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Abstract

In the domain of medical image analysis, there is a burgeoning recognition and adoption of large models 
distinguished by their extensive parameter count and intricate neural network architecture that is predominantly 
due to their outstanding performance. This review article seeks to concisely explore the historical evolution, specific 
applications, and training methodologies associated with these large models considering their current prominence 
in medical image analysis. Moreover, we delve into the prevailing challenges and prospective opportunities related 
to the utilization of large models in the context of medical image analysis. Through a comprehensive analysis of 
these substantial models, this study aspires to provide valuable insights and guidance to researchers in the field of 
radiology, fostering further advances and optimizations in their incorporation into medical image analysis practices, 
in accordance with the submission requirements.
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1. INTRODUCTION

In recent years the rapid advancement of artificial intel-
ligence (AI) technology has sparked a growing inter-
est in the integration of large scale models within the 
field of medical imaging. Large models, often denot-
ing neural network models with a profusion of param-
eters, intricate architecture, and abundant neurons, 
have gained prominence in the realm of deep learning. 
Large models consistently exhibit exceptional perfor-
mance and robust generalization capabilities, render-
ing them versatile tools in various domains, including 
medical image analysis and natural language processing 
[NLP] [1]. The roots of large models can be traced back 
to the foundational concept of neuron modeling that 

was initially proposed by Warren McCulloch and Walter 
Pitts in 1943. However, the field of deep learning, where 
these expansive models reside, grappled with technical 
constraints for an extended period [2]. It was not until 
2012, when Alex Krizhevsky and colleagues introduced 
the AlexNet model, that a crucial turning point was 
reached. Their victory in the ImageNet image classifica-
tion competition underscored the considerable advan-
tages of large deep models in computer vision tasks, 
marking the dawn of an era where substantial models 
flourished [3]. Subsequent developments introduced 
models, such as VGG, GoogLeNet, and the Residual 
Neural Network (ResNet), all contributed significantly 
to enhanced model performance [4-6]. The subsequent 
advent of the Transformer model pioneered the concept 
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of self-attention, providing the foundation for large-
scale language modeling [7]. Building upon this foun-
dation, researchers unveiled the Bidirectional Encoder 
Representations from Transformers (BERT) model, bring-
ing about substantial improvements in the performance 
of large models in NLP tasks [8]. Today, the OpenAI’s 
Generative Pre-trained Transformer (GPT) series of mod-
els, boasting billions of parameters, exemplify remark-
able capabilities [9]. The evolution of large models, as 
witnessed today, owes much to the contributions of 
computational resources. In this context, computational 
resources encompass the hardware devices employed for 
training deep learning models, the computational time 
required for this training, and the energy consumption 
necessary to sustain these devices. Since the release of 
the AlexNet model in 2012, there has been an exponen-
tial surge in the utilization of computational resources 
by researchers for model training. The deployment of 
large-scale computational resources has significantly 
enhanced model performance [10]. However, the exten-
sive use of large-scale computational resources has also 
given rise to a set of challenges, including substantial 
economic investments, heightened energy demands, 
increased carbon emissions, and concerns related to 
research inequality [11].

Despite the persistent nature of these challenges, 
the pivotal role played by large models in the realm of 
medical image analysis remains undisputed. The hier-
archical architecture inherent in deep neural networks 
within large models facilitates a systematic process for 
the identification and accentuation of crucial features 
within input images, while concurrently eliminating 
superfluous elements. This process reveals the intrinsic 
characteristics latent within the original images [12]. 
This remarkable capability empowers large models to 
conduct medical image analysis with enhanced effi-
ciency and precision. Moreover, the integration of large 
models in the field of medical imaging has catalyzed 
innovative research directions in medical image analysis, 
encompassing automated image segmentation and the 
automated generation of comprehensive medical image 
analysis reports [13].

The applications of large models in the field of medi-
cal imaging encompass several distinct areas. The first of 
these is image classification and segmentation, a critical 
task in medical image analysis that finds wide utility in 
assisted diagnosis and lesion localization. Large models 
can autonomously discern salient features within original 
medical images, offering precise classification outcomes 
and the ability to delineate and segment various tissues 
and organs within the image with exceptional accuracy 
[14, 15]. The second area focuses on the detection and 
prediction of anomalies within medical images. Large 
models exhibit the capability to identify diverse patho-
logic anomalies, including viral infections, exemplified 
by the capacity to detect early-stage COVID-19 infec-
tions through medical images [16]. Furthermore, large 
models can effectively forecast disease onset or future 

progression, as evidenced by the accurate predictions 
in the context of glaucoma onset and progression [17]. 
The third domain pertains to multimodal medical image 
analysis, which addresses the multifaceted nature of con-
temporary medical image data. Large models adeptly 
combine multiple types of medical images, extracting 
common features across all modalities to effectively ana-
lyze target images [18]. Lastly, large models play an inval-
uable complementary role for radiologists. Large model 
applications, whether focused on image segmentation 
or anomaly detection, significantly streamline the work 
of radiologists, enhancing the accuracy and efficiency of 
their tasks within the realm of medical image analysis.

2. METHODS

In this section the fundamental architecture of large 
models, along with the training strategies and optimiza-
tion techniques, will be introduced. The goal is to foster 
a deeper comprehension of large models.

2.1 Basic architecture
2.1.1 Categories of models.  The landscape of large 
models has evolved significantly over time. Currently, 
these models can be broadly classified into the follow-
ing three groups based on their foundational architec-
tural structures:
(1) Convolutional Neural Networks (CNNs)

CNNs typically comprise three distinct types of layers 
(convolutional, pooling, and fully connected). Within 
the convolutional layer, a pivotal element emerg-
es—the convolutional kernel, which is often referred 
to as the filter. The presence of these filters empow-
ers CNNs to adeptly discern salient features within 
input images, enhancing the efficiency of image pro-
cessing. However, traditional CNNs grapple with cer-
tain limitations, including the challenge of gradient 
vanishing, which hinders the capacity of the model 
to grasp intricate features [19]. In response, research-
ers have devised innovative models building upon 
the foundation of CNN architecture to surmount 
these challenges. Noteworthy exemplars encompass 
AlexNet, VGGNet, and ResNet models. AlexNet lever-
ages multiple convolutional layers, ReLU activation 
functions, maximum pooling, and normalization to 
optimize model accuracy. VGGNet enhances AlexNet 
by introducing a sequence of convolutional lay-
ers characterized by smaller convolutional kernels, 
thereby enhancing feature recognition. The ResNet 
model (Figure 1) introduces the concept of residual 
learning, effectively addressing the gradient vanish-
ing problem and enabling the model to grasp more 
intricate features [20]. In the realm of medical image 
analysis, these models predominantly find applica-
tion in image classification and segmentation. A mul-
titude of studies have unequivocally demonstrated 
the adeptness of this class of models in accurately 
classifying and segmenting medical images [21-23].
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(2) Recurrent Neural Network (RNNs)
RNNs (Figure 2) typically adopt a tree-like or directed 
acyclic graph structure. This architectural design 
facilitates recursive propagation and sharing of 
information across various network structures. This 
enables RNNs to demonstrate high efficiency when 
dealing with tree-structured and hierarchical data, 
particularly in natural language processing (NLP) 
or sequential data analysis [24]. By leveraging the 
functional characteristics of RNNs, the application 
in medical imaging extends to automating the gen-
eration of medical image reports and processing 
medical sequence data, such as time series images or 
video data [25, 26].

(3) Transformer Model
The Transformer model (Figure 3) introduces a self-
attention mechanism, dynamically adjusting the 
focus of the model on different segments of the 

input based on task-specific features and input data 
characteristics, thereby enhancing model perfor-
mance and resilience. This self-attention mechanism, 
when combined with feed-forward neural networks, 
enables global context modeling and maintains par-
allel processing capabilities, especially for extended 
sequences [7]. Building upon the foundations of the 
Transformer model, BERT inherits and expands its 
attributes. BERT introduces bidirectional training, 
addressing the unidirectional processing constraint 
of Transformers, while also featuring pre-training 
and fine-tuning capabilities [8]. The emergence of 
the GPT series models has elevated the application 
of neural language models based on the Transformer 
architecture. GPT-3, equipped with 175 billion param-
eters, boasts an innovative few-shot learning feature, 
allowing GPT-3 to proficiently handle various NLP 
tasks with minimal examples or task descriptions [9].

Figure 1  |  ResNet Architecture – Demonstrates how shortcut connections enable residual learning to address the vanishing 
gradient problem in deep neural networks.

Figure 2  |  Recurrent Neural Network – Illustrates how RNNs use internal looping structures to handle sequential information, 
suitable for tasks like language processing and time-series analysis in medical imaging.
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Hence, the significance of applying Transformer, 
BERT, and GPT-3 in the field of medical image analysis 
cannot be overstated. Numerous scholars have authored 
reviews highlighting the potential of Transformer mod-
els for medical image segmentation. BERT models have 
exhibited exceptional performance in automatic med-
ical image report generation. The exploration of GPT 
series models for aiding clinical decision-making in the 
realm of radiology further underlines their promising 
utility [27-29].

2.1.2 Model size and complexity.  Until now, all three 
categories of large models exhibit a considerable scale. 
Kaplan et  al. conducted a comprehensive study to 
investigate the intricate relationship between model 
performance and model scale. Kaplan et  al. reported 
that model performance is significantly contingent 
on the scale of the model in terms of parameters, the 
extent of the dataset, and the computational resources 
employed for training. It was evident that the judicious 
expansion of model size markedly enhances perfor-
mance. Consequently, large models have demonstrated 
remarkable efficiency in the analysis of medical images, 
achieving commendable accuracy in tasks, such as 
tumor detection, image segmentation, and disease dis-
crimination [30]. However, several challenges persist in 
the application of large models in the field of medical 
image analysis. A notable hurdle is the predominantly 
limited size of medical image datasets, which often fails 
to meet the demands of training large scale models [31].

2.1.3 Pre-training and transfer learning.  The advent of 
pre-training and transfer learning methodologies has 
effectively addressed the quandary of limited data sizes. 
Pre-training involves the preliminary training of large 
models on extensive datasets, enabling the large mod-
els to glean generic features and structural knowledge 
from the data. Subsequently, transfer learning allows 

these large models to apply the generalized features 
acquired during pre-training to specific datasets under 
scrutiny [32]. Notably, Hopson et al. [33] delved into the 
utilization of pre-trained CNN models for assessment of 
the quality of clinical PET images using transfer learn-
ing techniques. Hopson et  al. [33] demonstrated that 
pre-training significantly enhances the performance of 
CNN models in the task of assessing the quality of clini-
cal images, particularly in automating the prediction of 
PET images.

2.2 Training strategies
2.2.1 Data preparation.  The quality of data significantly 
influences the performance of large models. It is imper-
ative to undertake meticulous steps in preparing medi-
cal image data for model training. Commencing with a 
comprehensive summary of relevant medical image data 
for the study is crucial, followed by a rigorous assess-
ment of data reliability. Subsequent steps involve data 
cleansing to eliminate non-compliant entries, standard-
ization to ensure image consistency, and annotation 
tailored to the study requirements for effective model 
learning and comprehension [34].

2.2.2 Data augmentation.  Beyond the above steps, the 
inclusion of data augmentation is imperative. Data aug-
mentation involves the generation of new data from 
existing sources, incorporating techniques, such as rota-
tion, translation, flipping, and cropping. This augmen-
tation of the original dataset is vital to expanding its 
size and enhancing the generalization capabilities of 
the model. Given that collected data may fall short in 
meeting the demands of training a large model in prac-
tical scenarios, data augmentation becomes an essential 
facet of the preparation process [35].

2.2.3 Loss functions and optimization objectives.  In 
the training regimen of large models, the meticulous 

Figure 3  |  Transformer Model – Showcases the self-attention mechanism, which dynamically tunes focus on input segments, 
thus enhancing performance and adaptability in processing sequential data.
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selection of appropriate loss functions emerges as 
a pivotal factor in augmenting model performance. 
Loss functions serve as metrics to gauge the deviation 
between the model predictions and actual values, eluci-
dating how closely the model aligns with ground truth. 
The optimization objective is to minimize this deviation, 
with a smaller value of the loss function signifying supe-
rior model performance [36]. Commonly utilized loss 
functions in medical image segmentation tasks include 
Cross-Entropy Loss and Dice Loss. The judicious choice 
of a loss function in practical research hinges upon the 
specific data characteristics, research objectives, and the 
intended applications of large models [37].

2.3 Optimization techniques
2.3.1 Training optimization algorithms.  Following data 
preprocessing, augmentation, and the selection of 
appropriate loss functions, a critical facet of training 
large models revolves around optimization algorithms. 
These algorithms aim to identify model parameters 
that minimize the loss function, thereby enabling opti-
mal model performance. Stochastic Gradient Descent 
(SGD) and Adaptive Moment Estimation (Adam) stand 
out as commonly used optimization algorithms [38]. 
SGD serves as a foundational optimization algorithm 
that computes gradients for each training sample and 
updates model parameters accordingly. By selecting 
only one training sample at a time, this approach intro-
duces randomness, aiding in escaping local optima and 
exploring the parameter space more comprehensively. 
Adam integrates SGD with a momentum-adaptive 
learning rate optimization algorithm, providing greater 
stability compared to SGD and facilitating faster conver-
gence towards local optimal solutions [39].

2.3.2 Regularization and overfitting control.  As model 
training progresses, the challenge of overfitting 
becomes increasingly pronounced. Overfitting manifests 
when the model excels on training data but performs 
poorly on unfamiliar data. To mitigate this issue, con-
straints or penalty terms can be incorporated into the 
loss function to reduce model complexity, an approach 
known as regularization. Typically, dropout and L2 
Regularization serve as effective means for model reg-
ularization. Dropout entails the random deactivation of 
certain neurons during each training iteration, which 
prevents the model from relying too heavily on specific 
neurons and thereby enhancing generalization capabil-
ities. In contrast, L2 Regularization introduces penalty 
terms to the loss function, encouraging optimization 
algorithms to favor smaller weight values during param-
eter selection and consequently diminishing the risk of 
overfitting [40].

2.3.3 Model compression and acceleration.  Efficiently 
reducing the time and cost associated with training and 
inference for large models stands as a crucial facet in the 
training continuum. Presently, model compression and 

acceleration primarily rely on methods, such as model 
pruning, quantization, and knowledge distillation. 
Model pruning involves judiciously trimming redundant 
weights, neurons, filters, and layers within large models 
based on CNN architecture. This process mitigates model 
storage requirements and expedites the inference 
phase. Quantization entails converting floating-point 
representations of model parameters and intermediate 
activation values into lower-precision integers or fixed-
point numbers. Quantization not only reduces model 
size but also enhances inference efficiency. Knowledge 
distillation adopts the following two-step approach: 
initially training a large model, known as the teacher 
model; and subsequently constructing a smaller model, 
referred to as the student model, for the same task. 
Transferring knowledge from the teacher model to 
the student model results in a more streamlined archi-
tecture that demands fewer computational resources, 
thereby improving overall inference efficiency [41].

2.3.4 Distributed and parallel training.  Additionally, 
distributed and parallel training assumes a pivotal role 
in expediting the training of large models and process-
ing extensive datasets in medical imaging. Distributed 
training involves partitioning the parameters and train-
ing data of large models into multiple segments, each 
assigned to multiple computers or compute nodes. 
Independently computing updates to the model param-
eters on each node and sharing these updates facilitate 
simultaneous model training across multiple nodes, 
resulting in expedited training speeds [42]. In contrast, 
parallel training, distinct from distributed training 
(Table 1), necessitates a single computer or computer 
node. This method leverages multiple processing units 
within the computer to concurrently process various 
segments of the training task, thereby augmenting 
training speed. When applied to medical imaging data, 
the utilization of distributed and parallel training can 
notably accelerate the delivery of patient health infor-
mation to healthcare professionals [43].

The foregoing information provides a foundational 
understanding of large model architecture, train-
ing methodologies, and optimization techniques. 
Subsequent sections will delve into the research 
advances and practical applications of large models 
within the domain of medical imaging.

3. EXPLORATION OF LARGE MODELS IN MEDICAL 
IMAGE ANALYSIS

3.1 Application examples
3.1.1 Precision in image classification and segmenta-
tion.  The diligent efforts of researchers have yielded 
significant strides in the analysis of medical images 
through the integration of large models. Notably, 
Jin et  al. introduced the RA-UNet model, a sophisti-
cated architecture amalgamating CNNs, residual learn-
ing, and attention mechanisms. This model adeptly 
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achieves precise segmentation of the liver and tum-
ors within three-dimensional computed tomography 
(CT) images. Leveraging datasets, such as Liver Tumor 
Segmentation Challenge (LiTS) and 3DIRCADb for 
model training and evaluation, the study used met-
rics, including the Dice coefficient and Jaccard index, 
to gauge segmentation quality. In liver segmentation, 
RA-UNet attained Dice coefficients of 0.961 and 0.977, 
along with Jaccard indices of 0.926 and 0.977 on the 
two datasets. Furthermore, RA-UNet demonstrated 
robust performance in tumor segmentation across 
both datasets. A noteworthy innovation in this study 
was the pioneering use of an attention-residual mech-
anism for tumor segmentation in three-dimensional 
medical images. The integration of residual modules 
within the model enables adaptive adjustments in 
attention-aware features, thereby amplifying overall 
model performance [44].

3.1.2 Advances in anomaly detection and prediction.  
Large models have showcased remarkable progress in 
the domains of medical image anomaly detection and 
disease prediction. A notable example is the work of 
Brown et al., who harnessed deep CNNs for the auto-
mated diagnosis of “plus lesions” within retinal images 
of premature infants, a distinctive characteristic of 
retinopathy of prematurity (ROP). Given the critical 
importance of early plus lesion detection for effective 
ROP management, and considering the inherent low 
accuracy in clinical diagnosis, this research achieved 
remarkable precision and reproducibility in plus lesion 
diagnosis [45].

Furthermore, Jiang et  al. introduced the “S-net,” 
a tailored deep neural network model designed for 
extracting image features from preoperative CT scans 
of gastric cancer patients to construct predictive mod-
els. These models not only forecast disease-free survival 

and overall survival in gastric cancer patients but also 
identify individuals likely to benefit from postoperative 
adjuvant therapy. The study unveiled a unique image 
feature termed “DeLIS,” which enables accurate prog-
nostication of patient outcomes when integrated with 
clinical factors [46].

3.1.3 Computer-aided diagnosis systems and auto-
mated report generation.  Moreover, the integration 
of large models has propelled the radiology field for-
ward by assisting radiologists in disease diagnosis and 
automating the generation of medical imaging reports. 
Jiang et al. utilized a transformer-based image classifi-
cation model employing optical coherence tomography 
(OCT) images to discern between age-related macu-
lar degeneration (AMD) and diabetic macular edema 
(DME), contributing significantly to the diagnosis of ret-
inal diseases. The trained Transformer model achieved 
an impressive recognition accuracy of 90.9% when 
classifying normal, AMD, and DME OCT images, under-
scoring the potential of Transformer models in comput-
er-aided diagnosis [47].

Furthermore, Yang et  al. introduced an Adaptive 
Multimodal Attention network (AMAnet) designed for 
generating high-quality medical imaging reports, as 
evidenced by experiments conducted on a dataset of 
breast ultrasound images. The outcomes revealed that 
the AMAnet model autonomously produces semanti-
cally coherent and high-quality medical image reports, 
accurately portraying essential local features [48].

3.2 Technical challenges and solutions
3.2.1 Data scarcity and data bias.  While large models 
have demonstrated substantial advantages in medical 
image analysis, several challenges persist. Primarily, 
concerns arise regarding the availability and quality of 
datasets, specifically related to issues of data scarcity 

Table 1  |  Comparison of distributed and parallel training.

Aspect   Distributed training   Parallel training

Concept   Utilizes a network of interconnected computers for 
distributed tasks.

  Employs multiple processors within a single computer for 
concurrent tasks.

Primary Goal   To manage and expedite training with large datasets 
across several machines.

  To optimize and expedite training within the constraints of 
a single machine.

Resource 
Requirements

  Multiple interconnected computers or nodes; network 
bandwidth and latency are critical.

  A computer with multi-core processors; dependent on the 
quality and number of cores.

Data Handling   Implements data or model parallelism across nodes, 
splitting tasks among multiple machines.

  Executes simultaneous training on different parts or 
subsets of data or model within the same machine.

Communication 
Overhead

  Higher due to the need for node synchronization and data 
exchange across the network.

  Lower, as all processes occur within the same physical 
system, minimizing data exchange time.

Scalability 
Potential

  Highly scalable with the ability to add more nodes; 
influenced by network architecture and data strategies.

  Limited to the physical and technical specifications of the 
single computer; can be extended by upgrading hardware.

Operational 
Complexity

  More complex due to coordination, network configuration, 
and data distribution across multiple machines.

  Relatively simpler in setup but may require sophisticated 
parallel algorithms to fully utilize all cores efficiently.
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and data bias. Large models demand considerable 
volumes of data for effective training, yet numer-
ous research studies currently rely on medical imag-
ing datasets that are relatively small in scale, falling 
short of the requirements for large model training. 
Additionally, some diseases exhibit an imbalanced data 
distribution, potentially leading to biased model out-
comes. Furthermore, medical imaging data stems from 
diverse sources, posing challenges in ensuring data 
consistency. However, techniques, such as data aug-
mentation, are presently used to alleviate these chal-
lenges, at least in part [49].

3.2.2 Model interpretability.  Another crucial consider-
ation is the interpretability of the model. The primary 
objective of using large models in medical image anal-
ysis is to support clinical decision-making, necessitating 
a transparent rationale behind every clinical decision. 
However, elucidating the decision-making process in 
large models is often challenging, potentially resulting 
in an inability to rectify errors, posing challenges for 
healthcare professionals and patients.

To address this concern, various techniques exist 
for model interpretation, such as Local Interpretable 
Model-Agnostic Explanations (LIME) and Shapley 
Additive Explanations SHAP). LIME operates by using 
a set of perturbed data around the predictions of the 
original model, subsequently training an interpretable 
model to elucidate the decision-making process of the 
original model. SHAP utilizes game theory concepts to 
consider diverse combinations of features, calculating 
the contribution of each feature to the final prediction. 
This approach aids in comprehending how the model 
arrives at decisions. While both methods offer a degree 
of interpretability, rigorous research is imperative to 
ensure the accuracy and reliability of the results [50].

3.2.3 Computational resources and efficiency.  Mitigating 
the demand for computational resources and minimizing 
energy consumption in large models constitutes a signif-
icant technical challenge. The training of large models 
necessitates substantial computational resources, and 
the escalating demand for computational resources con-
currently amplifies the energy consumption associated 
with training large models.

Current techniques for model compression and accel-
eration, such as model pruning and quantization, can 
partially alleviate the strain on computational resources 
and energy consumption in large models. However, 
addressing this challenge comprehensively requires sus-
tained research efforts [10].

4. FUTURE DIRECTIONS

Given the substantial potential of large models in the 
field of medical image analysis, ongoing research on 
the application in this domain is continually advancing. 
In this section, I will delineate the future directions of 

large models in medical image analysis, encompassing, 
but not limited to, the following aspects:

4.1 Model performance optimization
As the trend toward increasing model scale persists, the 
complexity of large models rises, necessitating greater 
computational resources and energy. The training and 
deployment of large models encounter challenges 
related to inadequate computational resources and 
heightened energy consumption. Identifying model 
optimization and acceleration techniques that diminish 
computational resource requirements and energy con-
sumption is imperative to propel the development and 
application of large models.

4.2 Enhancing model interpretability
While the application of large models in medical image 
analysis brings convenience to physicians and patients, 
the rigorous and specific nature of medical treatment 
mandates a clear rationale for treatment decisions. 
Enhancing the interpretability of large models is essen-
tial, enabling physicians and clinicians to compre-
hend the decision-making process of the models. This 
improvement provides a reliable foundation for large 
model-assisted clinical decision-making. These future 
directions underscore the importance of addressing 
challenges related to model scale, resource utilization, 
and interpretability to unlock the full potential of large 
models in advancing medical image analysis.

4.3 Multimodal medical image analysis
Medical imaging data is diverse, presenting in various 
formats, and large models exhibit the capability to seam-
lessly integrate information from multiple types of med-
ical imaging data. This integration fosters information 
fusion and complementarity between distinct imaging 
modalities, ultimately enhancing diagnostic accuracy.

4.4 Self-supervised and few-shot learning
Advancing the application of self-supervised and few-
shot learning in medical image analysis is crucial for mit-
igating the challenges posed by limited annotated data.

4.5 Automated medical report generation
Automated medical report generation remains a par-
amount focus. The ongoing evolution of large mod-
els will continue to propel the automation of medical 
image report generation, thereby alleviating the work-
load of radiologists.

4.6 Real-time medical image analysis
Real-time analysis and monitoring of medical images 
constitute a pivotal frontier for the future development 
of large models. Exploring the application of large mod-
els in real-time medical image analysis and monitoring is 
anticipated to provide substantial support to healthcare 
professionals and patients alike.
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4.7 Privacy protection
The widespread integration of large models in medical 
image analysis brings forth ethical and regulatory con-
siderations that demand attention. The future trajec-
tory of macro-modeling necessitates stringent privacy 
protection measures in accordance with ethical guide-
lines and regulatory requirements.

5. CONCLUSION

In conclusion, large models have demonstrated substan-
tial advantages in the analysis of medical images, offer-
ing the potential to enhance the precision of disease 
diagnosis and introduce innovative possibilities to the 
field of medical image analysis. However, the applica-
tion of these sophisticated models encounters several 
challenges, including insufficient data, interpretabil-
ity of models, and computational resource demands. 
Researchers have proposed addressing these challenges 
through techniques, such as LIME explanatory modeling 
and model compression and acceleration, which miti-
gate these issues, at least in part.

The evolving landscape of large models continues to 
witness advances, with ongoing efforts focused on opti-
mization, acceleration, and the augmentation of inter-
pretability. Additionally, addressing challenges related 
to the analysis of multimodal medical image data, refin-
ing diagnostic accuracy, automating the generation of 
medical reports, and other dimensions signify the prin-
cipal developmental trajectories for large models in the 
foreseeable future.

In summary, large models possess the robust capac-
ity to conduct accurate and in-depth analysis of medi-
cal images, introducing unprecedented possibilities for 
their application. The existing challenges encountered 
by large models are serving as catalysts for their further 
refinement. Looking ahead, these models are poised to 
exhibit heightened performance in the realm of medi-
cal image analysis, experiencing deeper integration and 
continually charting new developmental pathways for 
the field.
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