
Acta  
Materia  
Medica

Review Article

Acta Materia Medica 2022, Volume 1, Issue 3, p. 381-391      381 
© 2022 The Authors. Creative Commons Attribution 4.0 International License

Molecular mechanisms of transporter 
regulation and their impairment in 
intrahepatic cholestasis
Xiping Lia,1, Yue Zua,1, Guodong Lia, Dong Xianga, Chengliang Zhanga,* and Dong Liua,*

aTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China

1These author contributed equally.

*Correspondence: ld2069@outlook.com (Dong Liu); clzhang@tjh.tjmu.edu.cn (Chengliang Zhang)

Received: 11 August 2022; Revised: 12 September 2022; Accepted: 21 September 2022

Published online: 6 October 2022

DOI 10.15212/AMM-2022-0029

ABSTRACT

Intrahepatic cholestasis (IC) is a liver disease caused by disorders in bile formation and excretion, owing to structural 
and functional abnormalities in hepatocytes and/or bile capillaries. IC is commonly caused by hepatitis virus, alcohol 
consumption, drug-induced liver damage, autoimmune liver disease and heredity. In the absence of effective treatment, 
IC can progress to liver fibrosis, cirrhosis and ultimately liver failure. However, the mechanisms underlying IC remain 
poorly understood. IC is believed to be closely associated with changes in the transcription, function and localization 
of hepatocellular transport proteins. To better understand the molecular mechanisms of transport proteins in IC, 
herein, we review the roles of these transport proteins and discuss their underlying regulatory mechanisms in IC. Our 
aim is to provide a reference for understanding IC pathogenesis and developing effective drug therapies.
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1. INTRODUCTION

Intrahepatic cholestasis (IC) is characterized by damage to 
hepatocytes or intrahepatic bile ducts, and the accumula-
tion of bile components in the serum [1]. IC, mainly includ-
ing primary biliary cirrhosis (PBC), primary sclerosing chol-
angitis and intrahepatic cholestasis of pregnancy (ICP), 
can be caused by inflammatory disorders, drugs, heredity 
and the environment [2, 3]. Any functional perturba-
tion in the bile secretory process may lead to IC, which 
is associated with intracellular accumulation of toxic bile 
constituents and consecutive cholestatic liver cell damage 
[4]. The main pathogenic mechanisms of IC may include 
deregulation of bile secretion, impaired cell-membrane 
fluidity, inflammatory responses, and changes in hepato-
cyte tight junctions and transporters [5].

Many transporters expressed in hepatocytes and 
cholangiocytes are involved in bile formation and excre-
tion. The secretion of bile is a hepatocellular transport 
processes occurring mainly across the canalicular mem-
branes of hepatocytes. Perturbations in the function, 
expression and/or localization of transporters lead to 
the intracellular accumulation of toxic bile acids (BAs), 
thus promoting cholestatic liver injury [6]. Alterations 

in hepatobiliary transporter function are important 
risk factors for susceptibility to IC development [7]. 
Mutations in transporter genes can cause hereditary 
cholestatic liver disease [8]. Mutations in multidrug 
resistance 3 (MDR3) and bile salt export pump (BSEP) 
can cause an array of cholestatic syndromes, including 
progressive and benign forms of familial IC and ICP 
[9, 10], have been well established to cause inherited 
cholestatic syndromes [11, 12]. Furthermore, geneti-
cally determined functional changes in hepatobiliary 
transport systems have been demonstrated to cause 
acquired cholestatic syndromes, such as ICP and drug-in-
duced cholestasis [7]. The transcription and expression 
of transporters are regulated by complex networks. 
Transporters are regulated by multiple nuclear recep-
tors (NRs) at the transcriptional level [13]. After their 
transcription and translation, transporters can also be 
regulated by various protein kinases (PKs) such as pro-
tein kinase B (Akt) and protein kinase C family mem-
bers (PKCs) [14-16]. The first-line treatment for IC is 
ursodeoxycholic (UDCA). However, approximately 40% 
of patients have inadequate responses [17]. Therefore, 
herein, we review the molecular mechanisms of trans-
porter dysregulation under IC, to provide a reference 
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for understanding its pathogenesis and developing 
effective drug therapies.

2. PHYSIOLOGY OF HEPATOBILIARY TRANSPORT 
AND BILE FORMATION

Hepatic uptake and efflux processes involved in bile 
formation are maintained by distinct transport systems. 
After canalicular secretion, the bile composition under-
goes further modification in the canaliculus, through 
reabsorption and secretion processes maintained by 
apical and basolateral transport systems in cholangio-
cytes. Figure 1 shows a scheme of the hepatocellular and 
bile duct transport proteins involved in the uptake and 
efflux of bile compounds (e.g., BAs).

Bile, comprising mainly BAs, cholesterol, bilirubin, 
bile pigment, phosphatidylcholine, water and inorganic 
salts, plays crucial roles in the digestion and absorption 
of lipids and lipid-soluble drugs. Bile production begins 
at the canaliculus in hepatocytes, and bile is modified 
downstream by cholangiocytes [18, 19]. Bile formation 
is a fundamental physiological process comprising the 
active transport of BAs and other solutes across the 

canalicular membrane [20]. BAs, the most important 
components of bile, are synthesized from cholesterols 
[21]. BA synthesis requires 17 enzymatic reactions. In the 
classical synthetic pathway, metabolism of cholesterols 
into 7α-hydroxycholesterol via 7α-hydroxylase (CYP7A1) 
is a key step. Most primary BAs, such as cholic acid and 
deoxycholic acid, are metabolized immediately into tau-
rine- and glycine-binding BAs. They are transported into 
the canaliculus by hepatic transporters, then mixed with 
other components to form bile [22].

BAs in bile enter the intestine through the contrac-
tion of the gallbladder. Under the action of the intes-
tinal microbiota, cholic acid and deoxycholic acid are 
transformed into UDCA and lithocholic acid (LCA), 
respectively, and all taurine- and glycine-binding BAs 
are deamidated in the terminal ileum and colon. In 
the entire process of enterohepatic circulation, 90% of 
BAs are reabsorbed by intestinal epithelium, and the 
rest is discharged from the human body through the 
feces [23]. In the small intestine, some free BAs and gly-
cine-binding BAs can be reabsorbed passively, but most 
are actively absorbed in the terminal ileum by the apical 
sodium-dependent BA transporter (ASBT, SLC10A2) and 

Figure 1  |  The roles of transporters in enterohepatic circulation of BAs.
BAs are synthesized from cholesterol. Subsequently, BAs are secreted into bile in the canaliculus by membrane transporters. Most BAs are 
reabsorbed into the portal vein by transporters on cholangiocytes and enterocytes. In the sinusoids of the liver, BAs are taken up by NTCP and 
OATPs and are recycled back to the liver.
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organic solute transporter α/β (OSTα/β, SLC51a/b) on the 
basement membrane [24]. Most BAs in the hepatic por-
tal vein, together with bilirubin and a variety of other 
organic anions, are reabsorbed from the blood into the 
liver through uptake transporters, and the rest are elim-
inated from the kidneys through the blood circulation. 
BAs can generally be eliminated after 20 enterohepatic 
circulations. Therefore, BA uptake disorders, obstructed 
BA efflux and bile duct injury in the liver can all lead to 
cholestasis [25].

2.1 Liver transporters involved in bile formation 
and excretion
The secretion and excretion of bile depend on complex 
hepatobiliary transport systems and cholangiocytes. 
Many transporters are expressed on the basolateral or 
canalicular membranes of hepatocyte, mainly includ-
ing ATP-binding cassette (ABC) and solute carrier family 
(SLC) transporters. ABC transporters efflux substrates, 
whereas SLC transporters mediate the uptake of sub-
strates into cells. These transporters play important roles 
in bile formation and the biliary excretion of xenobiot-
ics. In bile flow obstruction, cholestasis has been attrib-
uted to the expression and functional abnormalities of 
various transporters [26]. The transporters in cholangi-
ocytes take up electrolytes and water into the blood, 
thus forming a “biliary-liver” cycle, and excrete them 
into the bile duct, thereby further promoting bile flow 
(Figure 1). Therefore, transporters play important roles 
in the secretion and excretion of bile in cholestasis.

2.1.1 SLC transporters.  SLC transporters include Na+-
taurocholate co-transport polypeptide (NTCP, SLC10A1), 
organic anion transporter polypeptides (OATPs, SLCO), 
OSTα/β and ASBT. On the basolateral membranes of 
hepatocytes, BAs are taken up primarily by NTCP and 
OATPs. Furthermore, NTCP also transports steroidal hor-
mones and a variety of drugs. Repression and translo-
cation of NTCP contribute to the etiopathogenesis of IC 
[27]. OATPs take up other cholephilic compounds, includ-
ing glucuronidated bilirubin, exogenous organic anions, 
leukotrienes, estrogen conjugates (e.g., estrone-3-sulfate 
and estradiol-17-β-d-glucuronide), thyroid hormones, 
mycotoxins and numerous xenobiotics [28-30]. Human 
OATP1A and rat OATP2 mediate the uptake of bulky 
organic cations, whereas small organic cations are taken 
up by organic cation transporter 1 (OCT1, SLC22A1) [31].

2.1.2 ABC transporters.  In hepatocytes, bile excretion 
occurs mainly at the canalicular membrane, predom-
inantly via ABC transporters. ABC transporters are a 
superfamily of membrane proteins that mediate diverse 
ATP-driven transport processes; main members include 
BSEP (ABCB11), multidrug resistance protein 2 (MRP2, 
ABCC2), P-glycoprotein (P-gp/MDR1, ABCB1), breast 
cancer drug resistance protein (BCRP, ABCG2) and MDR3 
(ABCB4) [32, 33]. BSEP and MRP2, two main transporters 
on the canalicular membrane, excrete BAs into the bile 

duct. Monoanionic bile salts are excreted mainly into 
the canalicular pole by BSEP [34]. In contrast, canalicular 
efflux of divalent, sulfated or glucuronidated bile salts, 
glutathione or glucuronidated bilirubin is mediated by 
MRP2 [33]. In addition, phosphatidylcholine, cholesterol 
and other compounds are excreted into the canaliculus 
through ATP-binding cassette subfamily B member 4 
(MDR2, ABCB4), ATP-binding cassette subfamily G mem-
ber 5/8 (ABCG5/G8), ATP-binding cassette subfamily B 
member 1 (MDR1, ABCB1) and MRP2 [35].

Cooperation among transporters is critical to main-
taining bile homeostasis (Figure 2). In early stages of 
acute and chronic cholestasis, the NTCP-BSEP axis is 
blocked, thus leading to accumulation of BAs in hepato-
cytes and spontaneously activating the OATP-MRP2 axis, 
thereby accelerating the excretion of BAs. It maintains 
bile homeostasis, delays rapid increases in intracellular 
BA concentrations, and alleviates hepatocyte structural 
and functional damage [21].

2.2 Transporters in intrahepatic cholangiocytes
During bile flow, formation and excretion, the intra-
hepatic bile duct secretes the electrolytes Cl−1 and 
HCO3

−1 into the bile via several transporters or channels 
expressed on cholangiocyte membranes, thus syner-
gistically regulating the fluidity and pH of bile in the 
bile duct [36]. These transporters include cystic fibrosis 
transmembrane conductance regulator (CTFR), anion 
exchanger 2 (AE-2) and aquaporin-1 (AQP1). Their dys-
function directly leads to abnormal secretion of inor-
ganic salts and water, and alterations in bile composition 
and flow [37]. Impairment of cholangiocyte transporters 
and aquaporin leads to “toxic” bile, owing to both a 
lack of the “HCO3

−1” and increased intraluminal levels 
of damaging Bas [38]. CTFR transports intracellular Cl−1 
outside the plasma membrane [39]. Subsequently, Cl−1 
on the plasma membrane secondarily drives the Cl−1- 
HCO3

−1 transporter AE-2, which actively secretes HCO3
−1 

into the bile [40], whereas AQP1 transports water mole-
cules into the bile [41]. Genetic abnormalities in CFTR 
result in attenuation of bile hydration, accumulation of 
toxic BAs, cholangiocyte damage and cholestasis, and 
ultimately progression to cystic fibrosis [42]. Abnormal 
function and expression of AE-2 are also associated with 
PBC [43].

3. TRANSCRIPTIONAL REGULATION OF HEPATIC 
TRANSPORTERS BY NRS

NRs, a family of 48 members, play important roles in BA 
homeostasis, lipid metabolism, and mechanisms involved 
in fibrosis and inflammation. Several of the adaptive 
changes in cholestasis are mediated by NRs, because bil-
iary compounds retained during cholestasis (e.g., BAs, 
bilirubin, oxysterols, hormones and drugs) act as NR 
ligands and coordinately affect target-gene expression 
[44, 45]. NRs, mainly farnesoid X receptor (FXR, NR1H4), 
pregnane X receptor (PXR, NR1I2), constitutive androgen 
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receptor (CAR, NR1I3), liver X receptor α (LXRa, NR1H3) 
and vitamin D receptor (VDR, NR1I1), are involved in the 
maintenance of BA homeostasis in IC [13]. In addition, 
other NRs, including liver receptor homolog-1 (LRH-1, 
NR5A2) and peroxisome proliferator-activated receptors 
(PPARs, NR1Cs) (Table 1), play important roles in IC [46]. 
Changes in transporter regulation comprise a complex 
interaction network of several ligand-activated NRs as 
well as liver-enriched hepatocyte nuclear factors.

3.1 FXR
FXR is a major NR regulating the expression of transport-
ers and maintaining BA homeostasis during pathogenesis 
of cholestasis [47]. In early stages of chronic cholestasis, 

FXR is rapidly activated, thus forming FXR-RXR (retinoid X 
receptor, NR2B1) heterodimers. Subsequently, the dimers 
bind inverted repeat 1 (IR-1) elements in the target-gene 
promoter and significantly up-regulate the expression of 
BSEP and MRP2, thereby accelerating BA excretion. FXR 
also induces the expression of a nuclear orphan recep-
tor small heterodimer partner (SHP), and consequently 
inhibits the functions of other NRs, such as liver X recep-
tor (NR1H3) and hepatocyte nuclear factor 4α (HNF4α), 
and ultimately suppresses the expression of CYP7A1/
CYP8B1 and NTCP in hepatocytes, thereby decreasing 
BA synthesis and uptake, and indirectly accelerating BA 
clearance [48]. Similarly to NTCP, OATP1B1 and ASBT are 
negatively regulated by FXR through the interaction of 

Table 1  |  Main nuclear receptors involved in transporter regulation.

NR   Name   Ligands

FXR (NR1H4)   Farnesoid X-activated 
receptor

  Bile acids (CDCA, DCA, LCA and CA); possibly UDCA (weak ligand); 
synthetic: GW4064, 6α-ethyl-CDCA and fexaramines

PXR (NR1I2)   Pregnane X receptor   Bile acids, rifampicin in humans, phenobarbital, dexamethasone, 
statins, St. John’s wort and clotrimazole pregnenolone-16a-carbonitrile

CAR (NR1I3)   Constitutive androstane 
receptor

  Bilirubin, phenobarbital, TCPOBOP, dimethoxycoumarin, xenobiotics, 
Yin Chin and CITCO in humans

VDR (NR1I1)   Vitamin D receptor   Vitamin D and LCA

LRH-1 (NR5A2)   Liver receptor homolog-1   Phospholipids

PPARα (NR1C1)   Peroxisome proliferator-
activated receptor α

  Fatty acids, fibrates, statins,
eicosanoids, leukotrienes,
NSAIDs and WY-14643

Figure 2  |  The roles of transporters in IC.
IC results in intrahepatic accumulation of BAs, thus leading to a toxic hepatocellular bile acid burden. In addition, the uptake of BAs is restricted, 
owing to downregulation of NTCP and OATPs. Export of BAs is mediated by basolateral transporters, such as BSEP, MRP2, MRP3, MRP4 and 
OSTα/β. Decreased expression of these transporters results in diminished bile acid excretion, thus further increasing BA accumulation in the 
liver and triggering IC.
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SHP with HNF4 [49]. In addition, FXR directly promotes 
cellular bile clearance via directly inducing canalicular 
BSEP and MRP2 [50, 51].

In another regulatory pathway inhibiting BA synthe-
sis, intestinal FXR induces the expression of an intes-
tinal hormone-like peptide, fibroblast growth factor 
15/19 (murine FGF15 or human FGF19). FXR induces the 
expression of FGF15/19 through the activation of hepatic 
FGF receptor 4 (FGFR4), then activates the intracellular 
stress-activated Jun N-terminal-kinase pathway and 
consequently inhibits CYP7A1 activity and decreases BA 
synthesis [52]. Thus, the FXR-FGF19 pathway, through a 
typical negative feedback regulation mechanism, plays 
a critical role in the pathogenesis of cholestatic diseases 
[53]. FXR may therefore be a promising therapeutic tar-
get for novel drug development in IC.

3.2 PXR and CAR
Recent studies have revealed that, beyond FXR, PXR and 
CAR are key NRs regulating many adaptive responses 
in IC. They coordinate protective hepatic responses to 
toxic stimuli, induced by endogenous compounds (BAs 
or bilirubin) and xenobiotics [54, 55]. As sensors of toxic 
byproducts, they are central in the detoxification path-
ways involving phase I/II detoxification and transport-
ers [54, 56, 57]. Levels of PXR and CAR are diminished 
in IC [58], whereas PXR polymorphisms are associated 
with greater susceptibility to ICP [59]. MRP3/4 expres-
sion is upregulated via PXR and CAR, thereby alleviating 
cholestatic liver injury [60, 61]. In addition, FXR induces 
BA export and metabolism via transcriptional activation 
of PXR [62]. Targeting these NRs may provide therapeu-
tic benefits for patients with cholestasis in the future.

3.3 VDR
VDR, expressed in the intestines, kidney and liver, is also 
activated by BAs. Recent reports have shown that VDR 
regulates BA transporters, and its polymorphic variants 
may affect individual susceptibility and quality of life in 
patients with IC, such as PBC or ICP [63, 64]. However, 
the direct effects of VDR polymorphisms on the patho-
genesis of IC are unclear. Loss of VDR exacerbates 
cholestatic liver injury through the disruption of biliary 
epithelial cell junctions in mice [65]. VDR increases ASBT 
mRNA expression and promoter activity [66]. Moreover, 
VDR appears to play an indirect role in BA homeosta-
sis. Furthermore, vitamin D intake has been suggested 
to relieve biliary fibrosis in ABCB-knockout mice and 
ameliorate cholestatic disease [67]. Therefore, VDR may 
serve as a therapeutic target in cholestatic diseases.

3.4 LRH-1
LRH-1, a transcription factor in bile salt synthesis, is 
expressed mainly in the liver, intestines, exocrine pan-
creas and reproductive tissue [68]. It binds DNA in its mon-
omeric form and regulates other NRs and the transcrip-
tion of genes involved in the biosynthesis and transport 
of BAs, including CYP7A1 [69], BSEP, MRP2, ASBT, NTCP, 

MRP3 and MDR2 [70-73]. LRH-1 induces the expression 
of CYP7A1, BSEP [71] and ASBT [73]. In addition, dele-
tion of LRH-1 significantly decreases the expression of 
FXP and SHP as well as multiple transporters (i.e., NTCP, 
BSEP, MRP3, MRP2 and MDR2) [70]. However, the effect 
of LRH-1 remains to be fully elucidated in IC.

3.5 PPARα
PPARα, a ligand-activated nuclear receptor, plays a cen-
tral role in maintaining cholesterol, lipid and BA home-
ostasis by regulating genes involved in BA synthesis and 
transport. PPARα primarily down-regulates BA synthe-
sis through inhibition of BA-synthesizing enzymes (i.e., 
CYP7A1 and CYP27A1) [74]. In addition, PPARα induces 
biliary phospholipid output by activating canalicular 
MDR3 [75]. PPARα activators directly induce canalicu-
lar MDR2, thereby inducing biliary phospholipid output 
[76]. In addition, ASBT expression in cholangiocytes and 
the intestines is induced by PPARα [77], thus increas-
ing BA absorption from the intestines and bile ducts. 
Bezafibrate, a dual PPAR and PXR agonist, increases the 
expression of NTCP, MDR1, MDR3 and MRP2, thus pro-
tecting against cholestatic liver injury [78]. Agonists of 
PPARα are promising therapeutic approaches in IC.

4. LOCALIZATION REGULATION OF HEPATIC 
TRANSPORTERS

Accurate expression and localization of transporters 
on the plasma membrane require interactions among 
various proteins between the membrane and cytoskel-
eton—a complex process regulated by PKs. PKs contain 
serine (Ser), threonine (Thr) and tyrosine (Tyr) residues, 
or lysine (Lys), histidine (His) and arginine (Arg) residues. 
Various PKs, such as PKB (Akt) and PKC, regulate the 
localization of hepatic bile transporters after transcrip-
tion, and the activation of phosphoinositide-3-kinase 
(PI3K)/Akt signaling causes sustained internalization of 
MRP2 and BSEP, thus eventually leading to cholestasis 
[79, 80]. Via second messengers, PKs initiate signaling 
cascades, regulate the phosphorylation and dephos-
phorylation of the hepatobiliary transport system and 
corresponding crosslinked proteins or scaffolding pro-
teins, alter the membrane localization of transporters 
and rapidly adjust bile composition, thus subsequently 
promoting cholestasis and/or exerting choleretic effects.

4.1 PKB (Akt)
The Ser/Thr kinase PKB (Akt) has been widely stud-
ied as a cell growth factor regulating the functions of 
multiple downstream anti-apoptotic proteins [81]. Akt 
is considered the characteristic target protein and ter-
minal effector of PI3K [82, 83]. Beuers et al. [84] have 
found that in a taurolithocholic acid (TLCA)-induced 
cholestasis model, wortmannin, a PI3K-specific inhibi-
tor, decreases Akt activity and attenuates cholestasis, 
thus suggesting a causal link between these events. 
Furthermore, in an E217G- and TLCA-induced cholestasis 
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model, the anti-cholestatic effect of an Akt inhibitor 
(Calbiochem 124005) is similar to that of a PI3K inhib-
itor (LY294002), and identical anti-cholestatic out-
comes have been achieved by combining wortmannin 
with Calbiochem 124005 or a conventional PKC (cPKC) 
inhibitor (G6976) [80]. In addition, the activation of 
PI3K and Akt contributes to sustaining the internaliza-
tion of transporters and the consequent impairment 
of their activity. Thus, the PI3K/Akt pathway is largely 
responsible for cholestasis.

4.2 PKC
PKCs are a group of PKs mediating the function of 
targeted proteins through phosphorylation of serine 
and threonine amino acid residues. Ten subtypes of 
PKC have been found in mammalian tissues, and can 
be divided into three groups: cPKC, including α, βI, βII 
and γ subtypes; novel PKC (nPKC), including δ, ε, η and 
θ subtypes; and atypical PKC (aPKC), including ι (also 
known as λ in mice) and ζ subtypes [85]. The activation 
of several PKC subtypes in the liver, such as aPKCζ and 
nPKCδ, depends on PI3K [86-88]. However, the activa-
tion of cPKCs does not rely on PI3K [80, 89, 90], and 
oxidative stress can mediate the activation of cPKCs and 
nPKCs [91]. In the past, the activation of PKCs has been 
found to induce cholestasis [16], inhibit cAMP-induced 
intake of taurocholate and decrease MRP3- and OATP-
mediated transport of organic solutes [92-94]. Different 
PKCs are activated by various compounds and subse-
quently exert pro-cholestatic, anti-cholestatic and chol-
eretic effects. Accordingly, different compounds appear 
to function differently by affecting various subtypes of 
PKCs and corresponding signaling pathways (Figure 3).

4.2.1 The roles of PKC subtypes in IC.  Both cPKCα and 
nPKCδ participate in the pathogenesis of cholestasis. In an 
E217G-induced cholestasis model, cPKCα participates in 
pathogenesis by activating downstream estrogen recep-
tor (ERα) signaling [95]. cPKCα mediates NTCP internali-
zation induced by phorbol myristate acetate and tauro-
chenodeoxycholate acid [90, 96]. Taurodeoxycholic acid 
exerts post-translational anticholestatic effects through 
a cooperative cPKCα-/PKA-dependent mechanism in an 
experimental model of TLCA-induced cholestasis [97]. 
A recent study has indicated that nPKCδ is activated 
by cAMP, and is involved in cAMP-mediated NTCP and 
MRP2 translocation in hepatocytes [87]. In contrast to 
those of cPKCα, the effects of nPKCδ are associated with 
its phosphorylation sites, which are activated by vari-
ous signals. Activation of nPKCδ may lead to cholestatic 
effects via Tyr phosphorylation, whereas its activation 
may lead to anti-cholestatic effects via Thr phosphoryla-
tion [98, 99]. In agreement with this hypothesis, the acti-
vation of nPKCδ by cAMP and GCDCA is associated with 
Thr and not Tyr phosphorylation in rat hepatocytes [88, 
100]. Nevertheless, the effects and underlying mecha-
nism of differential phosphorylation of nPKCδ in IC still 
require validation.

nPKCε and aPKCζ are two important PKC subtypes. In 
primary hepatocytes, TLCA activates nPKCε and induces 
MRP2 endocytosis. Knockdown of nPKCε reverses TLCA-
induced internalization of MRP2 [101]. In addition, 
cAMP and taurodeoxycholic acid reverse TLCA-induced 
cholestasis and MRP2 retrieval by inhibiting nPKCε [84, 
102, 103]. MRP2 retrieval induced by ethacrynic acid 
is also mediated via nPKCε in rats [91]. In contrast to 
nPKCε, cAMP promotes the delivery and localization 
of NTCP toward the basement membrane via the PI3K/
aPKCζ pathway [104]. Because aPKCζ, BSEP and MRP2 
are all expressed on the membranes of hepatocytes 
[105], aPKCζ may also be involved in the canalicular 
localization of the two transporters, a possibility that 
should be further studied.

5. CONCLUSION

Transporters participate in the transmembrane transport 
of bile, and their disorders play important roles in the 
pathogenesis of cholestasis. In past decades, the essen-
tial roles of hepatic transporters in the pathogenesis of 
cholestasis have been gradually revealed. However, stud-
ies on the molecular mechanism underlying cholestasis 
have been limited mainly to transcriptional, expression 
and functional abnormalities in individual or several 
transporters, thus yielding limited conclusions. Notably, 

Figure 3  |  Proposed model for the regulation of NTCP and 
MRP2 by PKC isoforms.
Activation of nPKCδ and aPKCζ by cAMP leads to translocation of 
NTCP and MRP2 to the plasma membrane. Activation of nPKCδ by 
GCDCA facilitates MRP2 translocation to the plasma membrane. 
Activation of cPKCa by phorbol myristate acetate and tauroche-
nodeoxycholate acid induces retrieval of NTCP from the plasma 
membrane. Activation of cPKCa and nPKCε has been implicated in 
MRP2 retrieval from the plasma membrane by cholestasis induced by 
E217G, ethacrynic acid and TLCA.
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abnormal transporter localization can also cause 
cholestasis. The localization of hepatocyte transporters 
has been studied, but a comprehensive understanding 
is lacking. In addition, few studies have assessed the 
location and function of cholangiocyte transporters. 
Overall, the pathogenesis of cholestasis induced by 
abnormal bile transport is a complex network compris-
ing multiple transporters that synergistically secrete and 
excrete bile from the liver. Furthermore, given the com-
pensatory protective mechanisms in the human body, 
transporters exert distinctly different effects on acute 
and chronic cholestasis, thus enabling the underlying 
molecular mechanisms to be unraveled.

NRs, as transcription factors, regulate transporter 
genes required for hepatobiliary transport, as well as 
phase I and II metabolic enzymes involved in process-
ing their substrates. Impaired NR signaling may affect 
the expression of transporters, and genetic variants of 
NR-encoding genes are associated with IC susceptibil-
ity and progression. In addition, altered localization of 
transporters participates in pathogenesis of IC. These 
changes in transporter localization are highly regulated 
post-translational events requiring various cellular sig-
naling pathways, such as PKB (Akt) and PKC. Atypical 
PKCζ may mediate choleretic effects by inserting NTCP 
into the plasma membrane, and nPKCε may mediate 
cholestatic effects by retrieving MRP2 from the plasma 
membrane [91]. In contrast, cPKCα and nPKCδ may be 
involved in choleretic, cholestatic and anticholestatic 
effects by inserting, retrieving and inhibiting retrieval of 
transporters, respectively. Thus, we reviewed the mole-
cular mechanisms through which transporters are regu-
lated through various proteins such as NRs and PKCs in 
cholestasis, to provide a reference for understanding IC 
pathogenesis and developing effective drug therapies. 
Nevertheless, considerable in-depth studies remain nec-
essary to comprehensively clarify the network of regula-
tory mechanisms of cholestasis-associated transporters.
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