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ABSTRACT

Aging is related to a decrease in the ability to execute activities of day-to-day routine and decay in physical exercise, which affect mental and phys-
ical health. Elderly patients or people can depend on a human activity recognition (HAR) system, which monitors the activity interventions and 
patterns if any critical event or behavioral changes occur. A HAR system incorporated with the Internet of Things (IoT) environment might allow 
these people to live independently. While the number of groups of activities and sensor measurements is enormous, the HAR problem could not be 
resolved deterministically. Hence, machine learning (ML) algorithm was broadly applied for the advancement of the HAR system to find the patterns 
of human activity from the sensor data. Therefore, this study presents an Optimal Deep Recurrent Neural Networks for Human Activity Recognition 
(ODRNN-HAR) on Elderly and Disabled Persons technique in the IoT platform. The intension of the ODRNN-HAR approach lies in the recognition 
and classification of various kinds of human activities in the IoT environment. Primarily, the ODRNN-HAR technique enables IoT devices to collect 
human activity data and employs Z-score normalization as a preprocessing step. For effectual recognition of human activities, the ODRNN-HAR 
technique uses the DRNN model. At the final stage, the optimal hyperparameter adjustment of the DRNN model takes place using the mayfly optimi-
zation (MFO) algorithm. The result analysis of the ODRNN-HAR algorithm takes place on benchmark HAR dataset, and the outcomes are examined. 
The comprehensive simulation outcomes highlighted the improved recognition results of the ODRNN-HAR approach in terms of different measures.
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INTRODUCTION

The automated services presented to an aging population to 
help them live healthily and independently in their houses 
have paved the way for a new field of economics (Shan 
et al., 2020). With advancements in the Internet of Things 
(IoT), the smart home is the solution to offer home services, 
like energy management, security, healthcare monitoring, 
and assistance in daily tasks (Ullah et al., 2019). A smart 
home can be equipped with numerous actuators and sensors 
that could identify their temperature and humidity, opening 
of doors, the room’s luminosity, etc. Also, it controls few 
instruments like household appliances, heating, lights, shut-
ters, etc. (Li et al., 2021). Today, a lot of these devices are 

connected and controlled from a distance. Nowadays, wash-
ing machines, televisions, and refrigerators are found in 
houses called intelligent that have sensors and are controlled 
remotely (Rashid and Louis, 2019). Every gadget, object, 
sensor, and actuator can be interlinked using transmission 
protocols.

To render all these services, a smart home should rec-
ognize and understand the resident’s actions (Zhang et al., 
2020). Hence, scholars are devising methods of human 
activity recognition (HAR) that analyze and monitor the 
behavior of one or a few individuals to infer the activity 
that takes place (Brishtel et al., 2023). Commonly, HAR 
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includes four stages: the user interface for the management 
of HAR, capturing of signal activity, artificial intelligence 
(AI)-based activity recognition, and data preprocessing. All 
stages are applied with many methods bringing the HAR 
system to many choices (Tang et al., 2021). Hence, the 
processes of AI techniques for activity detection, an opti-
mum application domain, and the kind of data acquisition 
devices make the choices more challenging. Various studies 
implemented machine learning (ML) approaches in HAR 
(Li et al., 2019). They highly depend on feature extrac-
tion approaches, which include symbolic representation, 
time-frequency transformation, and statistical approaches. 
But the features abstracted are heuristic and carefully 
engineered. There were no systematic or universal fea-
ture extraction methods to capture differentiable features 
efficiently for HAR (Lattanzi et al., 2022). Currently, DL 
has embraced prominent success in devising higher-level 
abstractions from complex data in several areas like speech 
processing, natural language processing, and computer 
vision. Along with the remarkable growth of DL in HAR, 
latest studies are being undertaken to solve the particular 
difficulties (Qian et al., 2021).

This study presents an Optimal Deep Recurrent Neural 
Networks for Human Activity Recognition (ODRNN-HAR) 
on Elderly and Disabled Persons technique in IoT environ-
ment. The goal of the ODRNN-HAR method lies in the 
recognition and classification of various kinds of human 
activities in IoT environment. Primarily, the ODRNN-HAR 
technique enables IoT devices to collect human activity data 
and employs Z-score normalization as a preprocessing step. 
For effectual recognition of human activities, the ODRNN-
HAR technique uses the DRNN model. At the final stage, 
the optimal hyperparameter adjustment of the DRNN model 
takes place using the mayfly optimization (MFO) algorithm. 
The result analysis of the ODRNN-HAR method takes place 
on benchmark HAR dataset, and the outcomes are examined 
in terms of different measures.

RELATED STUDIES

In Park et al. (2023), the authors devised a DL-related HAR 
approach named MultiCNN-FilterLSTM that combined 
a multihead CNN with an LSTM using a residual connec-
tion where feature vectors are productively dealt with hier-
archically. Consequently, a new method, filterwise LSTM 
(FilterLSTM), was presented that uses LSTM cells. Xu et al. 
(2020) modeled two improved HAR approaches related to 
deep CNN and Gramian angular field (GAF). First, the GAF 
method can be utilized for transforming the 1D sensor data 
as 2D images. After using the multi-dilated kernel residual 
module (Mdk-Res), a novel enhanced DCNN network Mdk-
ResNet extracted the attributes among sampling points with 
various intervals. In Gumaei et al. (2019), a potential multi- 
sensors-related architecture was devised for HAR exploit-
ing a hybrid DL algorithm that combined the GRUs with the 
simple recurrent unit of NNs. Also, the authors used the deep 
GRUs for examining instability or fluctuations in precision 
and vanishing gradient problems.

Islam et al. (2023) modeled a new DL-based approach 
STC-NLSTMNet abbreviated as spatio-temporal convolu-
tion with nested LSTM, with the capability to derive tempo-
ral and spatial features automatically and concurrently detect 
human action with more precision. The presented method 
has depth-wise separable convolution (DS-Conv) blocks, 
NLSTM, and feature attention module. In Anagnostis et al. 
(2021), they modeled a data gathered field experiment that 
extract information from 20 healthy participants utilizing 
five wearable sensors (gyroscopes, magnetometers, and 
entrenched with tri-axial accelerometers) linked to them. 
Concurrently, the gathered signals from on-body sensors are 
managed to remove noise and provide an LSTM-NN that 
can be broadly utilized in DL for recognizing features in 
time-dependent dataset series. Xia et al. (2020) modeled a 
structure that collected the raw data by mobile sensors that 
can be provided as 2-layer LSTM and then convolution 
layers. Moreover, a global average pooling layer has been 
implemented for replacing the FC layer and then convolu-
tional to decrease model variables.

Dahou et al. (2022) propose a new HAR technique 
dependent upon optimizer 2 approaches like CNN and 
Arithmetic Optimization Algorithm (AOA) for boosting the 
HAR efficiency. The presented CNN was carried out for 
learning and extracting features in input data, but improved 
AOA technique termed Binary AOA (BAOA). Eventually, 
the SVM was implemented for classifying the chosen fea-
ture dependent upon distinct actions. In Mekruksavanich 
et al. (2020), the authors present a hybrid DL technique 
termed CNN-LSTM, which utilized LSTM for HAR with 
CNN. This method employs HAR containing smartwatches 
for categorizing hand activities. This technique utilized the 
Wireless Sensor Data Mining database.

THE PROPOSED MODEL

This article presents an automatic HAR detection method 
using the ODRNN-HAR approach in IoT environment. 
The major intention of the ODRNN-HAR approach lies 
in the automated recognition and classification of various 
kinds of human activities in an IoT environment. In the pre-
sented MER-ODLADT technique, several subprocesses are 
involved, namely data preprocessing, DRNN-based activ-
ity recognition, and MFO-based hyperparameter  tuning. 
Figure 1 illustrates the workflow of the ODRNN-HAR 
algorithm.

Data normalization

Data normalization has been suitable for classifier problems 
as it proposes similar weight for every feature (Eskandari 
et al., 2023). There are three important approaches to data 
normalization comprising Normalization by decimal scal-
ing, Z-score Normalization, and Min-Max Normalization. 
During this case, the Min-Max Normalization was exploited 
as it preserves the connection in the original database and 
carries out a linear transformation on the original database. 
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This approach converts the data as existing boundaries. 
The data are normalization from the range of 0 and 1 using 
Eq. (1):

 
�
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x  (1)

where x refers to the original value of feature Y, x’ represents 
its normalization value, and max

Y
 and min

Y
 denote the maxi-

mal and minimal feature values of Y.

Automated activity recognition using 
the DRNN model

To proficiently recognize and classify human activities, the 
DRNN model is applied. A persistent challenge with CNN 
is that they could not depict the temporal dependency in the 
operational dataset (Taheri et al., 2021). However, RNNs 
could preserve and utilize data across dissimilar time hori-
zons during learning. A recursive structure enables RNN to 
retain the potential data of prior time step for additional pre-
diction. Figure 2 shows the infrastructure of RNN.

Now, the RNN must forecast the normal or faulty out-
comes of instances from the dataset based on the relation-
ships between the output vector (d) and the input vector (X) 
calculated using the activation function (a). Usually, the input 
data combine measurements collected from weather-related 

features like mixed, supply, return, and outdoor air tempera-
tures, the equipment’s temperature set points, and a concat-
enation of operational variables like recorded signals. But 
typical RNNs do not embed long-term temporal dependency 
due to a problem known as the gradient vanishing problem. 
LSTM unit is integrated into RNNs for addressing these 
problems, which transforms them from a conventional type 
to DRNN. The DRNN remembers long- and short-term 
temporal dependency of target data by defining when to 
update the associated value of a new unit named the memory 
cell. The memory cell comprises three gating units: output, 
update, and forget gates. Every gate receives a separate input 
afterwards, passing through the LSTM unit, and they are 
given as follows:

 �� � � � � �, 1 ,( [ ],  ; {1,2, ,  ) }T
r s f t t t f tf w a X b t T  (2)

 �� � � � � �, 1 ,( [ ],  ; {1,2, , })  T
r s u t t r u tu w a X b t T  (3)

 �� � � � � �, 1 ,o , ; {1,2( [ ] ) , ,  }.T
r s o t t t o tw a X b t T  (4)

By using the BP model, the weighting vectors W
f 
, W

u
, W

o
, 

and W
c
, along with bias vectors b

f 
, b

u
, b

o
, and b

c
 are learned. 

An accurate value for the weighting factor , m ,l
jw  at kth train-

ing step and between the output of the next layer m and the 
inputs feeding neuron j in layer l, are updated by means of 
stochastic gradient descent:

Figure 1: Workflow of the ODRNN-HAR algorithm. Abbreviations: IoT, Internet of Things; ODRNN-HAR, Optimal Deep Recur-
rent Neural Networks for Human Activity Recognition.
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The last term represents the partial derivative of the param-
eters controlled by the learning rate b. The cross entropy loss 
function with respect to the target value is exploited to eval-
uate the accuracy of the model.

 � �
� � � , 1 1

1
  log ( )c

t c

T N a
t c dt c

CE d P
T  (6)

In Eq. (6), 
,t cdP  shows the probability estimate output by 

the network for the training example. , 
a
t cd  is equivalent to 1 

if the target class for tth instance is c, or else it is 0. , 
a
t cd  and 

d
t,c

 denote the actual and predicted values of the target class 
c, correspondingly.

Hyperparameter tuning using the 
MFO  algorithm

Finally, the MFO algorithm is utilized to fine tune the hyper-
parameter values related to the DRNN method. MFO algo-
rithm is dependent upon the mating way of the mayfly (MF) 
and the flight performance that integrates the evolutionary 
algorithms and optimum features of SI optimizer techniques 
(Zghoul et al., 2023). In MA, two population sets can be 
arbitrarily created to represent the female and male may-
flies (FMFs and MMFs). The location of all the MFs in the 

problem space defines the candidate solution to optimizer 
issue. The MFs’ position is provided by n-dimensional vec-
tor = (x

1
, x

2
,…, x

n
), whereas the main function was calculated 

for evaluating all the MF performances. All the MFs’ posi-
tions were upgraded utilizing their velocity provided by vec-
tor = (v

1
, v

2
,…, v

n
), and flying routes. The MF flying route 

was defined by better individual flying skills of every MF 
Pest and better swarm social flying experiences g

best
.

An individual in the MA upgrades their place in the prob-
lem space dependent upon its present positions ti

p  and veloc-
ity ti

v  for all the iterations utilized in Eq. (7).

 � �� �1 1.t t t
i i iP P V  (7)

During the MFO algorithm, an MF’s velocity is described 
as the change in their place. The flight route of an MF was 
controlled by a difficult interaction of their individual and 
the group’s flying encounters. All the MFs alter their flight 
route for obtaining nearby their optimum position (p

best
). 

And the optimum position developed by some MFs from the 
swarm (g

best
). During all the iterations, the male MFs endure 

Figure 2: RNN architecture.

Table 1: Details on database.

Class  Label  No. of samples
Sitting  C-1  1777
Standing  C-2  1906
Lying  C-3  1944
Walking  C-4  1722
Walking upstairs  C-5  1544
Walking downstairs  C-6  1406
Total number of samples   10,299

Journal of Disability Research  2023



F. Alotaibi, et al.: Optimal Deep Recurrent Neural Networks for IoT-enabled Human Activity Recognition 83

the exploring procedure in swarms. The position of MMFs is 
upgraded utilizing Eq. (8).

 
��� �

� 11

,
t tvi i

t

iX  (8)

in which ti
x  stands for the present position of MMFs at time 

step t, and +1ti
v  denotes the MF’s velocity. The MMFs fly 

some meters above the surface of the water and progress at 
maximum speeds. The velocity of MMFs can be computed 
using Eq. (9).

 
2 2

1
1 2( ) ( ),p g

ij ij

r rt t t t
ij ij best ij best ijv v a e p X a e g X
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where r
g
 and r

p
 denote the Cartesian distance for global and 

personal positions, correspondingly; a
1
 and a

2
 stand for the 

personal and global positive coefficients, correspondingly; b 
implies the visibility coefficient, Pest refers to the optimum 
position of MFs, and g

best
 indicates the optimal global posi-

tion of MFs.
The velocity of optimum MMFs from the present iteration 

was upgraded using Eq. (10).

 � � � �1 ,t t
ij ijV v d r  (10)

in which d denotes the parameter of nuptial dance and r sig-
nifies the arbitrary number from the range of 1 and 1. The 

FMFs’ velocity is dependent upon the distance between the 
females and males. FMFs fly to MMFs for mating. The posi-
tion of FMFs was upgraded using Eq. (11).

 � �� � �1 1,t t t
i i iy v  (11)

where ti
y  represents the present position of FMF at time 

step t. During the MA, an optimum female. The velocity of 
females is computed using Eq. (12).
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in which t
ijv  signifies the FMFs’ velocity from the dimen-

sional j at time t, t
ijy  represents the position of FMFs from 

the dimensional j at time t, t
ijx  stands for the position of 

MMFs in j at time t, b and a
2
 denote the visibility coeffi-

cient, and positive constant, correspondingly, r
mf

 stands for 
the Cartesian distance among FMFs and MMFs, and f

1
 and r 

indicate the random walk coefficient and an arbitrary num-
ber from the range, correspondingly. In MA, all the couples 
of MFs  create two offspring. One is randomly included in the 
female population, and the other is in the male population. 
The two offspring can be created and then mated, as depicted 
in Eqs. (13) and (14).

Figure 3: Confusion matrices of the ODRNN-HAR system: (a, b) 80:20 TRP/TSP and (c, d) 70:30 TRP/TSP. Abbreviation: 
ODRNN-HAR, Optimal Deep Recurrent Neural Networks for Human Activity Recognition.

Journal of Disability Research  2023



84 F. Alotaibi, et al.: Optimal Deep Recurrent Neural Networks for IoT-enabled Human Activity Recognition

 � � � � �1 (1 )Offspring L male L female  (13)

 � � � � �2 (1 ) ,Offspring L female L male  (14)

where L denotes the random number with Gaussian 
distribution.

The MFO approach develops a fitness function (FF) to 
get higher classifier performances. It resolves a positive 
value that represents the candidate outcomes best outcomes. 
Here, the minimized classifier rate of errors is FF, defined 
in Eq. (15).

=( ) ( )i ifitness x ClassifierErrorRate x

 =
   

*100 
   

number of misclassified samples

Total number of samples
 (15)

RESULTS AND DISCUSSION

In this section, the experimental validation of the ODRNN-
HAR method is tested on the UCI-HAR dataset (UCI-HAR 
dataset). It has 10,299 samples with six classes, as described 
in Table 1.

The HAR results of the ODRNN-HAR method are illus-
trated in the form of confusion matrix in Figure 3. The results 
stated that the ODRNN-HAR technique detects six types of 
activities accurately.

In Table 2 and Figure 4, comprehensive HAR results of 
the ODRNN-HAR technique are reported. The experimen-
tal values signified that the ODRNN-HAR technique detects 
different types of activities proficiently. For example, with 
80% of TRP, the ODRNN-HAR approach gains average 
accu

y
 of 99.49%, prec

n
 of 98.42%, spec

y
 of 99.69%, F

score
 of 

98.43%, and MCC of 98.12%. Likewise, with 20% of TSP, 
the ODRNN-HAR approach gains average accu

y
 of 99.47%, 

prec
n
 of 98.40%, spec

y
 of 99.68%, F

score
 of 98.37%, and MCC 

of 98.05%. Then, with 70% of TRP, the ODRNN-HAR algo-
rithm gains average accu

y
 of 99.21%, prec

n
 of 97.55%, spec

y
 

of 99.53%, F
score

 of 97.54%, and MCC of 97.07%. Finally, 
with 30% of TSP, the ODRNN-HAR technique gains aver-
age accu

y
 of 99.15%, prec

n
 of 97.34%, spec

y
 of 99.49%, F

score
 

of 97.31%, and MCC of 96.80%.
Figure 5 inspects the accuracy of the ODRNN-HAR 

approach in the training and validation of the test database. 
The result specified that the ODRNN-HAR technique has 
greater accuracy values over higher epochs. Moreover, the 

Table 2: HAR outcome of the ODRNN-HAR system with varying classes and measures.

Class  Accuy  Precn  Specy  Fscore  MCC

Training phase (80%)
 Sitting (C-1)  99.66  99.10  99.81  99.03  98.82
 Standing (C-2)  99.34  97.97  99.54  98.23  97.82
 Lying (C-3)  99.44  98.97  99.76  98.53  98.19
 Walking (C-4)  99.61  98.70  99.74  98.84  98.61
 Walking upstairs (C-5)  99.41  98.35  99.72  97.98  97.64
 Walking downstairs (C-6)  99.45  97.41  99.59  97.98  97.66
Average  99.49  98.42  99.69  98.43  98.12
Testing phase (20%)
 Sitting (C-1)  99.47  98.49  99.71  98.34  98.02
 Standing (C-2)  99.61  98.47  99.64  98.97  98.74
 Lying (C-3)  99.47  97.88  99.53  98.53  98.21
 Walking (C-4)  99.42  99.11  99.83  98.24  97.89
 Walking upstairs (C-5)  99.42  98.45  99.71  98.14  97.80
 Walking downstairs (C-6)  99.42  98.01  99.66  98.01  97.67
Average  99.47  98.40  99.68  98.37  98.05
Training phase (70%)
 Sitting (C-1)  99.45  98.37  99.67  98.37  98.04
 Standing (C-2)  99.38  98.04  99.56  98.30  97.92
 Lying (C-3)  99.15  97.95  99.52  97.77  97.25
 Walking (C-4)  99.32  98.13  99.62  98.01  97.60
 Walking upstairs (C-5)  99.11  96.64  99.41  97.00  96.48
 Walking downstairs (C-6)  98.85  96.14  99.39  95.80  95.14
Average  99.21  97.55  99.53  97.54  97.07
Testing phase (30%)
 Sitting (C-1)  99.51  98.37  99.65  98.64  98.34
 Standing (C-2)  99.19  97.47  99.40  97.88  97.38
 Lying (C-3)  99.35  98.25  99.60  98.25  97.85
 Walking (C-4)  99.42  97.96  99.62  98.16  97.81
 Walking upstairs (C-5)  98.80  96.84  99.43  96.13  95.42
 Walking downstairs (C-6)  98.61  95.13  99.25  94.79  93.99
Average  99.15  97.34  99.49  97.31  96.80

Abbreviation: HAR, human activity recognition.
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increasing validation accuracy over training accuracy por-
trayed that the ODRNN-HAR method learned productively 
on the test database.

The loss analysis of the ODRNN-HAR technique at the 
time of training and validation is shown on the test database 
in Figure 6. The results show that the ODRNN-HAR algo-
rithm reaches closer value of training and validation loss. 
The ODRNN-HAR approach learns productively on the test 
database.

A brief precision-recall (PR) curve of the ODRNN-HAR 
technique is given on the test database in Figure 7. The 
results state that the ODRNN-HAR approach increases PR 

values. In addition, it is noticeable that the ODRNN-HAR 
technique can reach higher PR values in all classes.

In Figure 8, an ROC study of the ODRNN-HAR approach 
is revealed on the test database. The figure describes the 
ODRNN-HAR methodology to improve the ROC values. 
Besides, the ODRNN-HAR approach can extend enhanced 
ROC values to all classes.

A brief comparative assessment of the ODRNN-HAR 
technique with current approaches is made in Table 3 and 
Figure 9 (Duhayyim, 2023). Based on accu

y
, the ODRNN-

HAR technique reaches higher accu
y
 of 99.49%, while the 

ODRNN-HAR, IPODTL-HAR, RF, NNN, SVM, ANN, 

Figure 4: Average outcome of the ODRNN-HAR system with varying measures. Abbreviation: ODRNN-HAR, Optimal Deep 
Recurrent Neural Networks for Human Activity Recognition.

Figure 5: Accuracy curve of the ODRNN-HAR system. Abbreviation: ODRNN-HAR, Optimal Deep Recurrent Neural Net-
works for Human Activity Recognition.
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Figure 7: PR curve of the ODRNN-HAR system. Abbreviation: ODRNN-HAR, Optimal Deep Recurrent Neural Networks for 
Human Activity Recognition.

Figure 6: Loss curve of the ODRNN-HAR system. Abbreviation: ODRNN-HAR, Optimal Deep Recurrent Neural Networks for 
Human Activity Recognition.

and LSTM models yield lower accu
y
 of 99.10, 86.18, 87.50, 

88.81, 91.83, and 93.97%, respectively. Eventually, based 
on prec

n
, the ODRNN-HAR technique reaches higher prec

n
 

of 98.42%, while the ODRNN-HAR, IPODTL-HAR, RF, 
NNN, SVM, ANN, and LSTM models yield lower prec

n
 of 

97.44, 82.70, 85.86, 88.86, 88.56, and 91.82%, respectively. 
Similarly, based on spec

y
, the ODRNN-HAR approach 

reaches higher spec
y
 of 99.69%, while the ODRNN-HAR, 

IPODTL-HAR, RF, NNN, SVM, ANN, and LSTM models 
yield lower spec

y
 of 99.09, 80.96, 82.76, 87.44, 92.20, and 

94% correspondingly.

Therefore, the ODRNN-HAR technique exhibited improved 
activity recognition performance over other models.

CONCLUSION

In this study, an automated HAR detection using the 
ODRNN-HAR method has been developed in IoT environ-
ment. The major intention of the ODRNN-HAR technique 
lies in the automated recognition and classification of various 
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Figure 8: ROC curve of the ODRNN-HAR system. Abbreviation: ODRNN-HAR, Optimal Deep Recurrent Neural Networks 
for Human Activity Recognition.

Figure 9: Comparative outcome of the ODRNN-HAR approach with existing methods. Abbreviation: ODRNN-HAR, Optimal 
Deep Recurrent Neural Networks for Human Activity Recognition.

Table 3: Comparative outcome of the ODRNN-HAR method 
with existing methods.

Methods  Accuy  Precn  Specy  F-score

ODRNN-HAR  99.49  98.42  99.69  98.43
IPODTL-HAR  99.10  97.44  99.09  97.39
RF algorithm  86.18  82.70  80.96  80.94
NNN model  87.50  85.86  82.76  83.06
SVM model  88.81  88.86  87.44  88.80
ANN model  91.83  88.56  92.20  90.85
LSTM model  93.97  91.82  94.00  92.50

kinds of human activities in IoT environment. Several sub-
processes are involved in the presented MER-ODLADT 
technique, namely data preprocessing, DRNN-based activ-
ity recognition, and MFO-based hyperparameter tuning. For 
effectual recognition of human activities, the ODRNN-HAR 
technique uses the DRNN model. At the final stage, the opti-
mal hyperparameter adjustment of the DRNN model takes 
place using the MFO algorithm. The result analysis of the 
ODRNN-HAR algorithm takes place on benchmark HAR 
dataset, and the outcomes are examined in terms of different 
measures. The comprehensive simulation results highlighted 
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the improved recognition outcomes of the ODRNN-HAR 
method in terms of different measures. In future, a multi-
modal fusion-based DL approach can be derived to improve 
the recognition results of the ODRNN-HAR method.

FUNDING

The authors extend their appreciation to the King Salman 
Center for Disability Research for funding this work through 
Research Group no KSRG-2023-114.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest in association 
with the present study.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no datasets 
were generated during the current study.

REFERENCES
Anagnostis A., Benos L., Tsaopoulos D., Tagarakis A., Tsolakis N. and 

Bochtis D. (2021). Human activity recognition through recurrent neu-
ral networks for human–robot interaction in agriculture. Appl. Sci., 
11(5), 2188.

Brishtel I., Krauss S., Chamseddine M., Rambach J.R. and Stricker D. 
(2023). Driving activity recognition using UWB radar and deep neu-
ral networks. Sensors, 23(2), 818.

Dahou A., Al-qaness M.A., Abd Elaziz M. and Helmi A. (2022). Human 
activity recognition in IoHT applications using arithmetic optimiza-
tion algorithm and deep learning. Measurement, 199, 111445.

Duhayyim M.A. (2023). Parameter-tuned deep learning-enabled activ-
ity recognition for disabled people. Comput. Mater. Contin., 75(3), 
6587-6603.

Eskandari A., Aghaei M., Milimonfared J. and Nedaei A. (2023). A weighted 
ensemble learning-based autonomous fault diagnosis method for 
photovoltaic systems using genetic algorithm. Int. J. Electr. Power 
Energy Syst., 144, 108591.

Gumaei A., Hassan M.M., Alelaiwi A. and Alsalman H. (2019). A hybrid 
deep learning model for human activity recognition using multimodal 
body sensing data. IEEE Access, 7, 99152-99160.

Islam M.S., Jannat M.K.A., Hossain M.N., Kim W.S., Lee S.W. and Yang 
S.H. (2023). STC-NLSTMNet: an improved human activity recogni-
tion method using convolutional neural network with NLSTM from 
WiFi CSI. Sensors, 23(1), 356.

Lattanzi E., Donati M. and Freschi V. (2022). Exploring artificial neural 
networks efficiency in tiny wearable devices for human activity rec-
ognition. Sensors, 22(7), 2637.

Li B., Cui W., Wang W., Zhang L., Chen Z. and Wu M. (2021). Two-stream 
convolution augmented transformer for human activity recognition. 
In: Proceedings of the AAAI Conference on Artificial Intelligence, 2-9 
February 2021; vol. 35(1); pp. 286-293.

Li H., Shrestha A., Heidari H., Le Kernec J. and Fioranelli F. (2019). 
Bi-LSTM network for multimodal continuous human activity recog-
nition and fall detection. IEEE Sens. J., 20(3), 1191-1201.

Mekruksavanich S., Jitpattanakul A., Youplao P. and Yupapin P. (2020). 
Enhanced hand-oriented activity recognition based on smartwatch 
sensor data using LSTMs. Symmetry, 12(9),1570.

Park H., Kim N., Lee G.H. and Choi J.K. (2023). MultiCNN-FilterLSTM: 
resource-efficient sensor-based human activity recognition in IoT 
applications. Future Gener. Comp. Syst., 139, 196-209.

Qian H., Pan S.J. and Miao C. (2021). Latent independent excitation for 
generalizable sensor-based cross-person activity recognition. In: 
Proceedings of the AAAI Conference on Artificial Intelligence, 2-9 
 February 2021; vol. 35(13); pp. 11921-11929.

Rashid K.M. and Louis J. (2019). Times-series data augmentation and deep 
learning for construction equipment activity recognition. Adv. Eng. 
Inform., 42, 100944.

Shan C.Y., Han P.Y. and Yin O.S. (2020). Deep analysis for smart-
phone-based human activity recognition. In: 2020 8th Interna-
tional Conference on Information and Communication Technology 
(ICoICT). IEEE, Malaysia, 21-23 October 2020; pp. 1-5.

Taheri S., Ahmadi A., Mohammadi-Ivatloo B. and Asadi S. (2021). Fault 
detection diagnostic for HVAC systems via deep learning algorithms. 
Energy Build., 250, 111275.

Tang C.I., Perez-Pozuelo I., Spathis D., Brage S., Wareham N. and Mascolo 
C. (2021). Selfhar: improving human activity recognition through 
self-training with unlabeled data. arXiv, arXiv:2102.06073.

UCI-HAR Dataset. https://archive.ics.uci.edu/ml/datasets/human+activity+ 
recognition+using+smartphones.

Ullah M., Ullah H., Khan S.D. and Cheikh F.A. (2019). Stacked LSTM net-
work for human activity recognition using smartphone data. In: 2019 
8th European Workshop on Visual Information Processing (EUVIP). 
IEEE, Roma, Italy, 28-31 October 2019; pp. 175-180.

Xia K., Huang J. and Wang H. (2020). LSTM-CNN architecture for human 
activity recognition. IEEE Access, 8, 56855-56866.

Xu H., Li J., Yuan H., Liu Q., Fan S., Li T. and Sun X. (2020). Human 
activity recognition based on Gramian angular field and deep convo-
lutional neural network. IEEE Access, 8, 199393-199405.

Zghoul F.N., Alteehi H. and Abuelrub A. (2023). A mayfly-based approach 
for CMOS inverter design with symmetrical switching. Algorithms, 
16(5), 237.

Zhang J., Zi L., Hou Y., Wang M., Jiang W. and Deng D. (2020). A deep 
learning-based approach to enable action recognition for construction 
equipment. Adv. Civ. Eng., 2020, 1-14.

Journal of Disability Research  2023

https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones



