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Abstract

Psychiatric disorders exhibit extremely high heterogeneity, thus making accurate diagnosis and timely treatment 
challenging. Numerous neuroimaging studies have revealed abnormal changes in brain functional connectivity 
among patients with psychiatric disorders. To better understand the complexity of these disorders, researchers have 
explored hypergraph-based methods. Using functional magnetic resonance imaging data and hypergraph theory, 
studies have modeled and analyzed brain functional connectivity hypernetworks to classify psychiatric disorders 
and identify associated biomarkers. Furthermore, modeling a subjects-level hypergraph aids in estimating potential 
higher-order relationships among individuals; thus, hypergraphs can be used for classifying psychiatric disorders and 
identifying biomarkers. Recent neuroimaging studies have revealed specific subtypes of psychiatric disorders with 
biological importance. Hypergraph-based clustering methods have been used to investigate subtypes of psychiatric 
disorders. However, limited work has surveyed the applications of hypergraph-based methods in classifying and 
subtyping psychiatric disorders. To address this gap, this article provides a thorough survey, and discusses current 
challenges and potential future research directions in this field.

Keywords: Psychiatric disorders, brain functional connectivity hypernetworks, hypergraph, classification, clustering, 
biomarkers, subtypes

1. INTRODUCTION

Psychiatric disorders substantially affect patients’ qual-
ity of life, comorbid medical conditions, suicide risk, and 
utilization of medical resources. Traditional methods 
of diagnosing and treating psychiatric disorders heav-
ily rely on diagnostic criteria (e.g., DSM-5), medical his-
tory collection, and clinicians’ subjective judgment and 
experience. However, several challenges can lead to mis-
diagnosis, including variability in clinical manifestations 
of the same disorder, overlapping phenomenology and 
genetics among different disorders, comorbidities, and 
high heterogeneity in patient longitudinal trajectories. 
Moreover, traditional methods are not supported by 
objective biological evidence, and do not provide accu-
rate information on physiological indicators and patho-
logical mechanisms. Consequently, understanding of the 
etiology of psychiatric disorders and the development of 
treatments is limited. Therefore, developing objective 

and accurate diagnostic methods is imperative to enhance 
the diagnosis and treatment of psychiatric disorders.

Brain functional connectivity, revealed by functional 
magnetic resonance imaging (fMRI) data, exhibits sig-
nificantly abnormal patterns in patients with psychiatric 
disorders compared with normal controls (NCs) [1-11]. 
These abnormal patterns involve multiple brain regions 
and can affect cognition, emotion, attention, and behav-
ior. Among various neuroimaging techniques, fMRI 
offers a non-invasive means of studying brain function 
with high spatial resolution, and has been widely used 
to detect and characterize the connectivity between 
brain networks or regions that are functionally inter-
connected. Functional connectivity [12-15] refers to the 
temporal dependency of neuronal patterns across ana-
tomically separated brain regions. Analysis of differences 
in functional connectivity patterns between patients 
with psychiatric disorders and NCs through machine 
learning methods may enable subjects classification and 
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provide new insights into disease mechanisms [16-18]. 
Researchers have attempted to integrate machine learn-
ing and data analysis techniques to uncover the global 
alterations and disrupted patterns of brain functional 
connectivity in psychiatric disorders. A major aim has 
been to identify robust biomarkers facilitating compre-
hensive understanding of the neural mechanisms under-
lying these diseases [19-24].

Graph theory has gained substantial attention in 
the field of neuroimaging [25], particularly in the con-
struction of brain functional connectivity networks 
(FCNs) and a subjects-level graph based on functional 
connectivity features for classifying psychiatric diseases 
and identifying biomarkers. The brain is considered a 
complex network comprising dynamically interacting 
neurons or brain regions, wherein network connectiv-
ity signifies the mutual influence between these ele-
ments. Using fMRI data to construct FCNs can reveal 
the functional connections and interactions within the 
brain. Analyzing the network properties and topolog-
ical features aids in comprehensive understanding of 
the pathological mechanisms underlying psychiatric dis-
eases [26, 27]. In FCNs, brain regions are represented as 
nodes, and pairwise connections represent interactions 
between regions. Previous studies have demonstrated 
the universality and analytical value of graph theory in 
investigating brain FCNs [28-30]. The features extracted 
from FCNs have been used to classify the subjects. The 
subjects-level graph is a useful tool for measuring rela-
tionships between subjects and improving classification 
performance. However, both FCNs and subjects-level 
graph are limited in their ability to fully describe the 
complexity of the brain and the underlying relationships 
between subjects, because they can only quantify rela-
tionships between pairs of vertices. In contrast, a hyper-
edge of the hypergraph can connect more than two ver-
tices, thereby enabling capture of more complex data 
correlations. Hypergraphs have been extensively stud-
ied and applied in network analysis, including in node 
classification [31], community detection [32], and link 
prediction [33]. Constructing functional connectivity 
hypernetworks (FCHNs) through hypergraphs enables 
high-order relationships among multiple brain regions 
to be effectively represented, thus providing valuable 
insights into the complexity of the brain. The construc-
tion of a subjects-level hypergraph enables accurate 
identification of potential high-order relationships 
among multiple subjects. Thus, hypergraph-based clas-
sification methods have contributed to deeper under-
standing of individual differences and characteristics of 
psychiatric diseases, enhanced classification accuracy, 
and facilitated the extraction of biological evidence.

The availability of neuroimaging techniques has rev-
olutionized the study of brain mechanisms by allowing 
researchers to use clustering methods to explore biolog-
ically defined subtypes of psychiatric disorders. These 
capabilities have aided in addressing the heterogeneity 
of psychiatric diseases and advancing the development 

of precision medicine in psychiatry. Many studies have 
demonstrated the existence of consistent functional con-
nectivity patterns across subgroups, thus providing fur-
ther support for the subdivision of psychiatric disorders 
into specific subtypes [34-41]. Additionally, graph theory 
approaches have been used to detect transdiagnostic 
biotypes of psychiatric disorders. Du et al. have proposed 
a graph kernel based clustering method for this purpose 
[42]. On the basis of the functional connectivity features 
of resting-state fMRI (rs-fMRI), the method uses the 
graph-based substructure pattern mining (gSpan) tech-
nique [43] to uncover topological information regarding 
functional connectivity. The graph kernel similarity meas-
ure [44] has been used to measure relationships between 
subjects. The hierarchical clustering [45] and normalized 
cut (Ncut) [46] algorithms have also been applied to 
explore different subgroups within schizophrenia (SZ) 
and autism spectrum disorder (ASD). In a study inves-
tigating early onset SZ, Yang et  al. have surveyed 15 
intrinsic connectivity networks (ICNs). The authors used 
a graph-based community detection method to iden-
tify subgroups within this dataset and subsequently 
identified two ICN-based communities with substantial 
heterogeneity, which were associated with the clinical 
diagnosis, or the relative severity of positive and neg-
ative symptoms [47]. Despite growing interest in using 
data-driven approaches to identify subtypes of psychiat-
ric disorders, the current findings exhibit inconsistencies, 
and there are few graph-based or hypergraph-based 
clustering methods for subtyping psychiatric disorders. 
In contrast to graph-based clustering methods, hyper-
graph-based clustering methods have greater potential 
to uncover the underlying data structure. Consequently, 
the latter have garnered considerable attention and are 
being extensively applied, thus presenting a valuable 
opportunity for uncovering subtypes of psychiatric disor-
ders through hypergraph-based clustering methods.

Although hypergraph theory is not new, few articles 
have investigated its applications in classifying and sub-
typing psychiatric diseases. This article has three aims: 
(1) to provide an overview of hypergraph theory; (2) to 
review current studies using hypergraphs for classifying 
psychiatric diseases and detecting biotypes; and (3) to 
discuss current challenges and possible future research 
directions in this field. Although covering all peer-
reviewed studies is impossible, this review provides 
unique perspectives contributing to a more comprehen-
sive understanding of the current state of the field.

2. HYPERGRAPH THEORY

This section introduces hypergraph theory, including the 
basic definitions of the hypergraph, hypergraph con-
struction methods, and hypergraph learning methods.

2.1 Preliminary
An ordinary graph G(V, E; W) consists of a set of verti-
ces V and a set of edges E. V contains n vertices, where 
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V = {v1, v2, …, vn}. Each edge eij ∈ E connects two vertices 
from V. The element Wij of the adjacency matrix W rep-
resents the weight of the edge eij, indicating the rela-
tionship between vertex vi and vj. However, the graph 
is limited in describing the complex structure of data in 
most applications, because it captures only second-order 
relationships.

Hypergraphs, developed as an extension of ordinary 
graphs, capture valuable high-order relationships in 
data. The hypergraph G(V, ℰ, W) consists of a vertex set 
V, a hyperedge set ℰ, and a weight matrix W. Each hyp-
eredge ej ∈ ℰ contains more than two vertices from V. 
The weight matrix W = diag{𝔀(e1), 𝔀(e2), …, 𝔀(e|ℰ|)}, W 
∈ |ℰ|×|ℰ|, preserves the weights of all hyperedges in the 
diagonal positions of the matrix. |ℰ| denotes the number 
of hyperedges. The weight 𝔀(ej) of hyperedge ej indi-
cates its importance in the hypergraph. Generally, the 
hypergraph G can be represented by an incidence matrix 
H = [Hij] ∈ |V |×|ℰ|, where |V | denotes the number of verti-
ces. The (0,1)-incidence matrix illustrates the associations 
between vertices and hyperedges. Figure 1 displays an 
example of a hypergraph represented by a (0,1)-inci-
dence matrix. H can also be a continuous matrix with 
elements ranging from 0 to 1, which provides a more 
detailed representation than the (0,1)-incidence matrix. 
In this case, H represents the probability that each 
vertex belongs to each hyperedge. Correspondingly, 
such a hypergraph is called a probabilistic hypergraph. 
Assigning weights to hyperedges is crucial in constructing 
a hypergraph. A commonly used approach for weight-
ing a hyperedge is calculating the sum of Gaussian ker-
nel-based similarities for all paired vertices within the 
hyperedge. Additionally, a study has explored methods 
for learning the weights of hyperedges [48]. On the 
basis of H and W, the vertex degree of vi and hyperedge 
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hyperedges with the same hyperedge degree d is known 
as a d-uniform hypergraph. Let Dv and De represent the 
diagonal matrices containing the vertex degrees and 
hyperedge degrees, respectively. The hypergraph adja-
cency matrix, calculated as 1 ,T�� eA H D HW  is used to 
represent the high-order relationship between vertices 
of the hypergraph. The element Aij denotes the sum of 
the proportional weight of each hyperedge containing 
vi and vj. Similarly to the graph Laplacian matrix, the 
normalized hypergraph Laplacian matrix is defined as 
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2.2 Hypergraph construction
Constructing a high-quality hypergraph is a complex 
task, because of several factors. First, high-dimensional 
data are subject to the “curse of dimensionality”. 
Second, the data may come from different distribu-
tions; thus, combining them into a hypergraph is chal-
lenging. Third, the data may contain varying levels of 
noise, thereby further complicating the construction 
process. To address these problems, many methods 
for hypergraph construction have been proposed. In 
different application scenarios, carefully choosing the 
hypergraph construction strategy, optimization algo-
rithm, and parameters is crucial to ensure that the 
resulting hypergraph accurately captures the high-or-
der correlations among samples. The main hyper-
graph construction methods are implicit methods and 
explicit methods.

Explicit methods of hypergraph construction are 
designed for data with explicit attribute information, 
such as the color, shape, and texture of visual objects in 
images, or data with network information (e.g., social 
network, reaction network, cellular network, and brain 
network). Because such data might not be available in 
some cases, the scope of application for these methods 
is relatively limited.

Figure 1  |  Example of a hypergraph represented by a (0,1)-incidence matrix. 
The hypergraph G contains a vertex set V = {v1, v2, …, v9}, a hyperedge set ℰ = {e1, e2, e3}, and a weight matrix W. Each hyperedge in ℰ con-
tains more than two vertices. The hypergraph structure is represented by a (0,1)-incidence matrix, wherein rows and columns correspond to 
vertices and hyperedges, respectively. The weight matrix W indicates the importance of all hyperedges in the hypergraph. The weight of each 
hyperedge is located at the corresponding diagonal position of W.
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In contrast, implicit methods of hypergraph construc-
tion are based on the features of samples. Herein, we 
focus on the implicit methods, which can be further cat-
egorized into distance-based methods and representa-
tion-based methods. A detailed review of hypergraph 
construction methods can be found in reference [49].

2.2.1 Distance-based methods for constructing hyper-
graphs.  The distance-based methods [50, 51] rely pri-
marily on neighborhood information within a specific 
feature space to form hyperedges. Two frequently used 
strategies for hyperedge generation are the nearest 
neighbor-based strategy [50] and the clustering-based 
strategy [51]. In the nearest neighbor-based strategy, 
the distances between all paired vertices in the feature 
space are initially computed. Subsequently, the nearest 
neighbors for each vertex (referred to as the center ver-
tex) are identified on the basis of either the k-nearest 
neighbors or ε-ball neighborhood criterion to form a 
hyperedge. In the clustering-based strategy, a hyper-
edge is formed by grouping vertices from the same clus-
ter with a clustering algorithm (e.g., K-means).

In various applications, distance-based methods are 
often considered simple and efficient. However, their 
main limitation is the lack of accuracy in measuring the 
distances between the paired vertices in a certain feature 
space, owing to the presence of noise and data outliers. 
The hyperparameters (i.e., k and ε) significantly affect 
the structure of the hypergraph and consequently the 
performance of hypergraph learning when the nearest 
neighbor-based strategy is used. However, no general 
principle is currently available to guide the selection 
of hyperparameters. Additionally, finding the k near-
est neighbors of each center vertex is costly for large-
scale data. A major drawback with the clustering-based 
strategy is the difficulty in determining the appropriate 
number of clusters, which directly influences the struc-
ture of the hypergraph.

2.2.2 Representation-based methods for constructing 
hypergraphs.  Representation-based methods use data 
reconstruction to construct the hypergraph through 
two steps: representation learning and hypergraph 
construction. Representation learning is first performed 
to map the data to a low-dimensional feature space. 
Subsequently, a hypergraph is constructed according to 
the correlations between samples in the feature space. 
Representative hypergraphs include l1-hypergraph [52], 
elastic net hypergraph [53], and l2-hypergraph [54]. The 
l1-hypergraph is constructed by using a linear regression 
model with l1 regularization term. Specifically, for each 
vertex, the feature vector is linearly combined with the 
feature vectors of the nearest neighbors. The vertices 
corresponding to the non-zero coefficients in the recon-
structed coefficient vector of the vertex, along with 
the vertex itself, form a hyperedge. In contrast to the 
l1-hypergraph, the elastic net hypergraph is constructed 
on the basis of the elastic net model, which combines 

l1-regularization and l2-regularization. The models 
used for constructing the aforementioned hypergraphs 
use the l2-norm to quantify the reconstruction error. 
Therefore, they are both susceptible to the effects of 
sparse reconstruction errors. Additionally, neither linear 
model described above can effectively handle nonlinear 
data. In contrast, the l2-hypergraph model addresses 
these limitations by eliminating sparse noise compo-
nents present in the original data, integrating locality, 
and maintaining constraints within the linear regression 
framework.

Compared with distance-based methods, representation-
based methods are more flexible and adaptive and 
are particularly suitable for datasets with clear clus-
tering structures in lower-dimensional feature space. 
However, a major drawback of representation-based 
methods is their vulnerability to data noise and outli-
ers. Furthermore, on the one hand, if the center vertex 
is represented by all vertices except itself, the compu-
tational cost becomes high. On the other hand, if the 
center vertex is represented by only its nearest neigh-
bors, the resulting hypergraph may not accurately cap-
ture the correlation among samples in the entire data 
distribution.

2.3 Hypergraph learning
Clustering and label propagation of vertices are two 
typical tasks in hypergraph learning. In this section, 
we introduce the hypergraph-based spectral clustering 
method for clustering vertices, as well as the hyper-
graph-based classification method for label propaga-
tion of vertices. A detailed introduction can be found in 
reference [55].

2.3.1 Hypergraph-based spectral clustering.  The hyper-
graph-based spectral clustering method is the most 
commonly used approach for clustering vertices. This 
method partitions vertices into distinct clusters by cap-
turing the complex relationships among the vertices 
in the hypergraph, by using the hypergraph Laplacian 
regularizer. Consequently, the connections among 
vertices in the same cluster are dense, whereas the 
connections among different clusters are sparse. The 
hypergraph Laplacian regularization term, denoted  
 2
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that vertices belonging to the same hyperedge are 
likely to share the same labels. The hypergraph-based 
spectral clustering method can be transformed into 
a real-valued optimization problem by relaxing the 
original hypergraph normalized cut, and it is a gener-
alized eigenvalue problem of the hypergraph Laplacian 
matrix. Specifically, when vertices are clustered into 
C clusters, the optimization problem is transformed 
into finding a C-way partition using multiple eigen-
vectors simultaneously. Currently, the most commonly 
used approach is construction of a matrix using C 
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eigenvectors that correspond to the C smallest eigen-
values of the hypergraph Laplacian matrix. Each col-
umn of the matrix is an eigenvector, and each row is 
considered the representation of the graph vertices 
in a C-dimensional Euclidean space. Subsequently, the 
K-means is applied to the matrix to assign cluster labels 
to the vertices.

2.3.2 Hypergraph label propagation.  The process of 
hypergraph label propagation involves propagating 
label information from labeled vertices to unlabeled 
vertices in a hypergraph. The main objective of hyper-
graph label propagation (i.e., hypergraph-based clas-
sification) is to minimize the hypergraph Laplacian 
regularization term and the empirical loss term. The 
hypergraph Laplacian regularization term is based on 
the assumption that vertices within the same hyperedge 
are likely to have the same labels. The empirical loss 
term represents the sum of the squared errors between 
the predicted label vectors and the initial label vectors 
for all vertices.

Hypergraph label propagation includes transductive 
hypergraph learning and inductive hypergraph learn-
ing. In transductive hypergraph learning, hypergraph 
construction and learning consider both training and 
testing data. However, this method has drawbacks 
including high computational cost and limited scala-
bility for new data. Inductive hypergraph learning uses 
only labeled data for constructing a hypergraph and 
acquiring a projection matrix. Specifically, the projec-
tion matrix is obtained by projection of the original fea-
ture vectors of the labeled data onto the label vectors 
during training. Subsequently, the projection matrix 
is used to project the original feature vectors of unla-
belled data to the subspace spanned by it to obtain the 
label vectors of unlabeled data during testing. Either 
l2-regularization or l2,1-regularization can be imposed to 
enforce the constraint on the projection matrix. In com-
parison to transductive hypergraph learning, inductive 
hypergraph learning is more efficient and effective in 
processing emerging data, and thus is suitable for large-
scale data. Nevertheless, it poses a challenge of low clas-
sification accuracy due to insufficient training data.

3. APPLICATION OF HYPERGRAPHS IN 
CLASSIFYING PSYCHIATRIC DISORDERS

The applications of hypergraphs in the classification of 
psychiatric disorders and biomarker identification are 
based on neuroimaging features and hypergraph-based 
classification methods, thus providing clinicians with val-
uable aids to improve diagnostic accuracy and personal-
ize treatment. Hypergraph-based classification methods 
include FCHNs-based classification methods and sub-
jects-level hypergraph-based classification methods.

In FCHNs-based classification methods, the FCHN of 
each subject represents the brain FCHN in the form 
of a hypergraph. This hypernetwork consists of nodes 

representing specific brain regions and hyperedges con-
taining multiple nodes representing interactions among 
related brain regions. The construction of discriminative 
FCHNs is crucial for classification. With the aid of pattern 
recognition and machine learning techniques, such as 
support vector machine (SVM) and deep learning mod-
els, the subjects can be effectively classified according 
to the higher-order features extracted from constructed 
FCHNs. In addition, the biomarkers associated with psy-
chiatric disorders can be identified.

In subjects-level hypergraph-based classification 
methods, a subjects-level hypergraph is used to capture 
high-order relationships among subjects. In the hyper-
graph, each node represents an individual subject, and 
each hyperedge contains multiple subjects with high cor-
relation among them. The subjects-level hypergraph can 
uncover the underlying relationships among subjects for 
performing the classification of subjects. These meth-
ods have the potential to enhance classification per-
formance and enable more accurate identification of 
relevant biomarkers of psychiatric disorders. These two 
types of methods are described in detail below.

3.1 Functional connectivity hypernetworks-based 
classification
3.1.1 Node definition in a functional connectivity hyper-
network.  The definition of nodes substantially affects 
the construction and subsequent analysis of FCHNs. 
Previous node definition methods in FCNs are divided 
primarily into three categories: structural prior template 
information-based methods, functional template infor-
mation-based methods, and data-driven-based meth-
ods. All these methods can be used for defining the 
nodes in FCHNs.

Among the structural prior template information-
based methods, the automatic anatomical labeling tem-
plate [56] is the most prevalent. This method uses brain 
imaging data from a specific population and defines 
structurally connected regions as nodes. Each node is 
characterized by an average time series of the relevant 
brain region. Because structurally close regions might 
not necessarily share the same function, these methods 
may not be appropriate for analytical tasks regarding 
brain function.

Functional template information-based methods are 
focused on accurately identifying and locating functional 
regions in the brain. Fan et al. have introduced a novel 
functional template [57] that combines data from vari-
ous imaging techniques; considers spatial structural and 
functional heterogeneity information; and repartitions 
the brain into 210 cortical and 36 subcortical subregions. 
Similarly to the structural prior template information-
based methods, each node of FCHNs constructed with 
these methods is characterized by the average time series 
of the corresponding brain region. Using these methods 
in FCHNs improves the performance in examining brain 
disorders characterized by functional changes.
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Data-driven methods define nodes in terms of the 
data itself. Among them, independent component 
analysis (ICA) [58], group ICA (GICA) [59-61], and group 
information-guided ICA (GIG-ICA) [62] are widely used. 
On the basis of the assumption that the spatial informa-
tion of brain functional networks is independent, these 
methods take the activation area in each network and 
the extracted time series corresponding to each network 
as a node and its feature vectors, respectively. Notably, 
GIG-ICA, proposed by Du and Fan, uses multi-objective 
function optimization to emphasize the independence 
of subject-specific independent components and the 
correspondence of independent components across 
different subjects, thus increasing the accuracy of the 
obtained independent components and time series 
[63-65]. Many researchers have used GIG-ICA to extract 
network features in their work and have achieved 
high disease classification accuracy [66-79]. In addition, 
the method performs well in removing artifacts [80, 
81]. Du et  al. have also proposed a framework called 
NeuroMark [82], which provides a common node defini-
tion for big data analysis and has been widely applied to 
explore the association between symptom severity and 
functional connectivity in patients with schizophrenia 
[83], to investigate sex-specific differences in brain func-
tional network connectivity by using ICNs [72, 84], and 
to evaluate the association between dynamic functional 
network connectivity and the risk of Alzheimer’s disease 
(AD) [85-87]. More recently, Du et  al. have proposed 
a splitting-merging assisted reliable ICA (SMART ICA) 
method [88, 89] that obtains more reliable nodes by 
clustering the multi-order ICA results. The method auto-
matically performs clustering on the independent com-
ponents obtained under different parameter settings 
(i.e., the number of components), thereby resulting in 
functional networks with high reliability under different 
settings. A MATLAB toolbox called Intelligent Analysis 
of Brain Connectivity integrates GIG-ICA, NeuroMark, 
and SMART ICA [90], and can be downloaded at www.
yuhuidu.com. Using these methods to define the nodes 
of FCHNs helps researchers mine more abundant and 
accurate features from FCHNs, thereby improving the 
classification performance of psychiatric diseases.

3.1.2 Connectivity estimation in functional connectivity 
hypernetworks.  Compared with traditional FCNs, 
FCHNs allow capture of more complex interactions 
between brain regions, thus enhancing understanding 
of psychiatric disorders. In FCHNs, the degree of syn-
chronization of functional activities among multiple 
nodes from the same hyperedge is high. As described in 
Subsection 2.2, the two main types of methods for con-
structing FCHNs are distance-based methods and rep-
resentation-based methods. Distance-based methods 
construct FCHNs by calculating the distances or correla-
tions of the time series of all paired nodes and finding 
the nearest neighbors of each center vertex for form-
ing hyperedges. The representation-based methods 

extensively use sparse representation models to uncover 
the relationships among nodes within the latent feature 
space to form hyperedges. These methods help provide 
accurate FCHNs and eliminate insignificant and spurious 
connectivity. Therefore, more accurate features can be 
extracted from FCHNs for subsequent analysis. Specific 
hypergraph construction methods are described in 
Subsection 2.2.

3.1.3 Classification.  Recent studies have used hyper-
graphs to develop FCHNs for improving the classification 
accuracy of psychiatric disorders and identifying bio-
markers associated with disease pathology. Specifically, 
these studies have used original time series from rs-fMRI 
or time series derived from data-driven methods. FCHNs 
are constructed by using either the k-nearest neighbor 
strategy or sparse linear representation models (e.g., 
LASSO and its extensions). Features extracted from these 
FCHNs are fed into a classifier (typically SVM) to clas-
sify the subjects. For example, studies have constructed 
FCHNs and used a multi-task feature selection method 
to jointly identify the most informative features for clas-
sifying mild cognitive impairment (MCI) and attention 
deficit hyperactivity disorder (ADHD) [91, 92]. Another 
study has constructed FCHNs by using a sparse linear 
regression model combining brain region features and 
subgraph features. Multi-kernel SVM has been used 
to classify patients with AD and NCs [93]. Subsequent 
studies have improved these methods and proposed 
multimodal hypernetwork modeling techniques that 
leverage the richer information present in multimodal 
data [94-96]. Moreover, hypergraphs have been used 
to identify connectivity relationships and optimize the 
weights of hyperedges, to better represent the relation-
ships among brain regions [97, 98]. To address the limi-
tation of the LASSO model in explaining the grouping 
effect of FCHNs, Guo et al. have used the elastic net and 
GroupLASSO model to construct hypernetworks, then 
applied them to classify patients with depression and 
NCs [99].

Recently, progress has been made in analyzing FCNs 
by using hypergraphs combined with deep learning 
models. Ji et  al. have introduced a hypergraph atten-
tion network called FC-HAT and successfully applied it 
to classify functional brain networks [100]. By optimiz-
ing the dynamic hypergraph generation and attention 
aggregation stages, FC-HAT can be used to dynami-
cally construct FCHNs, update the hypernetworks and 
node embeddings, and extract abnormal connectivity 
patterns and brain regions, thus aiding in identifying 
biomarkers for ASD and ADHD. Additionally, Bi et  al. 
have proposed a generative adversarial network called 
HSIA-GAN, which aggregates hypergraph structural 
information for automatic classification of subjects and 
feature extraction [101]. Furthermore, Banka et al. have 
incorporated hypergraph theory into adversarial deep 
learning to propose a hyperconnectome autoencoder 
framework to jointly learn the deep latent embeddings 
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of subject-specific multi-view brain graphs. This method 
can uncover differences in brain states between AD and 
MCI [102]. In addition, Pan et al. have proposed a novel 
hypergraph generative adversarial network to exploit 
the complementary information between rs-fMRI and 
diffusion tensor imaging, thereby improving classifica-
tion performance and identifying discriminative brain 
regions for AD [103]. Zuo et al. have proposed a mul-
timodal representation learning and adversarial hyper-
graph fusion framework, and successfully used it to 
diagnose AD from complete trimodal images [104].

These studies have demonstrated the potential of 
FCHN-based classification methods in the classification 
of psychiatric diseases and the identification of bio-
markers, thereby providing useful directions and inspi-
ration for future research.

3.2 Subjects-level hypergraph-based classification
The subjects-level hypergraph-based classification 
methods explore the potential high-order relationship 
among subjects by using the hypergraph learning model 
to classify psychiatric diseases. Zu et al. have proposed 
an approach using hypergraph learning to identify 
subnetwork biomarkers in two different populations: 
patients with ASD or ADHD. In that study, the vertices 
in the hypergraph are represented as subjects, and the 
subnetworks with similar functional connectivity pat-
terns among subjects are encoded by using hyperedges. 
Additionally, the weights of the hyperedges are jointly 
optimized. This approach overcomes the limitations of 
previous simple pairwise connectivity models, which are 
unable to capture complex connectivity patterns among 
more than two brain regions that form connected sub-
networks [105]. Moreover, studies have introduced the 
hypergraph Laplacian regularizer in multi-task feature 
selection models to offer more complementary infor-
mation by using multiple imaging data. The k-nearest 
neighbor strategy has been used to construct a hyper-
graph, and a multi-kernel SVM has subsequently been 
applied to combine multi-modal features for the auto-
matic classification of AD and MC [106, 107]. Gao et al. 
have constructed a hypergraph through a star expan-
sion method for four MRI sequences, and estimated the 
correlations among subjects through a semi-supervised 
centralized learning approach. In that study, MCI diag-
nosis was considered a binary classification task within 
a hypergraph structure [108]. Liu et  al. have proposed 
a view-aligned hypergraph learning method that explic-
itly models the coherence between views, and applied 
it to three data modalities for the classification of AD/
MCI. The method can achieve feature integration in each 
view space by constructing hypergraphs based on sparse 
representation [109]. Zhang et al. have also proposed a 
multimodal data fusion algorithm based on hypergraph 
manifold regularization, which considers similarity rela-
tionships within and across modalities to integrate imag-
ing and genetics datasets from SZ [110]. That study not 
only has enhanced the accuracy of classification but also 

has discovered notable correlations among risk genes, 
environmental factors, and abnormal brain regions.

The combination of deep learning models and hyper-
graph learning has been widely used in the classification 
of psychiatric disorders. Lostar et  al. have introduced 
the hypergraph U-Net to acquire a low-dimensional 
representation with high-order subjects information 
by using the hypergraph structure, and have validated 
the method on brain network data from patients with 
autism and dementia [111]. In that study, brain maps 
of the subjects, rather than brain regions, were used as 
the nodes of the subjects-level hypergraph. In another 
study, Madine et al. have proposed a hypergraph neural 
network approach for ASD diagnosis, by using unsu-
pervised multi-kernel learning to uncover latent rela-
tionships among subjects, thus facilitating the learning 
process. The study revealed that the right hemisphere 
consistently leads to enhanced classification accuracy 
between ASD and NCs [112]. Zhu et al. have proposed 
a novel approach for identifying subjects with MCI and 
fine-grained MCI by using dynamic hypergraph rea-
soning [113, 114]. The method is supported by a semi-
supervised framework and is aimed at overcoming the 
problem of inconsistency between the constructed 
hypergraph structure and clinical labels/scores. This 
method incorporates the complex and complemen-
tary relationships of multimodal imaging data into the 
hypergraph inference processes. Aviles-Rivero et al. have 
proposed a semi-supervised hypergraph framework spe-
cifically for diagnosing AD [115]. The framework con-
structs a robust hypergraph that preserves the semantics 
of the data through a dual embedding strategy, thereby 
increasing prediction accuracy by using a dynamically 
tuned hypergraph diffusion model. However, the above 
methods based on deep learning currently rely heavily 
on large datasets, thus presenting a challenge when 
limited brain imaging data are available. Additionally, 
most brain imaging datasets are sourced from various 
sites and exhibit heterogeneity, which can affect the 
accuracy of deep learning models in classification tasks. 
Furthermore, although deep learning models demon-
strate excellent feature learning abilities, the interpre-
tation of the learned features remains limited, thus 
restricting analysis and understanding of brain diseases.

Currently, two major challenges persist in hyper-
graph-based classification: model reproducibility and 
interpretability. Addressing these challenges is crucial 
to ensure the confidence of identified biomarkers. An 
ideal model consistently produces similar results and 
offers explanations. Therefore, in our future research, 
we aim to design reproducible and interpretable models 
to gain a better understanding of psychiatric disorders.

4. APPLICATION OF HYPERGRAPHS IN SUBTYPING 
PSYCHIATRIC DISORDERS

Traditional classification studies of psychiatric disorders 
have often overlooked the heterogeneity in psychiatric 
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disorders. Thus, novel imaging-based methods that tran-
scend traditional classifications in identifying biologi-
cally homogeneous subgroups of psychiatric disorders 
must be developed. This subtyping analysis approach 
not only enhances the understanding of the neurobi-
ological heterogeneity of psychiatric disorders but also 
facilitates the advancement of personalized medicine. 
Clustering methods using brain functional connectivity 
features have been extensively used to uncover subtypes 
of disorders. However, previous studies have focused on 
examining the relationships between pairs of subjects 
and have neglected the potentially complex relation-
ships among multiple subjects.

Because hypergraphs can effectively model high-
order relationships in data, hypergraph-based cluster-
ing methods are important in studies of transdiagnostic 
biotype identification, and can aid in exploring more 
reliable biotypes for psychiatric disorders. Specifically, 
the functional connectivity features of fMRI data can be 
used to construct a subjects-level hypergraph by using 
distance-based or representation-based methods. In 
the hypergraph, each vertex represents a subject, thus 
enabling exploration of high-order relationships among 
subjects. Du et al. have proposed a hypergraph cluster-
ing approach to explore subtypes of bipolar disorder 
with psychosis and SZ [116]. In that study, a hyperedge 
sampling method was used to extract high-order simi-
larities among subjects, and community detection was 
used to regroup subjects; subsequently, two reliable 
biotypes were identified between subjects with bipolar 
disorder with psychosis and subjects with SZ. The hyper-
graph clustering-based method has provided a new 
research avenue for transdiagnostic biotype detection.

Although hypergraph-based clustering methods have 
been extensively studied in various fields, their applica-
tion to transdiagnostic biotype detection has been rela-
tively limited. In the future, by using hypergraph-based 
clustering methods, previously hidden evidence of new 
biotypes may be uncovered in complex data.

5. DISCUSSION AND OUTLOOK

Functional connectivity plays a crucial role in under-
standing psychiatric disorders. Numerous studies have 
identified abnormal brain functional connectivity pat-
terns in psychiatric disorders. Hypergraphs are increas-
ingly used to classify psychiatric diseases and identify 
biotypes. However, substantial challenges remain in 
translating these findings into clinical practice. Below 
we discuss insights into future issues worthy of explora-
tion in this area.

Constructing more precise and flexible hypergraphs 
and effectively applying them to neuroimaging data 
is a promising area of future research. Neuroimaging 
data are often high-dimensional and noisy, thus posing 
challenges in capturing the underlying relationships 
within the data. Existing hypergraphs often remain 
fixed throughout the learning process, and the initial 

hypergraph may contain numerous noisy connections 
that hinder the learning process. Developing hyper-
graphs tailored to the data and specific downstream 
tasks can potentially enhance hypergraph performance 
for effective analysis and understanding of neuroimag-
ing data.

Hypergraph models face challenges regarding repro-
ducibility. The primary aim of using hypergraph models 
in clinical settings is to ensure that these models can con-
sistently detect clinically relevant biomarkers. However, 
current models are highly sensitive to parameters, and 
the validation process lacks robustness, thus potentially 
explaining why the reproducibility has been poor. To 
address these shortcomings, a possible future strategy 
is developing parameter-free models based on data-
driven approaches. Additionally, models learned from 
multiple datasets exhibit poor reproducibility. A poten-
tial solution is to enhance model performance and to 
detect more powerful biomarkers by using multi-view 
fusion technology to provide the model with valuable 
complementary information. Additionally, increasing 
the sample size would also contribute to improving the 
reproducibility of the model.

Multimodal brain imaging data provide valuable 
complementary information for hypergraphs applied 
to classifying psychiatric disorders and identifying sub-
types. These data can reveal complex changes that 
occur across different modalities and are associated 
with the underlying pathology of psychiatric disorders. 
By incorporating multimodal data from neuroimag-
ing, genetics, and behavioral responses, recent studies 
have improved the accuracy of classifying psychiatric 
disorders and identifying robust diagnostic markers. 
However, research using multimodal data for hyper-
graph-based classification of psychiatric disorders and 
subtype identification remains limited. By developing a 
unified framework that jointly learns an optimal hyper-
graph based on multimodal data, the unique and com-
plementary information provided by different modali-
ties can be fully exploited.

A deeper understanding of the dynamics and true 
evolution of brain FCHNs will be beneficial in the study 
of psychiatric disorders. The successful application of 
hypergraphs in FCHNs is advantageous, owing to its 
natural compatibility with the architecture of brain net-
works. However, brain connectivity is often disrupted by 
various factors, such as experience, aging, and disease, 
thus leading to incomplete or uncertain construction of 
brain FCHNs. Dynamic connectivity of brain FCHNs could 
help better understand the changes of brain functional 
connectivity in psychiatric disorders, allowing for precise 
biomarkers.

The combination of deep learning models and 
hypergraph learning holds promise in the classification 
of psychiatric disorders. Deep learning models have 
advantages over traditional machine learning methods, 
because they can automatically learn features from data 
in a data-driven manner and represent learned decision 
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rules through multi-layer nonlinear structures [17, 117]. 
However, deep learning methods currently encounter 
challenges, such as overfitting due to limited sample 
size and interpretability, inadequate feature learning, 
and noise interference. In future research, addressing 
these issues will be a primary focus to advance the field 
of psychiatric diagnosis.

The use of hypergraph-based clustering methods 
in accurately mining potential relationships among 
subjects and identifying biotypes of psychiatric disor-
ders is an area that has yet to be thoroughly investi-
gated. In the field of machine learning, hypergraph 
models have been shown to be effective in modeling 
structures and relationships in real-world data. Despite 
extensive research on hypergraph-based clustering 
methods, their application in identifying subtypes of 
psychiatric diseases remains limited. This scarcity pre-
sents ample opportunities for future research and 
development.

6. CONCLUSION

Hypergraphs have the advantage of accurately mining 
potential high-order relationships among brain 
regions or subjects for the construction of FCHNs or a 
subjects-level hypergraph. Hypergraphs enable com-
prehensive understanding of the individual differ-
ences and characteristics of psychiatric disorders, and 
exploring the underlying biological basis. Despite the 
development and application of numerous classifi-
cation and clustering methods for the diagnosis of 
psychiatric diseases, studies based on hypergraphs, 
particularly regarding transdiagnostic biotype detec-
tion of psychiatric diseases, remain limited. Herein, we 
reviewed hypergraph theory, investigated its applica-
tions in the classification of psychiatric diseases and 
biotype identification, and discussed current challenges 
and potential future research directions in the field. In 
the future, in-depth research in this field is expected to 
offer more universal, accurate, and reliable methods 
and insights.
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