS have been shown to change the activity of a 
large number of regulatory enzymes, such as various kinases 
(e.g. MAP and other Ser/Thr kinases) and phosphatases (Apel 
and Hirt, 2004; Van Breusegem et al., 2008; Pitzschke and Hirt, 
2009). 

Owing to its low redox buffering capacity, the apoplast is an 
excellent medium for ROS signal propagation, and it harbors a 
large number of cysteine-rich kinases that could possibly par-
ticipate in ROS-sensing mechanisms (Bourdais et al., 2015). 
For example, cysteine-rich receptor-like kinases (CRKs) rep-
resent one of the largest subgroups of receptor-like kinases and 
are ideally suited for the role of ROS sensors (Wrzaczek et al., 
2010; Bourdais et al., 2015). The CRKs possess two cysteine-
rich DUF26 domains (C-X8-C-X2-C-motifs) and, upon 
ROS binding, could undergo redox modifications leading to 

conformational changes and downstream signaling. In sto-
mata guard cells, apoplastic ROS signals may be perceived 
by GHR1 (GUARD CELL HYDROGENPEROXIDE-
RESISTANT1), an atypical plasma membrane-associated leu-
cine-rich repeat receptor-like kinase (Hua et al., 2012). Another 
possible candidate sensor is CPK21 (Ueoka-Nakanishi et al., 
2013), which can also activate guard cell-expressed anion chan-
nels (Geiger et al., 2010). Furthermore, the expression of IRT1 
in Arabidopsis mutants lacking MAPK3 and MAPK6 (mpk3 
and mpk6, respectively) was shown to be down-regulated under 
Fe deficiency (Ye et al., 2015). MAPK3 and MAPK6 partici-
pate in a MAPK pathway downstream of ROS, contributing 
to both abiotic and biotic stress signaling (Opdenakker et al., 
2012; Jalmi et al., 2018), suggesting the existence of H2O2-
dependent regulation of IRT1 via the MAPK pathway. 

Plant transcription factors may also potentially assume the 
role of ROS sensors, as mentioned before (Hong et al., 2013; 
Demidchik, 2015). Known examples include the transcription 
factor TGA1, which possesses two specific cysteine residues 
(C260 and C266) that could be oxidized (Després et al., 2003). 
Another example is the heat shock transcription factors, which 
could also be involved in direct ROS sensing (Hong et al., 2013). 
Brassica juncea BjCdR15, a bZIP transcription factor ortho-
logue of Arabidopsis TGA3, is a regulator of Cd uptake, trans-
location, and accumulation in shoots, and confers Cd tolerance 
in transgenic plants by regulating the expression of AtHMA4, 
AtNRAMP3, AtABCC3/AtMRP3, and AtABCG36/AtPDR8 
(Farinati et al., 2010). TGA3 transcript levels were up-regu-
lated by Cd exposure in WT and AtrbohC plants, whereas no 
significant changes were observed in AtrbohD and AtrbohF, 
suggesting that H2O2 from RBOHD and RBOHF could reg-
ulate TGA3 (Hafsi et al., 2022). Herrera-Vásquez et al. (2021) 
have provided evidence to support the idea that TGA class II 
(TGA2/5/6) transcription factors represent a redox regula-
tory node in biotic and abiotic stress responses. Additionally, 
TGA2/5/6 impact on the cellular redox state by controlling 
the expression of genes responsible for restraining ROS accu-
mulation (Herrera-Vásquez et al., 2021). 

Transcriptomic analyses of genes induced by increas-
ing intracellular H2O2 levels in cat2 Arabidopsis mutants 
and Arabidopsis mutants with altered ROS production have 
allowed the identification of several transcription factors in the 
WRKY, AP2/ERF, MYB, NAC, HSF, and ZAT families (He 
et al., 2018; Terrón-Camero et al., 2022). WRKY46 plays an 
important role in the control of root-to-shoot Fe transloca-
tion under Fe deficiency conditions via the direct regulation 
of VTL1 transcript levels (Yang et al., 2016). It should be also 
borne in mind that ABC transporters are targets of nuclear 
factor erythroid 2-related factor 2 (Nrf2) in mice (Aleksunes and 
Klaassen, 2012) and Nrf2 is activated by ROS in animal cells 
(Marinho et al., 2014). Other transcription factors regulated by 
ROS in animal cells include CREB, TP53, NOTCH, NF-kB, 
SP1, HIF-1, SREBP-1, and HSF1, which have been consid-
ered as H2O2 sensors (Marinho et al., 2014). Moreover, in plant 
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cells, the transcription factor WRKY13 activates AtABCG36 
expression to positively regulate Cd tolerance (Sheng et al., 
2019; Li et al., 2022). WRKY transcription factors have been 
identified as potential downstream targets of MAPKs (Jalmi 
et al., 2018). The fact that ROS can lead to the activation 
of MAPK kinases (Li et al., 2022; Torres and Forman, 2003) 
may suggest that H2O2 can regulate ABCG36 expression via 
MAPK-dependent activation of WRKY13. The zinc finger 
transcription factor ZAT12 has been reported to be regulated 
at the transcriptional and post-translational levels by ROS in 
Arabidopsis, and to be up-regulated by prolonged Fe defi-
ciency. Thus, ZAT12 could be involved in the cross-talk be-
tween ROS and Fe uptake regulation (Gratz et al., 2021).

While the operation of the above sensory molecules is plau-
sible and supported by numerous pieces of evidence, none of 
these models can explain the rapid activation of ion channels 
reported in patch experiments using a single-channel mode 
(e.g. Demidchik et al., 2007), suggesting direct ROS sensing by 
ion channel(s) per se. Garcia-Mata et al. (2010) demonstrated 
that the SKOR K+ efflux channel was activated by H2O2 when 
heterologously expressed in HEK293 cells. Moreover, the sub-
stitution of the C168 residue on the S3 α-helix of the voltage 
sensor complex by another amino acid led to the loss of sen-
sitivity of SKOR to H2O2 (Garcia-Mata et al., 2010). As the 
above cysteine residue also exists in GORK (Demidchik et al., 
2014), this could explain a direct activation of the GORK 
channels by ROS, discussed above.

As for the NSCC channels, the bioinformatics analysis re-
vealed the presence of two candidates among the CNGCs, 
namely CNGC19 and CNGC20, that possess putative Cu/
Fe-binding sites that could represent the cysteine metal pockets 
situated in the first cytosolic domain of CNGC (Demidchik 
et al., 2014). Such cysteine residues have been shown to be 
responsible for ·OH-mediated activation of Ca2+-permeable 
channels in animal cells (Simon et al., 2004).

Regarding NO signaling, NRAMP3 and NRAMP4 have 
been reported recently to be transcriptionally regulated by 
S-nitrosylated bHLH29, bHLH38, and bHLH101 transcrip-
tion factors (Shee et al., 2022). An NO-sensing mechanism 
based on the N-degron pathway-mediated degradation of 
clade VII ethylene response factor (ERF) transcription fac-
tors (ERFVIIs) has been reported to control a wide array of 
plant developmental and stress-related responses (Gibbs et al., 
2014; Abbas et al., 2015). The ERFVIIs group comprises 
three constitutively expressed genes, RAP2.2, RAP2.3/EBP, 
and RAP2.12, as well as two hypoxia-inducible genes, HRE1 
and HRE2, which have been demonstrated to be substrates 
of the E3 ubiquitin ligase PROTEOLYSIS6 (PRT6), a key 
regulator of the Cys/Arg branch of the N-degron pathway 
(Gibbs et al., 2015). RAP2.3/EBP/ERF72 could directly 
bind to the promoter regions of Fe-deficiency response 
genes including the Fe transporter IRT1, HA2, and CLH1 
to exert negative regulation on responses to Fe deficiency 
(Liu et al., 2017). In woody apple plants, MbERF72 suppress 

Fe uptake by modulating an H+-ATPase and, consequently, 
the rhizosphere pH (Zhang et al., 2020). The expression of 
RAP2.2 is controlled by two WRKY family transcription 
factors, WRKY33 and WRKY12, during hypoxia-triggered 
responses (Tang et al., 2021). The WRKY33-ATL31-IRT1 
module has been recently reported to play a crucial role 
in blocking Cd absorption to prevent metal toxicity in 
Arabidopsis (Zhang et al., 2023). Extensive work will be 
needed to assess whether ERFVII signaling and WRKY-
related regulation of metal homeostasis are linked and, if so, 
to what extent.

Conclusions and perspectives

Plants have developed an evolutionary strategy to regulate 
their response to environmental changes, including nutritional 
imbalance and toxic heavy metals and salinity, through a site-
specific ROS and NO footprint (Gibbs et al., 2014; Zhu et al., 
2020; Romero-Puertas et al., 2022). Some of the targets of 
ROS- and NO-dependent transcriptional regulation are ion/
metal transporters, with major implications for plants’ capacity 
to sense and adapt to biotic and abiotic stresses.H2O2 and NO 
modify reversibly specific cysteine residues (or tyrosine resi-
dues in the case of ONOO–) in proteins. ROS and NO in-
teract both with each other and with proteins involved in their 
production and metabolism, regulating their own levels and 
the cellular redox equilibrium. The identification of redox-
sensitive nutrient sensors in plant cells, their specificity, and the 
mechanisms involved in decoding these signals is one of the 
challenges for the field. A number of metal transporters, ion 
channels, MAPKs, and transcription factors appear to be regu-
lated transcriptionally by ROS and NO, although the mecha-
nisms underlying the network involved in this regulation is 
far from being completely known. Further methodological 
improvements will allow better identification of membrane 
proteins to more completely address the relevance of redox 
changes in the functionality of metal and ion transporters. 
However, the ·OH-dependent activation of Ca2+-permeable 
NSCC and SKOR has been well established. Here, we have 
also implemented our knowledge of NO-dependent regula-
tion of metal transporters by the identification of cysteine and 
tyrosine targets of NO by an in silico analysis, which requires 
confirmation by further proteomic approaches. Interestingly, 
some transporters are targets of both ROS- and NO-dependent 
PTMs, suggesting that these reactive species are an important 
hub in the regulation of their functionality. Additionally, the 
specific subcellular sites of production of ROS and NO could 
trigger specific patterns of PTM and signaling, which require 
further deep analysis. All this information could be of interest 
in designing new strategies to fortify crops, improving plant 
resilience against nutritional imbalance and salinity, and de-
signing new phytoremediation methodologies based on redox 
biochemistry governed by ROS and NO.
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