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Background. Gestational diabetes mellitus (GDM) contributes to adverse pregnancy and birth outcomes. In recent decades,
extensive research has been devoted to the early prediction of GDM by various methods. Machine learning methods are flexible
prediction algorithms with potential advantages over conventional regression. Objective. The purpose of this study was to use
machine learning methods to predict GDM and compare their performance with that of logistic regressions. Methods. We
performed a retrospective, observational study including women who attended their routine first hospital visits during early
pregnancy and had Down’s syndrome screening at 16-20 gestational weeks in a tertiary maternity hospital in China from
2013.1.1 to 2017.12.31. A total of 22,242 singleton pregnancies were included, and 3182 (14.31%) women developed GDM.
Candidate predictors included maternal demographic characteristics and medical history (maternal factors) and laboratory
values at early pregnancy. The models were derived from the first 70% of the data and then validated with the next 30%.
Variables were trained in different machine learning models and traditional logistic regression models. Eight common machine
learning methods (GDBT, AdaBoost, LGB, Logistic, Vote, XGB, Decision Tree, and Random Forest) and two common
regressions (stepwise logistic regression and logistic regression with RCS) were implemented to predict the occurrence of GDM.
Models were compared on discrimination and calibration metrics. Results. In the validation dataset, the machine learning and
logistic regression models performed moderately (AUC 0.59-0.74). Overall, the GBDT model performed best (AUC 0.74, 95%
CI 0.71-0.76) among the machine learning methods, with negligible differences between them. Fasting blood glucose, HbA1c,
triglycerides, and BMI strongly contributed to GDM. A cutoff point for the predictive value at 0.3 in the GBDT model had a
negative predictive value of 74.1% (95% CI 69.5%-78.2%) and a sensitivity of 90% (95% CI 88.0%-91.7%), and the cutoff point at
0.7 had a positive predictive value of 93.2% (95% CI 88.2%-96.1%) and a specificity of 99% (95% CI 98.2%-99.4%). Conclusion.
In this study, we found that several machine learning methods did not outperform logistic regression in predicting GDM. We
developed a model with cutoff points for risk stratification of GDM.

1. Background

Gestational diabetes mellitus (GDM) is a disease in which
carbohydrate intolerance develops during pregnancy [1].
GDM affects approximately 14.8% of pregnant mothers in
China [2], and the prevalence of GDM is increasing world-

wide [3]. Women with GDM undergo metabolic disruption
and placental dysfunction [4], increasing the risks for pre-
eclampsia and cesarean delivery [5]. Hyperglycemia and pla-
cental dysfunction adversely affect fetal development,
increasing the risks of birth trauma, macrosomia, preterm
birth, and shoulder dystocia [6, 7]. The mother with GDM
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and her offspring are both more likely to develop obesity,
type 2 diabetes mellitus, and cardiovascular disease than
those without GDM [8, 9].

Early diagnosis and intervention should decrease the
incidence of GDM and lower adverse pregnancy outcomes
[10, 11]. However, based on most guidelines, most GDM
cases are diagnosed between 24 and 28 gestational weeks by
an oral glucose tolerance test (OGTT) [12, 13], which may
miss the optimal window for intervention, as fetal and pla-
cental development have already occurred by this point
[14]. Universal diagnosis by OGTT at early pregnancy has
been suggested [15], but this is costly and inefficient as in
most cases, GDM manifests during mid-to-late pregnancy
[16]. Overall, early prediction is needed and may be valuable.
Developing a simple method using the existing clinical data
at early pregnancy to quantify a woman’s risk of developing
GDM would help to identify high-risk mothers in need of
early diagnosis, monitoring, and therapy and serve to obviate
universal OGTTs for low-risk women [10].

Recent prediction models for GDM have been developed
using conventional regression analyses [17–19]. However,
machine learning, a data analysis technique that develops
algorithms to predict outcomes by “learning” from data, is
increasingly emphasized as a competitive alternative to
regression analysis. Moreover, machine learning has the
potential to outperform conventional regression, possibly
by its ability to capture nonlinearities and complex interac-
tions among multiple predictive variables [20]. Despite this,
only four studies [21–24] have used machine learning algo-
rithms to predict GDM, and none of them compared their
performance with that of logistic regressions.

In this study, we aimed to use machine learning methods
to develop a model incorporating data on maternal charac-
teristics and biochemical tests to predict the presence of
GDM and to compare their performance with that of tradi-
tional logistic regression models. It is hypothesized that
machine learning algorithms outperform traditional logistic
regression models in terms of discrimination and calibration.

2. Materials and Methods

2.1. Study Population and Data Source

2.1.1. Study Setting. A single-center, retrospective cohort
study was conducted to derive and validate a model with cut-
off points for the prediction of GDM. Eligible subjects were
women with singleton pregnancies who had records of serum
samples collected before 24 gestational weeks for prenatal
biochemical examination and Down’s syndrome screening
and who later delivered at the Obstetrics and Gynecology
Hospital of Fudan University from 2013 to 2017. All women
with multiple pregnancies or previous diabetes were excluded.
Informed consent was obtained from all the participants, and
the study protocol was approved by the Ethics Committee of
Gynecology and Obstetrics Hospital of Fudan University.

2.1.2. Predictive Variables. Predictor variables included med-
ical history, clinical assessments, ultrasonic screening data,
biochemical data of liver/renal/coagulation function at the

prenatal visit, and data from Down’s syndrome screening.
In total, 104 variables were assessed. Briefly, medical history
included a history about diabetes and previous pregnancy
and the woman’s family history. Clinical assessment included
maternal age, educational status, smoking, body mass index
(BMI), and parity. Biochemical tests at the first prenatal visit
were performed after fasting for at least 8 h. Down’s syn-
drome screening was performed between 16 and 20 gesta-
tional weeks, and ultrasound screening was performed
between 24 and 28 gestational weeks.

2.1.3. Outcomes. The primary outcome was GDM, which was
diagnosed according to IADPSG criteria 2010 [12]. Briefly,
GDM was defined according to the 75 g OGTT (0-1-2 hours:
10.1-8.5-5.1mmol/L) from 24 to 28 gestational weeks, and
the diagnosis of GDM was established if any single glucose
concentration met or exceeded a fasting value of 5.0mmol/L,
a 1 h value of 10mmol/L, or a 2 h value of 8.5mmol/L.

The secondary outcome was adverse pregnancy out-
comes, including cesarean delivery for any reason, preeclamp-
sia, macrosomia (birth weight ≥ 4000 g), IUGR (intrauterine
growth restriction), preterm birth (≤34 gestational weeks),
neonatal asphyxia (Apgar score ≤ 3), and perinatal death.
These outcomes were evaluated because of their reported asso-
ciations with GDM [25].

2.2. Study Objectives and Strategies. The primary objective
was to compare the performance of various machine learning
models and conventional logistic regression models by dis-
crimination and calibration. The second objective was to esti-
mate an optimal model with one point (at or above) to
predict the presence of GDM and with another point (at or
below) to predict the absence of GDM.

2.3. Model Development

2.3.1. Overview. We conducted the study to derive and vali-
date a model for the prediction of GDM by means of a two-
phase approach (development and validation). The dataset
of the GDM group was randomly split into the development
(70%) and validation (30%) cohorts. The dataset of women
without GDM was randomly downsampled at a 1 : 1 ratio
into the GDM group to obtain balanced data. Thus, in the
development phase, we used data from 4900 participants
(2181 with GDM and 2719 without GDM) to derive a model
and its cutoff to predict the presence of GDM, and this cutoff
was validated with the use of data from 2100 additional partic-
ipants (1001 with GDM and 1099 without GDM) (Figure 1).

2.3.2. Data Processing. First, we extracted information for
each specific index from the records and converted their
descriptions to numerical variables. Some numerical vari-
ables were processed hierarchically and transformed into cat-
egorical variables; for example, patient biochemical tests were
classified into categories, namely, normal and abnormal test
results. Additionally, variables pertaining to patient charac-
teristics were converted to numerical variables.

Second, missing data were calculated, and they were
eliminated if more than 40% of the data were missing for
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one participant; otherwise, the missing data were filled in by
means of the mean filling method.

Third, the Pearson correlation coefficient was used to cal-
culate the correlation coefficient between two features, aim-
ing to judge the multicollinearity. A feature was eliminated
if the absolute value of the correlation coefficient was higher
than 0.75, as this indicated a strong collinearity.

Data standardization is a basic work of data mining. Dif-
ferent features often have different dimensions and dimen-
sion units, which will affect the results of the data analysis.
To eliminate the dimensional impact among features, data
standardization is needed to solve the comparability between
data features. After the original data are standardized, each
index is on the same order of magnitude, which is suitable
for comprehensive evaluation. In the present study, the
method of deviation standardization was used to normalize
the continuous characteristic variable to 0-1.

2.3.3. Development Phase. Eight machine learning algorithms
and two conventional logistic regressions were used to
develop predictive models. All model tuning using ten-fold
cross-validation was performed in the development dataset.
Multiple methods were used to derive the model from the
same set of data. Results for recall, precision, and F-mea-
sure were obtained.

2.3.4. Conventional Logistic Regression Models. Two conven-
tional logistic regression models were compared in this study.
The first model was fit with each variable entered linearly.
The second model used restricted cubic splines with three
knots to allow for nonlinearity. In both models, maternal
age, BMI, and previous GDM were always included in the
model, regardless of statistical significance, because they have
been reported to be associated with GDM. Other predicted

variables were retained in the model if they were statistically
significant between the GDM and control groups (P < 0:05).

2.3.5. Machine Learning Models

(1) GBDT. GBDT is an integrated learning model based on a
decision tree that adopts the additive model method. In the
iterative training process, the model generates a weak classi-
fier based on the residual of the last iteration and achieves the
purpose of data classification by constantly reducing the
residual generated in the training process.

(2) AdaBoost. AdaBoost is also an integrated learning algo-
rithm. In the iterative process, the algorithm generates a
new learner on the training set to predict all samples and
evaluate the importance of each sample. The more difficult
it is to distinguish samples, the higher the given weight will
be in the iterative process. The whole iterative process is ter-
minated when the error rate is small enough or a certain
number of iterations is reached.

(3) LGB. LGB uses a decision tree based on a learning algo-
rithm. LGB uses a histogram algorithm to divide the contin-
uous floating-point features into k discrete values and
constructs a histogram with a width of K . Then, the training
data are traversed, and the cumulative statistics of each dis-
crete value in the histogram are calculated. In feature selec-
tion, only the discrete value of the histogram is needed to
traverse to find the optimal segmentation point.

(4) Vote. In the present study, Vote was used to synthesize the
results of other algorithms in the present study; that is, when
the samples were predicted and judged, other algorithms
were used to vote, and the category with the most votes was
the output result of the vote algorithm.

2013.1.1-2017.12.31
75,276 deliveries 

32,870 did not undergo Down’s
screening 
19,534 did not have chemical data

628 Multiple pregnancies
2 PGDM 

22,242 in total
3182 GDM +19,060 without GDM

Validation cohort (30%)
1001 GDM + 1099 without GDM

Development cohort (70%) 
2181 GDM + 2719 without GDM

10-fold cross-validation

Final algorithm for the full development dataset 
and application of algorithm to the validation dataset 

Model performance 
(discrimination and calibration )

Downsampling

Figure 1: Study profile and analysis pipeline.
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(5) XGB. XGB establishes K regression trees to make the pre-
dicted value of the tree group close to the real value as much
as possible and has the ability to generalize as much as possi-
ble. The objective function of XGB requires the prediction
error to be as small as possible, the number of leaf nodes to
be as small as possible, and the number of nodes to be as
low as possible.

(6) Random Forest. Random forest is a nonlinear tree-based
integrated learning model. Random forest establishes a forest
in a random way. The forest is composed of many decision
trees, and there is no correlation between each decision tree.
After the random forest model is obtained, each decision tree
in the random forest is judged when the new sample enters.
For the classification problem, the voting method is used,
and the maximum number of votes is the final model output.

(7) Decision Tree. The decision tree is a basic classification
method. The decision tree consists of nodes and directed
edges. A decision tree contains a root node, an internal node,
and a leaf node, in which the internal node represents a fea-
ture and the leaf node represents a class. First, the feature is
filtered according to the information gain of the feature.
Then, each node is divided into subnodes according to the
feature value. The root node contains the sample set. The
path from the root node to each leaf node corresponds to a
decision sequence.

(8) ML Logistic. Logistic regression, also known as logarith-
mic probability regression, is a classification model and suit-
able for the fitting of numerical binary output data. After the
input data are linearly weighted, a sigmoid function is used to
process the input data to obtain the output probability result,
and then, the probability result is transformed into binary
output by a symbol function. The parameters of the input
model are obtained by maximum likelihood estimation,
which distinguishes it from conventional logistic regressions.

2.3.6. Validation Phase. Predictive probabilities were calcu-
lated for each model in the validation dataset from each
development model in two ways. First, model discrimination
was assessed by the area under the receiver operating
characteristic (AUC) curve, where a value of 1.0 represents
perfect discrimination and 0.5 represents no discrimina-
tion. Second, model calibration was assessed by the mean
square errors.

To estimate the relative contribution of the variables in
the best performing machine learning methods and logistic
regressions, the AUC-based permutation importance measure
for the best performing machine learning method and the
Wald χ2 statistics minus the degrees-of-freedom (χ2 − df )
for the best performing logistic regression were computed.
The effects of the most accurate predictor variables across dif-
ferent values and predicted risk were evaluated for the most
accurate model using partial dependence plots. The distribu-
tion of predictive value versus its percentage in the whole pop-
ulation or occurrence of GDM is shown. Distributions of
predictive values in either the development or validation data-
set are also shown.

The negative predictive value, positive predictive value,
sensitivity, specificity, positive likelihood ratio, and negative
likelihood ratio were obtained. Cutoff points were selected
from the development cohort to achieve a negative predictive
value higher than 85% or a positive predictive value higher
than 85%, which were further analyzed in the validation
cohort. All analyses were performed by R version 3.6.1 or
python3.6.5. A single-tailed P value < 0.05 was regarded as
statistically significant.

3. Results

3.1. Baseline Characteristics. A total of 22,872 mothers were
enrolled (Figure 1) from 2013 to 2017. The analysis
included 22,242 participants who could be further evalu-
ated (Figure 1). The incidence of GDM was 14.31% in the
total cohort (Figure 1). The proportions of overweight, older
age, history of prior GDM, and family history of diabetes
among mothers who developed GDM were higher than those
among mothers who did not develop GDM (Table 1). There
were no statistically significant differences in the rates of nul-
liparity, prior macrosomia, or preterm delivery (Table 1).

3.2. Model Comparisons. Figure 2 represents the discrimina-
tion and calibration performance of machine learning and
logistic regression models. In terms of discrimination, the
AUCs of the best performing machine learning model
(GDBT) and the best performing logistic regression model
(logistic with RCS) were similar (73.51%, 95% CI 71.36%-
75.65% vs. 70.9%, 95% CI 68.68%-73.12%). The decision tree
model was the least discriminative (59.96%, 95% CI 57.53%-
61.4%). In terms of calibration performance, indexed by the
mean square error, the decision tree (65%, 95% CI 0.30%-
1.0%) was the best calibrated model, followed by the GBDT
model (0.88%, 95% CI 0.65%-1.1%).

Figure 3 shows the top ten predictor variables in
the GBDT (Figure 3(a)) and logistic regression models
(Figure 3(b)). In both models, fasting blood glucose,
HbA1c, triglycerides, and maternal BMI were among the
most important predictors. However, the top four predictor
variables were not completely similar. Fasting blood glucose,
HbA1c, triglycerides, and maternal BMI were the most
important predictor variables in GBDT (Figure 3(a)), while
HbA1c and high-density lipoprotein were the most important
predictor variables in the logistic regression (Figure 3(b)).
In both models, the risks for GDM increased with increas-
ing levels of the predictors (Figures 3(c) and 3(d)).

3.3. Optimal Model Analysis. Further analyses were per-
formed in the GBDT model. The AUCs of GBDT in both
the development and validation cohorts are shown in
Figure 4 (75%, 95% CI 73.42%-76.22% vs. 74%, 95% CI
71.36%-75.65%). Model calibration was shown by comparing
the observed and model-predicted risk of GDM in the gen-
eral cohort (Figure 4(a)). At or below the cutoff point of
0.3, the observed occurrence was slightly lower than that pre-
dicted by the model, while at or above the cutoff point of 0.7,
the observed occurrence was slightly higher than the
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predicted value; however, overall, the predicted risk fits the
observed occurrence well (Figure 4(b)).

The distribution of the predictive values in the combined
cohorts is presented in Figure 5, which shows skewness, and
the top distribution was at a cutoff of 0.3. The median of the
predictive value was 0.42. The occurrence of GDM increased
linearly with increasing predictive value (Figure 5(a)). A total
of 569 of the participants had predictive values at or above
0.7, and 89.3% of them developed GDM, accounting for
16% of the cases of GDM (Figure 5(a)).

In the development cohort, the median predictive value
was elevated among participants who developed GDM com-
pared with those who did not develop GDM (52.38% vs.

35.48%) (Figure 5(b)). The selected cutoff points derived
from the development cohort were 0.3 (rule out) and 0.7 (rule
in). At or below the cutoff point of 0.3, the negative predictive
value for GDM was 82.4% (95% CI 79.9%-84.7%) with a sen-
sitivity of 8% (95% CI 6.9%-9.2%) (Table 2), while at or above
the cutoff point of 0.7, the positive predictive value for GDM
was 86.6% (95% CI 82.9%-89.6%) with a sensitivity of 16%
(95% CI 14.5%-17.6%) (Table 2).

In the validation cohort, the median predictive values of
the participants who developed GDM and those who did
not develop GDM were 0.52 and 0.37, respectively
(Figure 5(b)). At the cutoff point of 0.3, the negative predic-
tive value was 74.1% (95% CI 69.5%-78.2%) in the validation

Table 1: Baseline characteristics.

Characteristic
Development set (N = 4900) Validation set (N = 2100)

GDM (N = 2181) Control (N = 2719) P value GDM (N = 1001) Control (N = 1099) P value

Maternal characteristics

Maternal age (years)

<20 1 (0.44%) 7 (0.26%)

<0.001

1 (0.11%) 0

<0.00120-34.9 2051 (90.95%) 2522 (95.35%) 856 (92.34) 1105 (94.20%)

35-40 159 (7.05%) 88 (3.33%) 51 (5.50%) 50 (4.26%)

≥40 9 (0.40%) 3 (0.11%) 5 (0.54%) 1 (0.09%)

BMI (kg/m2)

<25 1290 (57.2%) 1920 (72.6%)

<0.001
559 (60.30%) 853 (72.7%)

<0.00125-29.9 450 (20.0%) 269 (10.2%) 161 (17.40%) 110 (9.4%)

>30 80 (3.5%) 26 (1.0%) 29 (3.10%) 7 (0.6%)

Education status

<College 740 (33.9%) 957 (35.2%) 0.41 372 (37.2%) 383 (34.8%) 0.28

College 1142 (52.4%) 1363 (50.1%) 0.08 491 (49.1%) 539 (49.0%) 0.97

>College 209 (9.6%) 299 (11.0%) 0.12 99 (9.9%) 132 (12.0%) 0.12

Smoking 30 (1.4%) 31 (1.1%) 0.44 14 (1.4%) 15 (1.4%) 0.85

Nulliparous 1840 (81.60%) 2194 (82.95%) 0.44 763 (82.31%) 973 (82.95) 0.67

Prior macrosomia 22 (1.0%) 15 (0.57%) 0.10 10 (1.08%) 3 (0.26%) 0.02

Prior preterm delivery 22 (1.0%) 17 (0.64%) 0.18 7 (0.76%) 10 (0.85%) 0.80

Prior GDM 20 (0.89%) 0 <0.001 12 (1.30%) 0 <0.001
Family history of diabetes 21 (0.93%) 9 (0.34%) 0.008 14 (1.51%) 3 (0.36%) 0.001

Biochemical data

3-Triglyceride 1:67 ± 0:79 1:44 ± 0:59 <0.001 1:67 ± 0:85 1:40 ± 0:55 <0.001
Uric acid 213:30 ± 45:25 202:71 ± 39:88 <0.001 213:19 ± 44:93 203:24 ± 41:29 <0.001
Glycosylated hemoglobin 5:21 ± 0:43 5:03 ± 0:38 <0.001 5:19 ± 0:42 5:01 ± 0:35 <0.001
Alkaline phosphatase 67:85 ± 36:53 66:94 ± 35:94 0.008 68:06 ± 37:75 67:32 ± 36:85 0.07

Total cholesterol 4:71 ± 0:77 4:60 ± 0:76 <0.001 4:70 ± 0:86 4:65 ± 0:77 0.18

Lactic dehydrogenase 152:92 ± 37:80 153:00 ± 34:67 0.18 153:19 ± 34:77 152:38 ± 33:85 0.18

Fasting blood glucose 4:59 ± 0:67 4:34 ± 0:46 <0.001 4:59 ± 0:74 4:32 ± 0:40 <0.001
AFP concentration 42:82 ± 17:66 44:53 ± 17:32 <0.001 42:56 ± 16:19 44:72 ± 17:55 0.001

Fibrinogen 3:77 ± 0:64 3:63 ± 0:59 <0.001 3:72 ± 0:61 3:62 ± 0:62 <0.001
High-density lipoprotein 1:08 ± 0:22 1:05 ± 0:21 <0.001 1:08 ± 0:22 1:06 ± 0:22 0.04

Data are the n (%) ormean ± SD. P values indicate differences between groups calculated using the two-sample Wilcoxon rank-sum (Mann-Whitney) test for
continuous variables and the Pearson χ2 test or ANOVA for categorical variables, with trend tests if appropriate. The “missing” category was not included in
statistical tests. For characteristics that had no “missing” category, the data were 100% complete. Maternal age was defined as age at recruitment into the study.
Maternal BMI was recorded at middle pregnancy when Down’s syndrome screening was performed.
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XGB
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LGB

Logistic with RCS
Random forest

ML logistic
GBDT
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0.00 0.02 0.04 0.06
Mean absolute error

(b)

Figure 2: Results of discrimination and calibration metrics of machine learning and logistic regressions in the validation cohort. The AUC (a)
and mean absolute error (b) are presented in each model as mean and 95% confidence intervals.
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Figure 3: Contribution of the predictor variables in GBDT and the logistic regression model. (a) Importance of the predictor variables in the
GBDT model in the validation cohort. (b) Importance of the predictor variables in the logistic model with restricted cubic spline in the
validation cohort. (c) Partial plot of the effects of fasting blood glucose (GLU, mmol/L), glycosylated hemoglobin (HbA1c, %), triglyceride
(TG, mmol/L), and maternal BMI (kg/m2) on the risk of GDM across different values in the GBDT model. (d) Partial plot of the effect of
glycosylated hemoglobin (HbA1c, %), high-density lipoprotein (HDL, mmol/L), fasting blood glucose (GLU, mmol/L), and triglyceride
(TG, mmol/L) on the risk of GDM across different values in the logistic model with restricted cubic spline.
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cohort, and the corresponding sensitivity was 90% (95% CI
88.0%-91.7%) (Table 2). Additionally, at the cutoff point of
0.7, the positive predictive value was 93.2% (95% CI 88.2%-
96.1%), with a high specificity of 99% (95% CI 98.2%-
99.4%) and a high positive likelihood ratio of 15 (95% CI
14.38-15.61) (Table 2).

3.4. Pregnant Adverse Outcomes. In terms of discrimination,
the AUCs of GDBT for adverse pregnancy outcomes was
0.68 (95% CI 0.67-0.70) in the development cohort and
0.63 (95% CI 0.61-0.65) in the validation cohort (supplemen-
tary file, Figure S1A). At or below the cutoff point of 0.4, the
prediction for adverse pregnancy outcomes was slightly
lower than the observed predictive values, while at or above
the cutoff point of 0.6, the predictive value was slightly
higher than the observed value (supplementary file,
Figure S1B). The distribution of predictive values in the
total cohort was near normal, and the occurrence of
adverse pregnancy outcomes increased with increasing

predictive value (supplementary file, Figure S2). The median
predictive value for adverse pregnancy outcomes seemed
higher than in participants without adverse pregnancy
outcomes in both the development and validation cohorts,
although there was no statistical significance (supplementary
file, Figure S2).

In the validation cohort, at the cutoff point of 0.3, the
sensitivity was 99% (95% CI 98.3%-99.5%), while the corre-
sponding negative predictive value was 52.4% (95% 32.4%-
71.7%) (Table 3). Additionally, at the cutoff point of 0.7,
the specificity for GDM was 99% (95% CI 98.1%-99.4%),
while the positive predictive value was 79.2% (95% CI
66.5%-88.0%) and the positive likelihood ratio was 4 (95%
CI 3.33-4.67) (Table 3).

4. Discussion

4.1. Main Findings and Significance. We found no evidence
to support the hypothesis that GDM prediction models based
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on machine learning lead to better performance than models
based on logistic regression. In the GBDT model, the best
performing machine learning model, we identified cutoff
points of 0.3 and 0.7 for the predictive value as potential pre-
dictors of the absence and presence of GDM, respectively.
Our study provides value for risk assessment of GDM.

4.2. Comparisons and Interpretations. Previous studies
showed inconsistent results regarding the performance of
machine learning algorithms compared with regression
models [26–28]. In the current analysis, machine learning
was not superior to logistic regression. There may be several
reasons for this inconsistency. First, logistic regressions are
suitable for simple data with linear relationships between
variables and outcomes. Failure in controlling variables
entering models according to prior knowledge and in

addressing the collinearity between variables will result in
poor performance. In the present study, work was done in
these respects. The Pearson correlation coefficient was used
to calculate the correlation between variables, and the
method for entering variables into the model was also con-
trolled clinically and statistically. Second, numerous types
of machine learning models and logistic regressions may fit
and perform differently in different datasets. Eight common
machine learning algorithms in the present study were ana-
lyzed and compared, and GBDT was identified as the best
model with higher discrimination and calibration than the
others. Variables in the GBDT model were shown to be non-
linear, underscoring the advantage of identifying nonlinear
variables.

In the present study, even if the overall performance of
the machine learning model was similar to logistic regressions,

Table 2: Performance of the cutoff points of 0.3 and 0.7 for the GBDT model in predicting GDM.

Cutoff points
Development cohort
Percent (95% CI)

Validation cohort
Percent (95% CI)

0.3

Negative predictive value 82.40% (79.90%-84.70%) 74.10% (69.50%-78.20%)

Positive predictive value 51.3% (49.80%-52.90%) 52.60% (50.20%-54.90%)

Sensitivity 92% (90.80%-93.10%) 90% (88.00%-91.70%)

Specificity 30% (28.30%-31.80%) 26% (23.50%-28.70%)

Positive likelihood ratio 1.31 (1.29-1.34) 1.22 (1.18-1.26)

Negative likelihood ratio 0.27 (0.11-0.42) 0.39 (0.17-0.60)

0.7

Negative predictive value 59.30% (57.80%-60.70%) 56.1% (53.90%-58.30%)

Positive predictive value 86.60% (82.90%-89.60%) 93.2% (88.20%-96.10%)

Sensitivity 16% (14.50%-17.60%) 15% (12.90%-17.30%)

Specificity 98% (97.40%-98.50%) 99% (98.20%-99.40%)

Positive likelihood ratio 8 (7.72-8.28) 15 (14.38-15.61)

Negative likelihood ratio 0.86 (0.84-0.88) 0.86 (0.83-0.89)

Table 3: Performance of the cutoff points of 0.3 and 0.7 for the GBDT model in predicting adverse pregnancy outcomes.

Cutoff points
Development cohort
Percent (95% CI)

Validation cohort
Percent (95% CI)

0.3

Negative predictive value 100% (92.7%-100%) 52.4% (32.4%-71.7%)

Positive predictive value 50.1% (48.7%-51.5%) 49.9% (47.8%-52.1%)

Sensitivity 100% (99.8%-100%) 99.0% (98.3%-99.5%)

Specificity 2% (1.5%-2.6%) 1% (0.6%-1.9%)

Positive likelihood ratio 1.02% (1.01%-1.03%) 1% (0.99%-1.01%)

Negative likelihood ratio 0 (0-nan) 1% (0.15%-1.85%)

0.7

Negative predictive value 51.4% (50.0%-52.8%) 50.9% (48.7%-53.0%)

Positive predictive value 83.0% (76.1%-88.2%) 79.2% (66.5%-88.0%)

Sensitivity 5% (4.2%-6.0%) 4% (3.0%-5.4%)

Specificity 99% (98.5%-99.3%) 99% (98.1%-99.4%)

Positive likelihood ratio 5 (4.57-5.43) 4 (3.33-4.67)

Negative likelihood ratio 0.96 (0.95-0.97) 0.97 (0.96-0.98)
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the former was employed for further analysis because of the
flexibility in managing nonlinear relationships between vari-
ables. Most models showed moderate discrimination, with
AUCs mostly above 0.70, which is consistent with previous
findings [21, 22, 24, 29]. Previous studies have investigated
models derived from electronic health records for the predic-
tions of GDM in machine learning models or conventional
logistic regressions, but these studies included fewer partici-
pants than ours, did not compare the two methods, involved
limited variables, or did not comprehensively estimate the
performance of discriminations and calibrations [18, 21, 22,
24, 29]. The current studies extend these previous studies
by validating predictive ratio cutoff points of 0.3 and 0.7 orig-
inating from general maternal characteristics and biochemi-
cal data by comparing the performance of machine learning
and traditional logistic regression models for the prediction
of GDM. Furthermore, our findings underscore the roles of
glucose and lipid metabolism in the development of GDM
[4, 30]. In both machine learning and logistic regressions,
we identified blood glucose, lipids, BMI, and maternal age
as important contributors to GDM.

4.3. Significance. In predicting GDM, at or above the cutoff
point of 0.7, the observed positive predictive value was
93.2%, and the corresponding sensitivity was 99%, represent-
ing values in predicting the presence of GDM and identifying
high-risk GDM women. Following the identification of high-
risk women, proper management, including early diagnosis
by OGTT, lifestyle changes, and exercise, may be beneficial
in controlling maternal and neonatal complications [31],
although additional data are needed.

A predictive value of 0.7 or higher also had value in pre-
dicting the presence of fetal adverse outcomes, including
macrosomia, preterm delivery, and low Apgar scores, as well
as cesarean delivery and preeclampsia, with a positive predic-
tive value of 79.2% and a specificity of 99%. We did not fur-
ther evaluate the predictive performance separately for
maternal and fetal outcomes, as data on corresponding out-
comes were few.

The sensitivity values of GDM and adverse pregnancy
outcomes at the cutoff point of 0.3 were 90% and 99%,
respectively, indicating that most of the GDM and adverse
pregnancy outcomes occurred at or above the predictive
value of 0.3. Thus, women with a predictive value below 0.3
may potentially avoid further OGTT, although this needs to
be further demonstrated in prospective cohorts.

Overall, the prediction model in the present study pro-
vides values in screening strategy based on risk assessment
for detecting GDM. Pregnant women may benefit from the
strategy of allowing for either the elimination of the need for
further screening in low-risk women and the initiation of early
prevention and treatment measures in high-risk women.

4.4. Strengths and Limitations. The strengths of our study are
the large pregnancy cohort with data on obstetrical history,
clinical assessments, and biochemical variables in early preg-
nancy. This is the first prediction model with cutoff points for
GDM with easy-use clinical data derived from machine
learning algorithms and conventional regressions.

There were some limitations in our study. First, the data
come from only one institution and lack external validation.
Potential bias may occur in the present study. Further pro-
spective studies and studies on additional populations are
needed to establish whether the use of this ratio in clinical
practice, accompanied by the current OGTT at 24-28 gesta-
tional weeks, could reduce GDM, costs, or adverse pregnancy
outcomes. Second, data on socioeconomic status, diet, and
physical activities, which have been reported to be risk factors
for GDM, were not included in this retrospective study [32].

5. Conclusions

In conclusion, this study shows that the machine learning
algorithm does not outperform conventional logistic regres-
sions. A prediction model with cutoff points was developed
and provides values in risk assessment for detecting GDM.
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