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ABSTRACT
The emergence of SARS-CoV-2, a coronavirus with suspected bat origins, highlights a critical 
need for heightened understanding of the mechanisms by which bats maintain potentially 
zoonotic viruses at the population level and transmit these pathogens across species. We 
review mechanistic models, which test hypotheses of the transmission dynamics that underpin 
viral maintenance in bat systems. A search of the literature identified only twenty-five mechan
istic models of bat-virus systems published to date, derived from twenty-three original studies. 
Most models focused on rabies and related lyssaviruses (eleven), followed by Ebola-like 
filoviruses (seven), Hendra and Nipah-like henipaviruses (five), and coronaviruses (two). The 
vast majority of studies has modelled bat virus transmission dynamics at the population level, 
though a few nested within-host models of viral pathogenesis in population-level frameworks, 
and one study focused on purely within-host dynamics. Population-level studies described bat 
virus systems from every continent but Antarctica, though most were concentrated in North 
America and Africa; indeed, only one simulation model with no associated data was derived 
from an Asian bat-virus system. In fact, of the twenty-five models identified, only ten popula
tion-level models were fitted to data – emphasizing an overall dearth of empirically derived 
epidemiological inference in bat virus systems. Within the data fitted subset, the vast majority 
of models were fitted to serological data only, highlighting extensive uncertainty in our 
understanding of the transmission status of a wild bat. Here, we discuss similarities and 
differences in the approach and findings of previously published bat virus models and make 
recommendations for improvement in future work.
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Introduction

Bats have received much attention in recent years for 
their roles as reservoir hosts for several, highly virulent, 
emerging infectious diseases of humans, including rabies 
and related lyssaviruses, Ebola and Marburg filoviruses, 
Hendra and Nipah henipaviruses, and SARS, MERS, and 
now SARS-CoV-2 coronaviruses [1,2]. At the time of this 
writing, the SARS-CoV-2 virus, which causes the disease 
COVID-19, has infected more than 27 million people [3]. 
Though the exact phylogenetic ancestry of SARS-CoV-2 is 
still unknown [4], the virus is believed to have originated 
from a common ancestor of several closely related coro
naviruses, circulating in wild populations of Rhinolophus 
spp. horseshoe bats, in south-central China [5,7–9].

Predicting and preventing zoonotic emergence – or 
the cross-species spillover of a pathogen from a wildlife 
reservoir to a human host – first requires understanding 
transmission and infection dynamics in the reservoir 
population. Despite the public health impact of bat- 
borne zoonoses, the mechanisms by which bats maintain 
pathogens at the population level, including the extent to 
which they experience within-host infection-induced 
morbidity or mortality, remain poorly characterized [10– 

12]. Understanding these mechanisms will be critical for 
predicting future cross-species spillover events, as well as 
informing strategies of possible public health interven
tion. Compartmental models offer an essential tool for 
elucidating the mechanisms underpinning reservoir bat 
transmission, as they can be applied to longitudinally 
collected field data from bat systems to test transmission 
hypotheses.

Mechanistic compartmental models of pathogen 
transmission originated in 1915 when Sir Ronald Ross 
first described the mathematical relationship between 
mosquito biting and human malaria incidence [13]. This 
early Ross model classed humans into infected or unin
fected ‘compartments’, or categories, using a system of 
differential equations to track movements between them 
[14]. Later adapted this malaria model to construct 
a generalized framework of pathogen transmission in 
a population, known as the ‘SIR Model’, in which indivi
duals move between susceptible (‘S’), infected (‘I’), and 
recovered (‘R’) compartments. Distinct from statistical 
models – which demonstrate associations between vari
ables of interest – mechanistic models describe processes 
underlying observations through time, as defined by the 
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mathematical relationships between compartments. The 
compartmental model framework has allowed research
ers to move beyond statistical correlations to generate 
and compare hypotheses regarding the infection and 
transmission dynamics underlying observed patterns in 
pathogen incidence within a population [15].

The classic SIR model has been adapted to describe 
pathogen transmission in many different human and 
wildlife systems. For instance, stochastic compartmen
tal models once used to predict yearly influenza epi
demics are now being used to capture the 
transmission patterns of SARS-CoV-2 in human popu
lations across the globe [16,17]. Mechanistic elucida
tion of viral transmission in bats has not been pursued 
with the same energy. Given that bats represent one of 
the most important source taxa for emerging zoonotic 
infections [18–20], mechanistic models of viral 
dynamics in bat reservoirs will play a vital role in efforts 
to predict or prevent the next spillover [21]. In this 
review, we identified and analyzed twenty-five 
mechanistic models elucidating the dynamics of 
viruses circulating in bat reservoir systems. We catalog 
model characteristics to compare the advantages and 
disadvantages of various modeling approaches, as well 
as identify gaps in the existing research on potentially 
zoonotic infections in bat hosts. We collate previous 
findings and highlight priorities for future research 
with the goal of advancing modeling efforts to eluci
date within- and between-host dynamics of potentially 
zoonotic viruses in bat reservoirs – a critical step 
toward developing frameworks for predicting and pre
venting spillover to humans.

Materials and methods

Surveying the literature

We surveyed the literature for previous modeling studies 
of virus dynamics in bat reservoir hosts, querying both 
Web of Science and Google Scholar with the following 
search terms: ‘bat virus model’, ‘bat virus transmission’, 
‘bat virus dynamics’, and ‘bat virus mechanism’. We exam
ined all results returned by Web of Science and the first 
fifty pages of results returned by Google Scholar and 
collected information on any study which reported 
a mechanistic model of virus transmission or infection 
dynamics in a bat reservoir host. We list all models of 
unique virus-host associations recovered from this search 
in Table 1, along with information on author, journal, 
publication year, broad virus taxonomic group (family or 
genus), virus species, bat host, study site, scale of model, 
and approach to data.

From these studies, we further identified a subset 
of eight publications that fitted compartmental mod
els to field data from ten distinct host-virus systems 
with the aim of elucidating mechanisms of virus per
sistence in bat reservoir hosts at the population level 

(Table 2). From this data subset, we further collected 
information on the compartmental model structures 
tested, the modeling approach (continuous vs. dis
crete, deterministic vs. stochastic, frequency- vs. den
sity-dependent transmission), the study design of the 
associated data, the method of model fitting, and the 
resulting conclusions – including estimation of the 
basic pathogen reproduction number (R0) for the 
virus. R0 describes the number of new infections gen
erated by one existing infection in a completely naïve 
host population and is a key parameter in under
standing a pathogen’s intrinsic probability of persis
tence and transmissibility – including transmissibility 
across species [21]. For two continuous time fitted 
models of host-virus associations from our Table 2 
subset which did not report R0, we calculated R0 

from the system of equations and best-fit parameters 
reported in the corresponding article using a Next 
Generation Matrix (NGM) approach [22–24] 
(Supplementary Appendix 1 and 2). For two discrete 
time fitted models from our Table 2 subset that did 
not report R0 [both from 25], we calculated R0 follow
ing a discrete time approximation of the NGM 
approach, again using best-fit parameters reported 
in the corresponding article [24,26] (Supplementary 
Appendix 3). All maps and summary figures were 
generated using R v. 4.0.0 for Macintosh.

Results

Broad patterns across the literature

Our literature search identified twenty-three publica
tions (published between 2007 and 2020) which pre
sented results from mechanistic models applied to 
twenty-five distinct bat-virus systems [two of the stu
dies – [25,27] – applied the same modeling framework 
to two different bat-virus associations, using data from 
the same field study] (Table 1). All models were 
focused in one discrete study system, the geographic 
locality of which ranged across every continent except 
Antarctica, and centered on a few particular species of 
bat host, which spanned both the major 
Yangochiropteran and Yinpteropchiropteran subor
ders of the bat clade (Figure 1). Each model was 
applied to one of the four major bat virus families/ 
genera of interest, with the majority (eleven) focused 
on lyssaviruses (particularly rabies), followed by filo
viruses (seven), henipaviruses (five), and, finally, coro
naviruses (two).

The frequency of these studies increased across the 
timespan captured in our dataset, suggesting that 
research into the mechanisms underpinning bat virus 
dynamics is on the rise (Figure 2). While early studies 
tended to focus on the dynamics of lyssaviruses in North 
and South American systems, more recent work shows an 
emphasis on studies conducted in Africa, often with 
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a focus on filoviruses (Figure 2(a,Figure 2b)). Of the 
twenty-five systems modeled, twenty-one were focused 
at the population-level, while four described the within- 
host dynamics of viral pathogenesis in a bat immune 
system (Table 1). Among the within-host studies, three 
of the four embedded the within-host model into 
a population-level framework to explore how within- 
host metrics, such as viral load or antibody titer, translated 
to population-level processes, such as transmission and 
mortality [28–30]. The fourth model kept the analysis 
focused at the level of within-host viral dynamics [31].

Across the entire dataset, thirteen of twenty-five mod
els were purely theoretical or based on simulations using 
data-derived parameters from previous publications or 
analysis of field data external from the model construc
tion [32,33]. The remaining twelve models were explicitly 
fitted to data, using a variety of statistical techniques. 
Notably, we observed that data-fitted models have 
increased in frequency in recent years (Figure 2(c)), sug
gesting that these studies represent a new research focus. 
Of these fitted models, one [31] was a within-host model 
fitted to in vitro data in bat cell tissue culture, while the 
other eleven were fitted to field data. One of the field- 
based models [34] was used to evaluate the efficacy of 
a proposed intervention (a transferable, orotopical rabies 
vaccine), while the remaining ten all aimed to identify the 
transmission dynamics underlying pathogen persistence 
in various bat systems – with a particular focus on four 
zoonotic bat virus taxa of interest: lyssaviruses, filoviruses, 
henipaviruses, or coronaviruses (Table 2). We summarize 
modeling insights across this taxa in the following 
sections.

Lyssaviruses

Lyssaviruses are non-segmented, single-stranded, nega
tive-sense RNA viruses in the family Rhabdoviridae, 
order Mononegavirales [35]. Lyssaviruses can be classed 
into three distinct phylogroups, which all show a strong 
association with bats [36]. Lyssaviruses in phylogroup 
I include rabies virus (RABV), one of the oldest known 
viral zoonoses that accounts for over 60,000 human 
deaths per year [37]. Though most RABV infections in 
humans are sourced from domestic dog populations 
[37], the virus also persists in wild, Yangochiropteran 
bats across the New World, and bat-sourced infections 
account for the majority of RABV cases annually in the 
United States [38]. Outside of the Americas, both 
Yinpterochiropteran and Yangochiropteran bats main
tain a suite of diverse lyssaviruses; besides RABV, several 
other phylogroup 1 lyssaviruses with bat origins are 
known to infect humans, including Australian bat lyssa
virus (ABLV), European bat lyssavirus (EBLV), and 
Duvenhage lyssavirus (DDUV) [36]. Though all lyssa
viruses are presumed to have some zoonotic capacity 
[39], bat-borne lyssaviruses in phylogroup 2 (i.e. Lagos 

Bat Virus, LBV) or phylogroup 3 (i.e. Leida bat lyssavirus, 
LLBV) have not yet been identified infecting humans.

In our review, we identified eleven models describ
ing the dynamics of bat-borne lyssaviruses, the major
ity of which (six) were focused on RABV infections in 
Yangochiropteran bats in the New World, while three 
others explored EBLV-1 dynamics in European 
Yangochiropterans, and two others investigated LBV 
dynamics in Yinpterochiropterans in Africa (Table 1). Of 
the RABV studies, three hailed from the same research 
group [28–30], which used theoretical, within-host 
models to explain how heterogeneity in individual- 
level immune responses could promote population- 
level maintenance of rabies virus in New World 
Yangochiropteran bats. The authors found that models 
allowing for disparate dynamical outcomes based on 
the viral load of an initial infection were critical to 
obtaining population-level viral persistence; in particu
lar, models allowing low-dosed bats to clear infections 
and progress to a state of temporary immunity prior to 
a return to susceptible status best supported viral 
maintenance within the population.

In addition to these within-host theoretical simula
tions, we identified three compartmental models of 
RABV infections in bat populations, all of which were 
fitted to field data to explore the dynamics underpin
ning RABV persistence in North American Eptesicus 
fuscus [40] or Peruvian Desmodus rotundus [41], or to 
assess the efficacy of communicable vaccines for RABV 
elimination in Peruvian D. rotundus [34]. Like the 
within-host models, the population-level models 
demonstrated an important role for heterogeneous 
immune responses in rabies virus maintenance: [40] 
fit season-specific susceptible-exposed-infectious- 
recovered SE(I)R models – in which exposed bats can 
either become infectious and die or recover and 
acquire lifelong immunity – to a five-year mark- 
recapture time-series tracking serological status of 
wild, Eptesicus fuscus in Colorado and demonstrated 
support for elevated mortality rates in infected indivi
duals. Importantly, the authors determined that viral 
persistence was only possible in this population when 
models allowed for reduced mortality rates, and long 
viral incubation times across the winter hibernation 
period that ‘preserved’ infections until the summer 
birth pulse replenished the pool of susceptibles. Our 
R0 calculations from this study highlight the intense 
seasonal variation in the probability of viral persis
tence: we estimated R0 at 64.8 during the summer 
transmission period immediately following the peak 
birth pulse and at zero during winter hibernation and 
early summer transmission seasons (Table 2; 
Supplementary Appendix 1).

Like [40, 41] modeled two outcomes of viral expo
sure when fitting models to field data on vampire bat 
rabies in Peru – one resulting in seroconversion with
out progression to an infectious state and a second by 
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which exposure resulted in infectious rabies disease 
and eventual virus-induced mortality. However, since 
D. rotundus do not hibernate, they were unable to 
adopt the same seasonal variation in mortality rates 
and the long incubation periods that supported rabies 
persistence in the Colorado study. Instead, bats that 
seroconverted without progression to a diseased state 
acquired temporary – as opposed to lifelong – immu
nity with eventual return to a susceptible state (Figure 
3). Even still, [41 reported a range of site-specific R0 

values <1 for their system (Table 2), suggesting that 
the virus cannot be maintained at the population level 
in the absence of immigration within a spatially- 
structured metapopulation. Finally, in the last mechan
istic model of RABV dynamics identified in our system, 
[34], built on the model published by [41], to investi
gate the efficacy of communicable, orotopical rabies 
vaccines for reducing rabies virus outbreaks in 
Peruvian D. rotundus bats. The authors found that 
realistic levels of vaccine uptake and transfer would 
be likely to reduce the probability, size, and duration of 

an outbreak. In particular, they highlighted advantages 
of immunization over bat culling as a strategy for 
reducing transmission – unlike vaccination, culling 
may increase recruitment of susceptible juveniles into 
the system, making the intervention ineffective or 
counterproductive [34,42].

In addition to RABV, our review of the literature 
recovered three mechanistic models of the dynamics 
of EBLV-1 infection in European Yangochiropterans. 
[32] estimated R0 (reported at 1.706) and the average 
duration of infection from a twelve-year longitudinal 
serological study of EBLV-1 dynamics in Myotis myotis 
bats in Spain, and then, using these estimates com
bined with parameters gleaned from the literature, 
simulated viral dynamics in a standard susceptible- 
infectious-recovered (SIR) framework (Table 1). 
Though data-inspired, the authors did not explicitly 
fit their transmission model to their data, making it 
impossible to assess the efficacy of this transmission 
structure in maintaining the virus in the Spain field 
system. [33] took a similar approach in modeling the 

Figure 3. Universal compartmental model structure for models fitted to data. Compartmental model structure of each viral 
taxonomic group: (a) Lyssaviruses, (b) Filoviruses, (c) Henipaviruses, and (d) Coronaviruses. For lyssaviruses, structure is shown 
separately for rabies (RABV), European bat lyssavirus-1 (EBLV-1), and Lagos bat virus (LBV). For all diagrams, universal pathways are 
depicted in black, and those unique to a specific published model are depicted in color. Each parameter’s status (fitted or drawn 
from the literature) is indicated adjacent to the author by the font face (bold or italicized) of the text. Age-structure and 
metapopulation dynamics are not depicted in the compartmental diagrams depicted here, but parameters specific to these more 
complex dynamics are listed adjacent to the author with an asterisk.*

416 A. D. GENTLES ET AL.



dynamics of EBLV-1 infection and cross-species trans
mission among three Yangochiropteran (Myotis capac
cinii, Myotis myotis, Miniopterus schreibersii) and one 
Yinpterochiropteran [Rhinolophus ferrumequinum) bat 
species in a three-site metapopulation in Mallorca, 
Spain. The authors simulated viral persistence and 
extinction under a suite of different R0 values in 
a multi-species, metapopulation SEIRS framework and 
reported a heightened role for M. schreibersii in sour
cing cross-species transmissions in the system – largely 
as a result of the high population density and rapid 
migration rates used for this species in the simulations. 
As with [32], the lack of validation of the [33] model 
against field-derived data made it impossible to assess 
its validity. [43] compared simulations of spatially expli
cit, multi-species metapopulation models of EBLV-1 
transmission in Miniopterus schreibersii and Myotis 
myotis with and without virus-induced mortality. The 
authors found support for an SEIRS model structure 
which assumed – as previously modeled by [32,33] – 
no virus-induced mortality in bats infected with EBLV-1 
(Figure 3). However, in contrast to the purely simula
tion-focused studies discussed above, [43] then fit this 
SEIRS framework to data from a four-year field survey 
tracking EBLV-1 seroprevalence in Miniopterus schrei
bersii and Myotis myotis across two sites in Catalonia. 
They reported a range of R0 estimates across their field 
system (from 0.53 to 1.6) and emphasized the need for 
cross-species mixing and spatial metapopulation struc
ture in maintaining the virus in their system – with 
a pronounced role for M. schreibersii in sourcing infec
tions across the metapopulation due to its migratory 
behavior and high population density in the system. 
Despite fitting their SEIRS model to data, however, [43] 
did not explicitly compare fits of alternative transmis
sion models allowing for infection-induced mortality. 
Thus, due to the absence of comparative hypotheses, 
we cannot be confident that EBLV-1 does not result in 
infection-induced mortality in bat hosts. Indeed, 
experimental infection with EBLV-1 in bats can cause 
mortality [44, 45], and pathological effects of infection 
have been posited in wild bat systems, as well [46].

Finally, the last two lyssavirus models uncovered in our 
search aimed to decipher the mechanisms underlying 
LBV persistence in Yinpterochiropteran bats, specifically 
Eidolon helvum bats on the African continent. Both [27,47] 
fit their models to field-derived data for E. helvum, the 
former using a cross-sectional serological dataset span
ning six African countries and the latter using 
a longitudinal serological time series spanning four 
years of ~quarterly sampling (Table 2). [27] fit 
a maternally immune-susceptible-immune-recovered- 
susceptible (MSIRS) model to age-seroprevalence data, 
assuming the I class to correspond to seropositive status 
with no virus-induced mortality. They estimated an R0 

value of 1.6 for LBV in the pan-African E. helvum popula
tion and a duration of immunity of twelve years, which 

they posited to be lifelong. Deviating from [27,47] found 
support for LBV-induced mortality and lifelong immunity, 
with long incubation periods and low pathogen-induced 
mortality promoting low population-level persistence. 
Specifically, the authors fit an age-structured MSE[I]R 
model to longitudinal serological data grouped into 
broad (juvenile-adult) age classes. Like [40,47] model 
allowed for exposed bats to either seroconvert immedi
ately and acquire lifelong immunity or progress to an 
infectious state that resulted in virus-induced mortality. 
[47] did not report a value for R0 in their system, but we 
estimated it here to be between 0 and 1.90, depending on 
the seasonality of the birth rate (Table 2; Supplementary 
Appendix 2). In contrast to studies of RABV and EBLV-1 in 
wild bat hosts, LBV appears to be easily maintained – 
albeit at low levels – by the cross-Africa, panmictic 
E. helvum system [47]. Neither [27], nor [47] undertook 
any model comparison of their respective transmission 
structures, however, making it difficult to ascertain 
whether LBV more closes mimics the dynamics of RABV, 
with clear evidence of infection-induced host mortality, or 
EBLV-1, for which virus-induced mortality may be less 
widely reported.

Filoviruses

Like lyssaviruses, viruses of the family Filoviridae (filo
viruses) are non-segmented, single-stranded, negative- 
sense RNA viruses in the order Mononegavirales [35]. 
Filoviruses include the infamous genera Marburgvirus 
and Ebolavirus, as well as the lesser known Cuevavirus 
and Dianlovirus (currently represented by only one 
species each hosted in wild bats) and Striavirus and 
Thamnovirus (thus far only described in fish) [79, 80]. To 
date, of the more prominent genera, two species of 
Marburgvirus and six species of Ebolavirus have been 
described globally [48], including several which cause 
case fatality rates ranging from 50% to 90% upon 
zoonotic emergence into human hosts [49]. Both 
Marburgviruses and Ebolaviruses are believed to be 
maintained in bat reservoirs, though to date, only the 
Marburgviruses have been isolated from wild bat hosts 
[10,50,51]; nonetheless, compelling serological and 
PCR-based evidence suggests that bats are also reser
voirs for the Ebolaviruses [52]. Since 1967, Marburg 
virus and Ebola virus have caused over a dozen 
human outbreaks resulting from independent spillover 
events, most of which have been concentrated in west 
or central Africa [10,53].

In our review, we identified seven mechanistic, com
partmental models focused on elucidating the dynamics 
of filoviruses in bat hosts (Table 1). One of these studies 
[31] presented a within-host model that explored the 
consequences of unique bat immune responses on 
within-host viral dynamics, using models fit to in vitro 
data derived from pseudotype filovirus infections in bat 
cell tissue culture. The remaining six were focused at the 
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population-level (Table 1). Of these six, four presented 
theoretical simulations of the reservoir dynamics under
pinning the cross-species emergence of an unspecified 
Ebolavirus in a hypothetical African bat system [54–57]; 
results were largely too abstract to effectively advance 
efforts to understand the dynamics or persistence of 
filoviruses in wild bat hosts. By contrast, one other theo
retical model, [58], used literature-derived parameter esti
mates for Zaire ebolavirus and Marburg marburgvirus 
infections in African fruit bats to investigate the probabil
ity of pathogen persistence in a panmictic host popula
tion, assuming a simple, age-structured SEIR framework. 
[58] concluded that, given published estimates from the 
literature for filovirus incubation and infectious periods, 
these viruses would be unlikely to persist in large, well- 
mixed bat host populations if host births were synchro
nous and occurred only once a year. Results suggested 
that biannual birth pulses in wild, fruit bat hosts might be 
needed to explain filovirus persistence at the population 
level. However, conclusions of this research effort rested 
completely on the assumption that SEIR dynamics were 
applicable to bat filovirus systems – an assumption with 
little empirical basis. As such, it is impossible to evaluate 
the accuracy of the study’s conclusions.

In contrast to the lyssavirus studies, only one of the 
filovirus models identified in our review [25] fit 
a compartmental model to field data (Table 2). The 
authors fit a suite of discrete time matrix models to 
an eighteen-month time series of age-structured filo
virus serology data in Pteropus rufus fruit bats in 
Madagascar, aiming to elucidate the mechanistic 
underpinnings of population-level filovirus persistence 
in this field system. They identified a best fit ‘MSIRN’ 
model structure, whereby bats progressed from mater
nally immune to susceptible, infectious, recovered, and 
finally, a non-antibody-mediated immune class. Since 
these authors represented seropositive individuals in 
the recovered class, this ‘non-antibody mediated 
immune’ class allowed them to model individuals 
who waned in antibody seropositivity but maintained 
lifelong immunity via some other immunological 
means, as has been suggested in the experimental 
literature for bat-borne filoviruses [59,60]. The authors 
reported a low force of infection and infectious class 
prevalence which, consistent with the findings of [58], 
suggested filovirus persistence to be unlikely in the 
population without some role for metapopulation 
structure or alternative pathway of viral pathogenesis, 
such as those explored for lyssavirus infections above. 
To elaborate on this finding, we refit a simplified, three 
age class version of the authors’ twenty age class 
matrix model to the original data, from which we 
estimated a range of R0 values (depending on the 
seasonality of the birth pulse) between 0 and 0.742 in 
this system – thus further supporting the need for 
spatial structure and/or unique within-host dynamics 
to explain bat filovirus maintenance. Notably, all 

models compared in [25] were fit to serological data 
for a bat-borne filovirus that has yet to be described 
genetically.

Henipaviruses

Henipavirus is a genus within the family Paramyxoviridae, 
which includes (yet again) non-segmented, single- 
stranded, negative-sense RNA viruses [61]. To date, only 
five species of henipavirus have been described globally, 
four of which find their reservoir hosts in 
Yinpterochiropteran fruit bats of the Pteropodidae family: 
Hendra (HeV) [62], Nipah (NiV) [63], Cedar (CedV) [64], and 
Ghanaian henipavirus (GhV) [65]. By contrast, the fifth 
described henipavirus, Mojiang (MojV), is derived from 
rats in China [66]. HeV and NiV are known zoonoses that 
cause severe respiratory disease in humans [67], CedV is 
thought to infect only bats [64], and the host ranges for 
GhV and MojV have yet to be well-elucidated – though 
serological evidence suggestive of GhV spillover to 
humans has been demonstrated in Cameroon [68], and 
MojV was first isolated in concert with suspected human 
fatalities to pneumonia [66].

In our review, we identified five studies focused on 
modeling the dynamics of henipaviruses in bat reser
voirs. Two of these studies, [69,70], presented theoreti
cal, simulation-based models of the dynamics of Hendra 
virus in Australian fruit bat populations, using para
meters derived from the literature. [69] developed 
a simple SEIR model within a metapopulation frame
work to explore the impact of population-level connec
tivity on infection dynamics, with the aim of explaining 
the spatial-temporal dynamics of Hendra virus spillover 
events in eastern Australia. The authors concluded that 
anthropogenic fragmentation of habitat and urban 
habituation reduced fruit bat migration, disaggregating 
bat metapopulations and decreasing population-level 
immunity to promote less frequent but more intense 
viral epidemics. Since the model was not fit to data, it is 
not possible to evaluate its effectiveness in recovering 
patterns observed in the field. Using a similar approach, 
[70] simulated an individual-based MSEIR model of 
Hendra virus dynamics to explore the impacts of viral 
latency and recrudescent infection in ‘recovered’ indivi
duals on virus persistence at the population level. 
Unsurprisingly, the authors found that faster rates of 
recrudescence corresponded to an increased probabil
ity of virus persistence. As with the [69] model, however, 
the [70] model was purely simulation-based, making it 
impossible to assess the validity of viral recrudescence 
as a mechanism of virus persistence.

The remaining three henipavirus models all fit 
mechanistic, compartmental transmission models to 
population-level henipavirus data in an effort to explain 
virus persistence (Table 2). Two of the studies, [27,71], 
investigated the persistence of Ghanaian henipavirus 
(GhV) in Eidolon helvum bats, using, respectively, pan- 
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African cross-sectional, age-structured serological data 
and a nine-year serological time series from a captive 
colony in Ghana. The third study, [25], fits a suite of 
discrete time compartmental matrix models to an eigh
teen-month age-structured serological time series track
ing infection of an undescribed African henipavirus 
species in Eidolon dupreanum bats in Madagascar. Both 
[25,27] fit their henipavirus models to data from the same 
field system that they used to model the dynamics of 
other bat infections – respectively, LBV for [27], and an 
undescribed filovirus for [25] (though the latter found 
henipaviruses and filoviruses to be hosted by different 
species within their dataset]. Both author groups reported 
that best fit model structures were consistent across 
pathogen systems – the same modeling frameworks 
used to explain persistence for LBV and filoviruses also 
effectively recapitulated the dynamics of henipaviruses in 
these systems (Table 2 and Figure 3). In Australia, the 
dynamics of several disparate bat paramyxoviruses have 
been shown to exhibit synchronicity in space and time 
[72], suggesting that mechanistic models of bat-virus 
interactions may be applicable across multiple bat hosts 
and viruses – though more pronounced differences in bat 
and virus systems may be more difficult to generalize. 
Nonetheless, both [25,27] demonstrated support for simi
lar mechanisms of waning antibody-mediated immunity 
post-initial seroconversion as explanations for patterns 
observed in their henipavirus data. [27] fit data with an 
MSIRS model, identifying an important role for return to 
susceptible status and eventual reinfection in promoting 
viral persistence in a stochastic framework. [25] did not 
explicitly investigate viral persistence in their system but 
rather focused on recovering the mechanisms driving 
age-seroprevalence patterns in the data. The authors 
found the strongest support for a model form [MSIRN) 
which allowed bats to wane from seropositive to serone
gative status but nonetheless maintain lifelong non- 
antibody-mediated immunity to reinfection. The authors 
noted, however, that troughs in the proportion infected in 
between annual birth pulses would be difficult to main
tain if stochastic fadeout had been permitted in their 
model. Thus, both [25,27] concluded that henipavirus 
dynamics would be difficult to explain without some 
role for viral recrudescence or loss of immunity and rein
fection to preserve transmission in the absence of an 
influx of susceptible births across the year. Notably, how
ever, [27] assumed seropositivity to correspond to infec
tious epidemic status [the I class], reporting an R0 value of 
2.13 for E. helvum henipavirus across Africa, while [25] 
modeled seropositivity as an indicator of antibody- 
mediated immunity [the R class]. As with the 
Madagascar filovirus, we here refit a simplified three age 
class version of the [25] model to the original data to allow 
for estimation of R0 in this system [Supplementary 
Appendix 3]. We calculated a seasonal R0 that ranged 
between 0 and 0.585 for this system and was unable to 
support viral persistence.

Finally, [71] recovered similar results to [25,27], 
through fitting models to captive colony data for 
E. helvum. The authors compared all biologically possible 
combinations of compartments within an SEIR framework 
and ultimately, found the strongest support for models 
that permitted waning immunity post-seroconversion. As 
commonly demonstrated by lyssavirus models, the 
authors recovered considerable support for multiple 
pathways of viral pathogenesis in different individuals, 
with some bats permitted to return immediately to sus
ceptibility following initial exposure (SES) while others 
oscillated between infectious (I) and latent (E) stages in 
cycles of viral recrudescence. The use of captive colony 
data makes this system somewhat less comparable to the 
population-level studies discussed above, though the 
authors benefitted from the opportunity to fit their 
model to repeatedly resampled individuals across the 
time series. Notably, [71] fit models to captive colony 
data under varied assumptions of the epidemic pheno
type indicated by seropositivity – recomputing analyses 
under assumptions of seropositivity corresponding to 
exposed, infectious, and recovered states (EIR+), as well 
as under assumptions of seropositivity corresponding to 
a recovered state only (R+). The resulting dynamics were 
largely comparable under both EIR+ and R+ assumptions, 
though modeling of seropositivity corresponding to only 
recovered status required an extremely high estimate for 
R0 (66.7 under R+ assumptions vs. 2 under EIR+ assump
tions) to recover the high population-level seropreva
lence witnessed in the data. Across all fitted models, 
authors universally modeled a standard mortality rate 
across all epidemic classes, though [25] hypothesized in 
their discussion that elevated henipavirus-induced mor
tality could drive the observed decline in seroprevalence 
at late age classes witnessed in their dataset.

Coronaviruses

Only two of the twenty-five bat virus models identified in 
our review concerned bat infections with coronaviruses, 
the viral family that includes SARS-CoV-2, the causative 
agent in COVID-19 (Table 1). Distinct from the three bat 
virus taxa highlighted above, coronaviruses are positive 
sense, single-stranded RNA viruses, which can be classed 
into four genera – Alphacoronavirus and Betacoronavirus, 
which originate in bats, as well as Gammacoronavirus and 
Deltacoronavirus, which originate in birds [73]. 
A combination of factors, including large genomes, posi
tive sense genetic material, and a high propensity for viral 
recombination makes coronaviruses particularly prone to 
cross-species emergence [74] – including zoonotic emer
gence into human hosts. Prior to the emergence of SARS- 
CoV-2, six zoonotic coronaviruses have been previously 
described, four of which (HCoV-299E, HCoV-NL63, SARS- 
CoV, and MERS-CoV) are believed to be originally derived 
from bats [75]. Bats host a staggering diversity of 
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Alphacoronavirus and Betacoronavirus lineages [76]; how
ever, there is a notable lack of modeling and field studies 
targeted toward understanding the circulation of these 
viruses in their wild reservoirs.

Of the two coronavirus studies recovered in our 
review, one [77] was primarily a human model aimed at 
simulating conditions favoring SARS-CoV-2 spillover from 
bats to intermediate hosts to humans, in which the bat 
dynamics were delineated but not explicitly modeled. The 
other study, [78], fit compartmental models to a ten-week 
mark-recapture field dataset of PCR-detections of a novel 
Alphacoronavirus in Australian Myotis macropus bats, 
comparing the classic SIRS framework with a derivative 
that allowed bats to become either persistently or tran
siently infected (Table 2). The authors found support for 
the model with two infectious classes that permitted 
some individuals to remain infectious for a more pro
tracted (‘persistent’) period, and estimated a best fit R0 

value of 1.5903 for the system. Consistent with models of 
filovirus and henipavirus infections in bats, the authors 
found no support for elevated mortality in infectious 
individuals, though the dataset from which inferences 
were made was notably small.

Discussion

Interest in understanding the dynamics of potentially 
zoonotic viruses in their wild bat reservoirs has increased 
across the past decade, and the trend in research effort 
over time reflects this (Figure 2). In this review, we identi
fied twenty-five mechanistic, compartmental models 
published in twenty-three peer-reviewed publications 
that investigated the dynamics of viruses in bat hosts 
(Table 1). Models were focused on four key bat virus 
taxa of known zoonotic potential [20] – lyssaviruses, filo
viruses, henipaviruses, and coronaviruses – with lyssa
viruses (in particular rabies, RABV) most represented, 
followed by filoviruses and henipaviruses, and very little 
research effort devoted to coronaviruses. A particularly 
informative subset of ten population-level models were 
explicitly fitted to field-derived data from different bat 
virus systems – with the aim of elucidating the viral 
dynamics underpinning persistence in each system 
(Table 2). We here summarize findings regarding the 
persistence mechanisms inferred for each of these four 
viral clades.

In general, the bat virus modeling literature largely 
agrees that rabies is maintained in wild bat hosts by 
heterogeneous outcomes following virus exposure, 
where some bats die while others seroconvert – 
though the extent to which bats are able to recover 
from a clinically infectious state is debated [40,41]. 
Consistent with these findings, protective immunity 
from repeated RABV exposure has also been demon
strated experimentally [81]. In addition to immunity, 

host population dynamics driven by hibernation in 
temperate regions and spatial structuring in the tropics 
also appear to play a critical role in RABV maintenance 
at the population level [40,41]. Given that these results 
vary across systems, however, the lack of rabies mod
eling in migratory bats from temperate regions or 
more solitary species globally, points to gaps in our 
complete understanding of the generalizable 
dynamics of the viral genus as a whole. Broadly, the 
dynamics of EBLV-1, another phylogroup 1 lyssavirus 
[43], and LBV, a phylogroup-2 lyssavirus [27,47], appear 
to largely mimic those of RABV, though consensus on 
the mortality effects of infection with non-RABV lyssa
viruses has yet to be achieved. Previous studies sup
ported mechanisms by which at least a subset of bats 
recover from non-RABV lyssavirus infection to obtain 
immunity – especially in the case of LBV, for which 
protective antibodies may persist for life [27,47].

In contrast with lyssaviruses, data-fitted models of 
filovirus dynamics in bats remain rare. Our review 
recovered only one such example (Table 2), likely 
reflecting the known difficulty in identifying infections 
with these viruses in wild bat hosts [25]. The one data- 
fitted filovirus model identified in our review demon
strated support for filovirus-recovered bats waning in 
antibody signature but maintaining lifelong immunity 
via some other immunological means, consistent with 
results from the experimental laboratory infection lit
erature [25,59,60]. The authors of this study suggested 
a declining seroprevalence in older age bats, which 
could reflect heightened mortality in infected indivi
duals, though further research will be needed to ela
borate these trends in other systems.

Following lyssaviruses, understanding of henipavirus 
dynamics in bat reservoirs shows the most promise to 
date – in part a reflection of the feasibility of noninvasive 
viral surveillance through under-roost urine collection in 
these systems [82]. Our analysis identified only five studies 
focused on bat-henipaviruses, but three of these five 
studies presented mechanistic models fitted to field- 
derived data [25,27,71]. All three studies reported that 
waning antibodies post-seroconversion contributes to 
observed henipavirus dynamics, consistent with findings 
for bat filoviruses. Collectively, these studies also sug
gested a possible role for recrudescent infection or loss 
of immunity and reinfection in recovering henipavirus 
persistence. Broadly, data-fitted henipavirus models 
assumed no elevated mortality in infectious individuals; 
however, [25,suggested this as a possible mechanism for 
observed declines in seroprevalence in older bats, as also 
posited for filoviruses. Generalizable trends for bat heni
paviruses remain somewhat muddled largely due to the 
idiosyncratic nature of the datasets modeled – including 
one purely cross-sectional study [27], one eighteen- 
month time series [25], and one time series derived from 
a captive colony [71]. Notably, no existing study has yet to 
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fit a compartmental transmission model to the Australian 
bat reservoirs for Hendra virus, despite claims that this 
system is a model system for understanding bat virus 
spillover [83].

Finally, our review identified a notable dearth of 
studies investigating coronavirus dynamics in wild 
bat hosts, highlighting a critical future research prior
ity, particularly given the COVID-19 pandemic. Notably, 
the one fitted coronavirus model recovered in our 
analyses was the only mechanistic model identified 
which was fitted to PCR-based data, instead of serol
ogy, allowing for effective testing of a hypothesis of 
persistent infection and periodic shedding – as has 
been posited to drive bat virus dynamics more broadly 
[11]. Since bat-borne coronaviruses are typically loca
lized in the gastrointestinal tract and shed in feces, 
these viruses may be amenable to under-roost nonin
vasive surveillance in a manner similar to that pre
viously adopted for henipaviruses [82], offering one 
potential future avenue to make rapid gains in our 
understanding of the ecology of these pathogens in 
their bat reservoir systems.

Collectively, the vast majority of fitted bat virus 
models were targeted toward deciphering the 
dynamics of lyssaviruses in New World or European 
Yangochiropterans or henipaviruses in African 
Yinpteropchiropterans (Figure 1). One notable 
research gap identified was the absence of any data- 
fitted models from Asia – the site of emergence for 
both the SARS-CoV and SARS-CoV-2 pandemic viruses 
[2] – and the presence of only one data-fitted model 
from Australia (Figure 1, Table 1). To date, mechanistic 
models in bat virus systems have been largely limited 
to attempts to decipher the transmission mechanisms 
governing persistence of potentially zoonotic bat lys
saviruses, filoviruses, henipaviruses, and coronaviruses, 
though ultimately, the field aims to use these tools to 
do much more: mechanistic models offer a powerful 
means of describing causal relationships, predicting 
future trends, and exploring the efficacy of potential 
interventions. These models’ capacity for meeting 
more complex challenges rests, however, on the accu
racy of the parameter choices and assumptions upon 
which they are based. The field of bat virus modeling 
has been limited by a lack of basic understanding of 
the pathogenesis of these four key viral taxa within an 
individual bat host, forcing researchers to adopt 
expansive model comparison approaches to decipher
ing transmission dynamics that likely only approximate 
a still-undiscovered reality [e.g. 25, 41, 71]. To date, the 
most progress has been made in deciphering the 
dynamics of rabies virus, largely because this system 
stems from a long history predicated on within-host 
experimental infections in live bats [84]. Challenges in 
cost and containment have limited the progress of 
similar approaches for filo- or henipaviruses of known 
zoonotic capacity [e.g. 59,60,85–87] and been largely 

unexplored for coronaviruses. Isolation and experi
mental infections of bat-derived henipaviruses, filo
viruses, and coronaviruses without known capacity 
for human spillover may offer an opportunity for 
within-host insights to be gleaned with fewer restric
tions. Ultimately, studies linking pathogenesis of 
a particular virus in a particular bat host with data 
collected for that same host and virus in the field are 
greatly needed to expand mechanistic inference.

In the face of current limitations surrounding our 
understanding of the within-host pathogenesis of sev
eral clades of bat-borne virus, we propose a few key 
opportunities for research advances. Firstly, mechan
istic modeling of heterogenous field data need not rely 
so exclusively on classic compartmental approaches; 
most of the studies highlighted in our Table 2 subset fit 
models to pathogens with transmission dynamics that 
operate on timescales far more rapid than the interval 
of data collection – such that model fitting attempts to 
infer mechanism at a scale finer than the data can offer. 
The vast range of R0 estimates recovered across similar 
bat-virus systems suggests that research to date has 
failed to account for critical features of many bat virus 
infections; for example, [71] estimate a 30-fold higher 
value for R0 when assuming seropositivity to represent 
E. helvum bats recovered from vs. actively infected with 
Ghanaian henipavirus. Such massively different esti
mates for equally plausible transmission scenarios sug
gest that the field is reaching for mechanism well 
beyond that which the data can currently supply. 
Added insight could instead be derived from more 
statistically based approaches, such as Bayesian state- 
space modeling, which can be used to back-infer expo
sure timing from serological data or discriminate 
source hosts from recipient hosts in multi-species set
tings [88,89] – rather than attempting to reconstruct 
entire time-series. Similarly, more relaxed approaches 
to dynamical modeling, which allow for time-varying 
transmission rates without specifying a mechanism 
[e.g. 90], could help overcome uncertainties and gaps 
in existing field data.

Ultimately, however, if we are serious about pre
venting the next major pandemic of a bat-borne zoo
notic virus, we will need to greatly expand model- 
guided field studies to reflect the global extent of bat 
hosts and their pathogens [91]. We recognize that 
there are considerable barriers to data collection that 
may slow progress in this field, but advances are 
needed in order to reduce future public health threats. 
In particular, more studies incorporating PCR-based 
viral shedding data, in concert with serology, would 
greatly enhance our capacity for mechanistic inference 
from field data by allowing for both a snapshot of 
immediate infections paired with infection history 
derived from serology. Nonetheless, active bat virus 
infections can be notoriously difficult to detect: though 
a number of bat species have been found to be 
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positive for filovirus antibodies, PCR-positivity for these 
pathogens is rare and more often detected invasively 
in organ tissue samples rather than excreta [10]. 
Additionally, age-structured serological data (docu
mentation of numerical age information paired with 
serological status) offer another means by which to 
heighten the mechanistic insight that can be gleaned 
from field data, by allowing for the fitting of catalytic 
models to age-seroprevalence curves [92]. Historically, 
age data have been difficult to obtain from wild bats, 
requiring invasive chemical and morphological analy
sis of bat bones or dentition, or long-term tracking of 
tagged individuals [93]. Recent progress in the bat 
aging field – in particular the development of epige
netic clocks for bats [94,95] – offers an exciting oppor
tunity to make collection of age-structured serological 
information more widespread.

Inference from fitted mechanistic models can also 
be strengthened via longitudinal data collection in 
repeatedly resampled populations, in particular those 
which track individuals through capture-mark- 
recapture processes. The recapture of longitudinally 
tracked individuals, as modeled in [71] for example, 
allows for investigation of changes in within-host ser
ological status and its influence on population-level 
fluctuations in transmission. Captive colony studies 
like those used in [71] offer the advantage of facilitat
ing access to individuals for recapture, as well as safe
guarding the boundaries of closed population 
assumptions for modeling. Nonetheless, captive envir
onments lack the ecological complexities of metapo
pulation and interspecies mixing that likely play critical 
roles in driving bat virus dynamics in the wild [41,43]. 
Longitudinal field data collection may, however, be 
infeasible, given difficult-to-access bat roosting sites, 
which bats sometimes abandon in response to 
researcher visitation [96].

In this review, we summarize our current under
standing of the mechanisms underpinning viral per
sistence in bat-virus systems and highlight several 
areas in which future approaches could be prioritized 
and improved. Both techniques and insights have 
diversified and developed in the thirteen years since 
the first dynamical model of a bat-virus system was 
published; nonetheless, there remains much to still 
discover.
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