
DOI: http://dx.doi.org/10.14236/ewic/ICS2015.13

Insecure by Design: Using Human Interface
Devices to exploit SCADA systems

Grigoris Tzokatziou
School of Computer Science and Informatics

De Montfort University, Leicester, UK
p11248630@myemail.dmu.ac.uk

Leandros Maglaras
School of Computer Science and Informatics

De Montfort University, Leicester, UK
leandros.maglaras@dmu.ac.uk

Helge Janicke
School of Computer Science and Informatics

De Montfort University, Leicester, UK
heljanic@dmu.ac.uk

Modern Supervisory Control and Data Acquisition (SCADA) systems which are used by the electric utility
industry to monitor and control electric power generation, transmission and distribution, are recognized
today as critical components of the electric power delivery infrastructure. SCADA systems are large,
complex and incorporate increasingly large numbers of widely distributed components. Cyber-attacks
usually target valuable infrastructures assets, taking advantage of architectural/technical vulnerabilities
or even weaknesses in the defense systems. Even though novel intrusion detection systems are being
implemented and used for defending cyber-attacks certain vulnerabilities of SCADA systems can still be
exploited. In this article we present an attack scenario based on a Human Interface Device (HID) device
which is used as a means of communication/exploitation tool to compromise SCADA systems. The attack,
which is a normal series of commands that are sent from the HID to the PLC cannot be detected through
current intrusion detection mechanisms.

Keywords: SCADA, cyber security, HID

1. INTRODUCTION

One of the biggest issues that SCADA systems
face is that they were designed to work solely in
their environment segregated from inter-connected
IT networks or ad-hoc systems. The primary reason
for this is that there was no need for remote access
at the time of their introduction. However, nowadays
organizations want to establish local convenience
or remote access, which will enable them to take
decisions on production changes and apply them
quickly from a centralized location rather than have
to travel to different locations in order to make
changes to their ICS systems. This interconnection
of Industrial Control System (ICS) networks with
organizational ICT network infrastructures, and even
with the exterior has brought a new wave of
security problems and attacks. In fact, the number
of externally initiated attacks on ICS systems has
increased much more rapidly than internal ones
Igure et al. (2006).

Moreover, SCADA communication protocols, which
are responsible for the interaction between field de-
vices, such as PLC (Programmable Logic Controller)

or RTU (Remote Terminal Unit) components and
the stations that control and monitor them, pose
security concerns Robinson et al. (2015). One such
example is the Modbus protocol, originally developed
by Modicon.

Modbus messages are exchanged between entities
by using TCP, which imposes more complexity
with regard to managing the reliable delivery of
packets in a control environment with strong real time
constraints. In addition, it provides attackers with
new avenues to target industrial systems Carcano
et al. (2008). Modbus is one of the most popular
protocols for SCADA applications, but it suffers from
security problems such as the lack of encryption or
any other protection measures which thus exposes it
to different vulnerabilities.

Serial communication has not been considered
as an important or viable attack vector, but
the researchers say breaching a power system
through serial communication devices can be, under
some circumstances, than attacking through the IP
network since it does not require bypassing layers
of firewalls Ashford (2013). Potential attackers use

c© Tzokatziou et al. Published by
BCS Learning & Development Ltd. 103
Proceedings of the 3rd International Symposium for ICS & SCADA Cyber Security Research 2015



Insecure by Design: Using Human Interface Devices to exploit SCADA systems
Tzokatziou • Maglaras • Janicke

common vulnerabilities in order to put controlling
servers into infinite loops. This case is not the same
as not having access to the field network, but it
could mean that the operators are not aware of the
actual conditions on the ground. The worst of the
vulnerabilities exposed so far enables a potential
buffer-overflow attack, whereby code stored for one
purpose overflows its container, and can end up
being executed in different time instances than
programmed to or in a different way. This allows for
malicious code to be injected into control servers,
giving access to attackers to the control system.

If there is not adequate security in place, then the
impact of an attack or a disruption in the process of
these critical infrastructures could prove hard to deal
with, such impacts include :

• Physical Impacts - Loss of life, property and
data, also potential damage to the environment
i.e. oil spillage.

• Economic Impacts - Loss of income, revenue
from attacks which cause the normal process
of industrial systems to be halted.

• Social Impacts - If an attack compromises
transportation networks or systems which will
have a social impact i.e. water distribution
systems the public will loose confidence in the
Government.

Modern intrusion detection systems (IDSs) focus
mainly on analyzing the traffic that flows in the
network. By capturing behaviour or traffic patterns
in the network, misbehavior is detected and
dedicated security events are reported. IDSs can
be classified into centralized intrusion detection
systems (CIDSs) and distributed intrusion detection
systems (DIDSs), according to the way in which
their components are distributed. Due to the
rapid increase of sophisticated cyber threats
with exponentially destructive effects, IDSs are
systematically evolving Leandros et al. (2014);
Gil et al. (2013); Tiago et al. (2014). Among
other approaches, neural networks, support vector
machines, K-nearest neighbor (KNN) and the Hidden
Markov model can be used for intrusion detection,
while existing signature-based network IDS, such
as Snort or Suricata can be effective in SCADA
environments. However, most of the approaches
that have been introduced recently cannot deal with
attacks that come straight from serial communication
devices.

In this article we investigate the vulnerabilities of a
SCADA system and perform an attack directed to an
ABB PM564 PLC, using a HID . The Teensy device
used is an Arduino based one that allows the user to
utilize onboard memory storage on a microcontroller

and to emulate a keyboard/mouse. By using this HID
device (see Figure 1) we can bypass any autorun
protections on the system since it is shown as a
keyboard that is connected to the workstation. By
sniffing the packets that are exchanged between
the HMI and the PLC we manage to extract the
information of a STOP command, replicate it and
store it in a web host. As the PLC has been set
to run, we insert the Teensy HID device into the
engineer’s machine, or a machine connected to
the same subnet. Once the Teensy USB has been
plugged into the system, it waits for a specific amount
of time in order to download the code and execute it.
The attack, although primitive, cannot be detected
by any current IDS as it involves the execution of a
legitimate ‘STOP’ order from an authorized device.

Figure 1: Teensy HID

2. HID RELATED ATTACKS

There are a lot of threats to our National Critical
Infrastructure systems (SCADA) which have a major
effect not only on the public, but also the government
and the economy of a country or nation. Most of the
attacks have used sophisticated mechanisms to gain
entry and exploit well-known vulnerabilities and ones
that have yet to be discovered.

In reference to SCADA there have not been any
attempts to attack their systems with a HID device,
such as the Teensy 3.1 which falls under the HID
category as this is how it is recognised by the system
although it connects via USB. Further research
showed that the primary use of the Teensy board
was for personal projects which can all be found
under the PJRC13 store. The teensy board itself has
been used as a penetration testing tool kit.

3. EXPERIMENTAL SETUP

Our earlier research showed that the commands
sent from an engineer’s machine to a PLC go
through the TCP/IP protocol. We connected the
machine and the PLC together (see Figure 2) via
a switch so that we could confine any action to

104



Insecure by Design: Using Human Interface Devices to exploit SCADA systems
Tzokatziou • Maglaras • Janicke

Figure 2: Architecture of the PLC

a safe environment without disrupting any other
interconnected devices on the network.

By using the Codesys software to start and stop the
PLC, while sniffing the connection between these
two devices, we noticed that the commands sent
between these devices were not encrypted, but
rather, were in plain text (HEX). This characteristic
is a vulnerability of the system that can be exploited.
Since no authentication/encryption is used we can
replicate this information without the need of the ABB
suite of tools. The packets that are exchanged have a
lot of raw data that do not perform any specific action
on the PLC. One of the most important findings is the
3-way handshake being performed between the PLC
and the computer. To attempt any sort of command
execution we need to establish a connection using
this 3-way handshake mechanism.

The packets also revealed that when an AA// was
included in the raw data it meant that the following
code was an attempt at communication. The above
syntax was a key, as without this syntax we would
have to go through every single piece of data and
use a trial and error approach in order to interpret
data to actual commands. In order to craft packets,
we used a Linux tool which has been made available
for Windows called Scapy, which is able to create
a packet with a set of parameters specified by the
user. Specifically, it is a packet manipulation tool
developed by Phillipe Biondi with the ability to forge,
decode packets from a different range of protocols
and to send them or reply to a request.

In order to be certain that this data did not change
per every single connection attempt, we captured

the data many times and compared these values.
We concluded that the data exchanged in order to
perform specific actions on the PLC are exactly the
same every time. This finding lead us to the view
that ABB PLCs with the specific firmware version
use the same set of data to communicate with a
workstation. This is very beneficial for our research
since it means the attack can work for the same
model of PLC without the need to alter the code.
Using the same strategy we managed to sniff the
‘STOP’ command that is sent from a workstation to
the PLC. The series of commands was crafted into
a packet and was correctly sent from our device to
the PLC, since no authentication or encryption was
demanded from the PLC. The script was converted
to a simple executable program and the file is hosted
on local internet host; ready to download.

4. RESULTS AND ANALYSIS

The attack script starts by accessing the Scapy
library and importing the time which is important
because without this the PLC and engineer’s
machine could not talk to each other in different
times, i.e. they have to be synced. We create a
connection socket specifying the IP and port of the
PLC. We then define four variables that include the
RAW Hex data, send the request, and wait (sleep)
0.1s before sending the second request. After the
second request is sent we dispatch the third, which
is the ACK and the fourth request is the STOP
command. Finally the last raw data that we sent is to
close the socket (See Figure 3). We have to mention
here that the full information cannot be disclosed in
this article for security reasons.

Based on the research and experimental work that
we conducted we found that a ready malicious
executable file can cause a PLC to STOP running.
The executable file can be downloaded from the
internet and executed from the workstation that
controls the PLC. It can be copied to the startup
location of the workstation so that the payload will
run with every restart.

5. PROPOSED DEFENSE MECHANISMS

The Teensy HID device appears on the system under
the Universal Serial Bus. Traditionally, Windows does
not require any privileges for the installation of this
device as these drivers are already part of the O/S
and by default are automatically installed. A way
to stop any input from a certain HID device is to
blacklist it by vendor and product ID, but this is not
very reliable as the vendor can change the identifiers
which then can by-pass the blacklist enabled within
Windows Crenshaw (2011).

105



Insecure by Design: Using Human Interface Devices to exploit SCADA systems
Tzokatziou • Maglaras • Janicke

Figure 3: Attack code

Another option would be to create a policy within
Windows to allow only one keyboard and mouse
to be present at any one time. Another available
option is to allow the administrator to specify a list
of device set-up GUIDs (global unique identifiers)
for device drivers that windows is allowed to install.
Cryptographic solutions are incomplete without
effective key management which remains an open
problem in SCADA networks.

6. CONCLUSIONS

This article has investigated the vulnerabilities of a
SCADA system and performed an attack directed at
an ABB PM564 PLC, using a HID (Human Interface
Device). This PLC uses the Codesys programming
software as its SCADA programming interface. The
HID device is inserted into the workstation and is
recognized as a keyboard. Once the Teensy USB
has been plugged into the system it will wait for a
specific amount of time (set in the code) in order
to download the code and execute it. The attack,
although primitive, cannot be detected by any current
IDS, since it involves the execution of a legitimate
‘STOP’ order from an authorized device.

The malicious packet which alters the behaviour
of the PLC can be executed in random time
periods and in different PLCs, thus making the
situation harder to be controlled. The article has also
investigated possible counter measures and defense
mechanisms against this kind of cyber attack. As
future work, more sophisticated attacks are going
to be performed with real time defense systems
tested against them in order to assess their detection
capabilities.

REFERENCES

Igure, V. M., Sean A. L., and Ronald D. W. (2006)
Security issues in SCADA networks. Comput.
Secur, 25 (7), 498–506.

Robinson, M., Kevin, J., and Helge, J. (2015) Cyber
warfare: Issues and challenges. Comput. Secur.,
49, 70–94.

Carcano, A. et al. (2008) SCADA malware: A proof
of concept. In: Third International Workshop on
Critical Information Infrastructure Security, Berlin,
Germany: Springer.

Ashford, W. (2013, Oct. 18) US Researchers
find 25 security vulnerabilities in SCADA
systems. ComputerWeekly.com. Available from
http://www.computerweekly.com/news/2240207488/
USresearchers-find-25-security-vulnerabilities-in-
SCADA-systems

Leandros, A. M., Jianmin, J., and Tiago, J.
C. (2014) Integrated OCSVM Mechanism for
intrusion detection in SCADA systems. Electron.
Lett., 50 (25), 1935–1936.

Tiago, J. C. et al. (2014) A distributed IDS for
industrial control systems. Int. J. Cyber Warfare
and Terrorism (IJCWT), 4 (2), 1–22.

Gil, P. M. et al. (2013) RepCIDN: A reputation-based
collaborative intrusion detection network to lessen
the impact of malicious alarms. J. Netw. Syst. 730
Manage., 21 (1), 128–167.

Crenshaw, A. (2011). Plug and prey: Malicious
USB devices. Available from http://www.irongeek.
com/downloads/Malicious%20USB%20Devices.pdf

Khurana, H. et al. (2010) Smart-grid security issues.
IEEE Security & Privacy, 8 (1), 81–85.

106


