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ABSTRACT

Verbal communication is the dominant form of self-expression and interpersonal communication. Speech is a considerable obstacle for individuals 
with disabilities, including those who are deaf, hard of hearing, mute, and nonverbal. Sign language is a complex system of gestures and visual signs 
facilitating individual communication. With the help of artificial intelligence, the hearing and the deaf can communicate more easily. Automatic 
detection and recognition of sign language is a complex and challenging task in computer vision and machine learning. This paper proposes a novel 
technique using deep learning to recognize the Arabic Sign Language (ArSL) accurately. The proposed method relies on advanced attention mecha-
nisms and convolutional neural network architecture integrated with a robust You Only Look Once (YOLO) object detection model that improves the 
detection and recognition rate of the proposed technique. In our proposed method, we integrate the self-attention block, channel attention module, 
spatial attention module, and cross-convolution module into feature processing for accurate detection. The recognition accuracy of our method is 
significantly improved, with a higher detection rate of 99%. The methodology outperformed conventional methods, achieving a precision rate of 0.9 
and a mean average precision (mAP) of 0.9909 at an intersection over union (IoU) of 0.5. From IoU thresholds of 0.5 to 0.95, the mAP continuously 
remains high, indicating its effectiveness in accurately identifying signs at different precision levels. The results show the model’s robustness in accu-
rately detecting and classifying complex multiple ArSL signs. The results show the robustness and efficacy of the proposed model.
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INTRODUCTION

Individuals with disabilities and underrepresented minority 
populations have faced enduring societal marginalization. 
Despite notable progress in integrating those with hearing 
impairments into society, there still exists a persistent barrier 
to properly connecting with other community members. The 
predominant means of communication within many deaf 
communities is the sign language (Leigh et al., 2022; Alyami 
et al., 2023). Sign language facilitates communication using 
manual gestures, oral movements, bodily positions, and 
facial cues. Each symbol can denote a single letter, a numer-
ical value, or even an entire expression. Numerous sign lan-
guages exist globally; however, their quantity remains lower 
than spoken languages (Strobel et al., 2023a, b). Like other 
languages, sign languages continuously evolve and adhere to 
linguistic laws. However, they do not possess standardized 
written forms. Sign languages and spoken languages are fun-
damentally distinct. American Sign Language (ASL) does 
not precisely represent spoken American language. Many 
individuals with normal hearing lack interest in acquiring 
sign language skills, presenting difficulties communicating 
with sign language users. Deaf individuals face an additional 

obstacle, namely the lack of support for sign language in 
most communication devices (Alaghband et al., 2023).

Hence, it is crucial to devise a technological solution that 
improves communication between individuals with normal 
hearing and the deaf community. The proposed solution 
should possess the ability to understand sign language and 
autonomously convert it into spoken or written text. Prior 
research on sign language recognition has utilized diverse 
methodologies. The You Only Look Once (YOLO) technique 
has excellent potential for sign language recognition. YOLO 
object identification models are used in several fields, such 
as surgical procedures for identifying organ locations, driv-
erless vehicles, and detecting face masks. This technology 
has proven beneficial in various practical scenarios (Sarda 
et al., 2021; Wang et al., 2021; El-Alfy and Luqman, 2022).

In visual applications (Wu et  al., 2022), convolutional 
neural networks (CNNs) are essential components of mod-
els like YOLO, which employ a three-layered methodology. 
The convolutional layer utilizes filters to extract crucial 
characteristics from images. By reducing the dimensions 
of these feature maps, the pooling layer effectively controls 
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overfitting. The data pass through the fully connected layer, 
transforming into accurate medical imaging recognition. The 
remarkable increase in precision and efficiency in diagnos-
tic imaging, achieved by implementing CNN architecture, 
truly showcases artificial intelligence’s powerful influence 
in visual domains (Mustafa and Nsour, 2023).

In computer vision (CV), adding attention mechanisms 
to CNNs has proved to be a breakthrough, leading to sig-
nificantly enhanced performance demonstrated by notable 
advancements observed over the last decade (Mammeri 
et al., 2023). CNN attention mechanisms adeptly filter out 
extraneous details and home-specific targets or regions 
within intricate visual surroundings, which inspire humans 
to process visual information. This mimics our instinctual 
tendency to focus on critical areas when processing visual 
scenes. In recent years, attention mechanisms have made 
incredible strides in improving our ability to identify crucial 
image elements. By dynamically adjusting the importance 
of various channels and spatial attention mechanisms have 
significantly enhanced numerous CV applications, such as 
object detection and image classification. As a result, these 
tasks can now be performed more efficiently and effectively 
(Hussain et al., 2020; Ji et al., 2021).

Recent research has enhanced the comprehension of atten-
tion mechanisms in CV. These technologies are capable of 
dynamically and automatically evaluating the importance of 
data. Two types of attention mechanisms exist: soft and com-
plex (Guo et al., 2022). Soft attention calculates a weighted 
average to generate the gradient context vector and may be 
used with traditional backpropagation training. On the other 
hand, intricate attention relies on reinforcement learning 
and employs stochastic inputs, which is not differentiable. 
Significantly, advancements such as HiLo attention have 
surfaced, effectively handling data with high and low fre-
quencies to provide more refined processing. Nevertheless, 
defining “attention” in these systems continues to be intri-
cate, with ongoing discussions regarding its essence, particu-
larly when compared to human visual attention (Yang, 2020; 
Niu et al., 2021).

Due to the ongoing difficulties in communication experi-
enced by people with hearing impairments, there is a crucial 
requirement for a precise and effective technical solution to 
facilitate smooth communication among the deaf community 
and individuals with normal hearing. Our proposed method 
utilizes state-of-the-art developments in CV and deep learn-
ing (DL) to improve sign language identification signifi-
cantly. Utilizing CV and machine learning (ML) provides 
deaf individuals with more efficient communication options 
by automatically converting sign language into spoken or 
written text. In our proposed method, we utilized the detec-
tion model for Arabic Sign Language (ArSL) detection using 
DL. The significant contributions of our proposed method 
are as follows:
•	 The deep CNN-based features extractor has been modi-

fied using a self-attention module block.
•	 The attention module consists of features compression 

and decompression, with channel and spatial attention 
modules utilized to enhance feature representation.

•	 Additionally, a cross-convolution module with a con-
stant vector parameter is used in the feature extractor 

for two-way correlated matrices and complex feature 
derivation.

•	 Overall, the model is fine-tuned to achieve robust recog-
nition performance.

This paper is organized as follows. The Related Work sec-
tion provides an extensive review of current techniques in the 
field. The Proposed Method section looks at the fundamental 
methodology of ArSL, discussing its main principles. The 
Results section covers the research’s implementation and 
simulation. The Discussion section comprises the discussion 
and comparison, while the Conclusion section covers the 
conclusion of the proposed work.

RELATED WORK

The incorporation of gesture recognition technology in the 
ArSL domain has represented a notable advancement in 
enabling communication between those with speech impair-
ments and computer systems (Aly and Aly, 2020; Alnabih 
and Maghari, 2024). This technological innovation is cru-
cial for identifying and comprehending ArSL, which pos-
sesses a distinct repertoire of gestures and facial expressions 
(Boukdir et al., 2021; Shanableh, 2023). Utilizing these ML, 
DL, and CV reduces communication barriers and increases 
their ability to participate in various professional and social 
settings. Integrating the automatic sign language recogni-
tion system into ArSL has many benefits. It also shows the 
importance of catering technology designed for every coun-
try, emphasizing linguistics and culture (Kahlon and Singh, 
2023; Renjith et al., 2024).

However, there is a lack of a comprehensive database on 
only fingerspelling, isolated signs, and continuous signs, 
which may be a challenging issue for the advancement of 
sign language recognition technology (Sharma et al., 2023). 
The sign language recognition system on manual alphabets 
has an image accuracy rate of 93.55% by using an adaptive 
neuro-fuzzy inference system (ANFIS) and feature vector 
extraction (Al-Jarrah and Halawani, 2001) from the ArSL 
dataset; The ANFIS outperforms the polynomial classifier 
due to a lack of consistency in the training data, whereas 
the training data for the ANFIS are more consistent and 
comprehensive.

Žemgulys et  al. (2020) introduced a novel technique to 
accurately recognize hand signals given by basketball refer-
ees from game footage. Our method exploits the performance 
of image segmentation algorithms and combines the features 
of histogram of oriented gradients (HOG) and local binary 
patterns (LBP). By using LBP and a support vector machine, 
the experimental results showed that the proposed technique 
can achieve a 95.6% success rate. Vaitkevicius et al. (2019) 
used a Leap Motion device to accurately track our hand and 
finger movements. The innovative hidden Markov classifi-
cation algorithm detects several gestures. Motion detection, 
gesture recognition, and data cleansing are utilized to assess 
the system’s performance. The presented technique was also 
validated using words per minute and the miss rate using the 
minimum string distance.
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CNN combined with long short-term memory (LSTM) 
or bidirectional LSTM has become a popular technique of 
sign language recognition (Kumari and Anand, 2024). A 
highly effective method of detecting Indian and Russian 
sign languages accurately using deep neural networks and 
CV is proposed in this paper. It can ideally detect the mean-
ing of the languages’ manual and non-manual components. 
The spatial information is extracted by the two-dimensional 
convolutional neural network (2D-CNN), which results in 
92% accuracy by the two-dimensional convolutional recur-
rent neural network (2D-CRNN) and 99% accuracy by the 
3D-CNN (Rajalakshmi et al., 2023). Researchers obtained a 
92% accuracy rate by utilizing a 2D-CRNN and a 99% accu-
racy rate with a 3D-CNN. These models were tested on a 
dataset consisting of 224 videos, where 5 signers performed 
56 distinct signs (Boukdir et al., 2021).

The study conducted by Attia et al. (2023) aims to increase 
sign language identification accuracy by developing three 
advanced DL models utilizing YOLO5x with attention mod-
ule. These models will recognize alphabetic and numeric hand 
movements by design. The models had 98.9% and 97.6% 
accuracies on the MU HandImages ASL and OkkhorNama: 
BdSL datasets, outperforming earlier models. Optimization for 
real-time ASL recognition makes these models ideal for edge-
based solutions. The YOLOv7 algorithm is utilized (Mazen 
and Ezz-Eldin, 2024) to detect ArSL signs. The YOLOv7 
medium model outperformed YOLOv5 variants regarding 
mean average precision (mAP) ratings. More precisely, the 
YOLOv7 medium model scored 0.8306 for mAP@0.5:0.95. 
Additionally, the YOLOv7 tiny model fared better than the 
YOLOv5 small and medium models. The YOLOv5 tiny 
model achieved the lowest scores, with an mAP of 0.9408 at 
an intersection over union (IoU) threshold of 0.5 and an mAP 
of 0.7661 within the IoU range of 0.5-0.95.

Luqman (2023) presented the ArabSign dataset compris-
ing 9335 video clips from six persons. They also developed 
an encoder–decoder model for recognizing sign language 
sentences and achieved an average word error rate of 0.50. 
Alyami et al. (2023) introduced a transformer model based 
on stance, tailored explicitly for the KArSL-100 dataset. 
This dataset consists of 100 classes focused on recognizing 
sign videos. The model attained a 68.2% accuracy rate while 
using a signer-independent mode. The techniques entail thor-
ough preprocessing, complex structures, and the utilization 
of Kinect sensors. Although they demonstrate high perfor-
mance on tiny datasets, their intricate nature and dependence 
on sophisticated networks and sensors may constrain their 
practical implementation.

PROPOSED METHOD

Our presented strategy improves a deep CNN model 
designed exclusively for recognizing ArSL. Expanding on 
the YOLO framework, we have improved the main struc-
ture and the detection component by utilizing advanced 
methods like modified layers and attention processes to 
achieve better performance. The core of our technique lies 
in including attention modules in the feature extraction pro-
cess. These modules consist of channel and spatial attention 
mechanisms, improving feature representation by selectively 
emphasizing essential parts of the input data. Furthermore, 
we provide a new cross-convolution module specifically 
built to efficiently handle matrices with two-way correlation. 
This module utilizes a shared parameter vector across all 
components, which enables concentrated convolution opera-
tions. The model architecture of ArSL is shown in Figure 1, 
which includes the backbone and detecting head.

Figure 1:  Proposed backbone and detection head. Abbreviations: CBAM, Convolutional Block Attention Module; SPPF, Spatial 
Pyramid Pooling Fusion.
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Dataset

We utilized the Arabic Sign Language Letters dataset 
(ArSL21L) to validate the robustness of our proposed tech-
nique. ArSL is a challenging and benchmark dataset for sign 
language detection and recognition. The dataset contains 
14,202 images, each representing one of the 32 unique letter 
signs in ArSL. Overall, 52 participants posed with different 
ArSL signs in different scenarios and conditions. Sample 
images from the dataset are visualized in Figure 2. All the 
signs have been captured in different conditions with varia-
ble light, angle, and saturation. Different environments make 
accurate sign detection and recognition a challenging task 
in the domain of CV. The dataset is publicly accessible and 
available in Mendeley’s repository (Batnasan et al., 2022).

CNN-based detection model

Due to its incredible robustness and accuracy, one particularly 
prominent method in real-time CV applications is YOLO. 
This method relies on a neural network to quickly evaluate the 
input and identify objects. YOLO consumes the input image 
through a predetermined grid and assesses the chances of 
the target object that resides in each grid section. Essentially, 
YOLO performs regression to predict the image categories 
and positions precisely all at once (Redmon et al., 2016).

An ordinary YOLO model overlays an s × s grid on the 
image. Every grid cell predicts B bounding boxes and their 
confidence ratings, which indicate the likelihood of an object 
being there. The grid cell that detects an object’s center 
detects it, whereas the other cells can ignore it. This method 
enhances item detection by precisely locating and classify-
ing items using cell grids and bounding box estimations. The 
confidence score of the predicted is expressed in Eq. 1.

= × actual,estimatedScore_confidence prob(obj) IoU � (1)

The object’s presence probability, represented as prob(obj), 
ranges from 0 to 1. Here, 0 indicates the object is absent, and 1 
indicates it is likely present. IoU

actual,estimated
, which is calculated 

using the IoU measure, compares the estimated bounding box 
to the actual (ground truth) bounding box.

Five components define a bounding box: a, b, c, d, and 
confidence score. a and b represent the bounding box’s 
center coordinates, while c and d represent its width and 
height. The final parameter, the confidence score, represents 
the likelihood of an object in the box.

Bounding boxes help YOLO and general object detection 
discover objects. Two bounding box vectors are required: 
b for ground truth and b̂ for expected. In YOLO, non-
maximum suppression (NMS) handles multiple bounding 
boxes for absent or identical objects. NMS rejects over-
lapping predicted boxes with an IoU below a threshold. 

Figure 2:  Sample image from the ArSL dataset. Abbreviation: ArSL, Arabic Sign Language.
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The  original Darknet-based YOLO had two versions. Two 
ultimately linked layers followed 24 convolutional layers in 
the standard model. The simplest Fast YOLO included nine 
convolutional layers and fewer filters. Both versions used 
GoogLeNet’s inception module-inspired 1 × 1 convolutional 
layers to reduce feature space.

To deter incorrect bounding box predictions, the authors 
assigned different weights: γ

coord
 = 5 for boxes with objects 

and γ
noobj

 = 0.5 for empty boxes. The loss function integrates 
all bounding box parameters and calculates the loss between 
anticipated and actual boxes using center coordinates (a

center
, 

b
center

 at the start). The variable obj
ijζ  is 1 if an object is in the 

jth predicted box in the ith cell, and 0 otherwise. The adjusted 
equation shows that the box should predict the object with 
the highest IoU, as shown in Eq. 2.

	
2s B obj 2 2

coord ij i i i ii  0 j  0
a a (b b )ˆˆ[( ) ]

� �
� � � � �� � 	 (2)

The subsequent component of the loss function computes 
the discrepancy in the estimated width and height of the 
bounding box. Contrary to the previous component, faults 
in larger boxes have a diminished effect compared to smaller 
ones. By standardizing the width and height to a range of 
0-1, applying the square root function enhances the influ-
ence of inaccuracies in smaller boxes to a greater extent than 
in bigger ones, as expressed in Eq. 3.

	
2s B obj 2 2

coord ij i i i ii  0 j  0
a a (b b )ˆˆ[( ) ]

� �
� � � � �� � 	 (3)

The loss function calculates confidence score discrepancy 
based on the object’s existence or absence in the bound-
ing box. When the predictor determines the bounding box, 
object confidence errors are penalized. The variable obj

ijζ  is 
set to 1 if an object is present in the cell and 0 otherwise. 
Alternatively, noobj

ijζ  evaluates objects as 1 when presented 
and 0 when absent and 0, as presented in Eq. 4.

	

� �

� �

� � �
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�

�
�

2

2

s B obj 2
ij i ii  0 j  0

s B noobj 2 2
noobj ij i i i ii  0 j  0

ˆ( )

ˆ

C C

X X (C C ))ˆ(

Loss

	 (4)

Like the conventional classification loss, the last compo-
nent of the loss function calculates the loss in the probability 
of the class (c). Nevertheless, this computation includes obj

ijζ , 
which modifies the loss depending on the presence or absence 
of an object within the bounding box, as stated in Eq. 5.

	
2s obj 2

ij 1 1i  0 c Classes
(p c p ĉ( ))classLoss

�
� � �� � 

	 (5)

Redmon et al. (2016) introduced YOLO. Multiple YOLO 
algorithm improvements occurred from further research. 
YOLO9000 is a real-time object detection system that 
can recognize 9000 categories to improve accuracy and 
performance. YOLOv3 was introduced and gradually 
enhanced over its predecessors. Bochkovskiy et al. (2020) 
introduced YOLOv4, which improved the model’s object 
detection and GPU usage. Zhu et  al. (2021) introduced 
YOLOv5 to improve GPU utilization. Later, YOLOv6 and 
v7 were introduced (Li  et  al., 2022; Wang et  al., 2023). 
The most current version of YOLOv8 has been introduced 
(Ultralytics, 2024).

Attention module

The attention module, essential for the deep CNN-based 
feature extractor, utilizes complex approaches to improve 
feature representation. By utilizing compression and decom-
pression techniques, this procedure condenses input features 
to optimize processing efficiency while retaining crucial 
information. The channel and spatial attention modules 
enhance the discriminative power of features by selectively 
emphasizing informative channels and geographical regions, 
respectively. By using a cross-convolution module enhanced 
with a constant vector parameter, the process of feature 
derivation is enhanced as it captures intricate patterns and 
interconnections within the data. The module identifies the 
interconnections between different feature dimensions by 
utilizing two-way correlation matrices to create a rich fea-
ture map.

The proposed technique incorporates a multi-scale fea-
ture extraction architecture to improve YOLOv8 object 
detection. A more advanced feature extractor, including 
Convolutional (Conv) layers, convolutional block attention 
module (CBAM), and C3x layers, has been added to the 
YOLOv8 backbone to increase detection efficiency. This 
improvement uses attention processes and spatial pyramid 
pooling to improve the model’s feature extraction from input 
images. The increased feature extraction procedure is math-
ematically expressed in Eq. 6.

	 = ⊕extracted input inputF  CBAM(Conv ) SPPF(Conv ) 	 (6)

Here, ⊕ represents the fusion of characteristics retrieved 
using attention processes and spatial pooling layers. The 
architecture neck enhances and perfects details after extrac-
tion. This stage merges features at different scales using 
“C3x” layers and upsampling methods. Refined features are 
presented in Eq. 7.

	 =C3x extractedF Upsample(C3x(F ))	 (7)

This technique effectively combines characteristics of unu-
sual sizes, improving model recognition at varied resolutions.

The model detects small-sized, medium-sized, and large-
sized decompression nodes that are perfectly integrated 
with a pre-trained multi-scale module. These heads predict 
bounding box coordinates for various objects in the image 
frame with the probability matrix. The probability matrix 
includes dfl scores, cls scores, and class probabilities. These 
detection heads are expressed in Eq. 8.

	 =i bbox D( )B H F 	 (8)

where B
i
 denotes the spatial coordinates that determine the 

position of object i in the image and H
bbox

 denotes the func-
tion applied by detecting heads to anticipate bounding. F

D
 

denotes the decompression nodes that have been identified 
for each object presented in Eq. 9.

	 = =i i i i prob DP ){DFL ,CLS ,Pr b } (o H F 	 (9)

where H
prob

 refers to the function utilized by detection heads 
to construct the probability matrix, which includes distri-
butional focal loss (DFL) scores, classification results, and 
probabilities for each class.
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RESULTS

This section concisely describes the experimental results, 
their interpretation, and the experimental conclusions.

The proposed model is trained and evaluated using the 
YOLO PyTorch framework for object detection. The uti-
lized pre-trained model employed the Adam optimizer with 
a learning rate of 3e-4. The values we used for our param-
eters were 15 epochs, a batch size of 24, and an image size 
of 640 × 640. The enhanced feature extractor backbone and 
three-channel detectors are utilized to estimate the class 
probability of the ArSL dataset. The collection consists of 
Arabic signs. A series of extensive experiments validated 
the model’s performance. We employed a training dataset 
of 9927 samples and a separate validation dataset of 4247 
distinct samples for our research. In Figure 3, the confusion 
matrix of the proposed model is presented.

The confusion matrix of the dataset after normalization is 
presented in Figure 4, which shows that the miss detection 
rate was significantly reduced after normalization.

In Figure 5, the op row training loss metrics show that 
train/box_loss has decreased from 0.9 to 0.5, indicating 
better-bounding box predictions. Train/cls_loss declines from 

4 to slightly above 0, suggesting better-predicted box object 
categorization. Model performance on this composite loss 
parameter improves when train/df1_loss drops from 1.3 to 0.9. 
Performance measurements reveal that the model predicts class 
“B” more wholly and precisely when metrics/precision(B) 
reaches 0.5 to slightly over 0.8 and metrics/recall(B) reaches 
0.4 to almost 0.9. mAP metrics/mAP50(B) and mAP50-95(B) 
increase from 0.5 to 0.8 and 0.4 to over 0.7, respectively. The 
results show that the model can detect signs with more ground 
truth overlap at various thresholds with higher validation loss. 
Unlike its training counterpart, val/box_loss fluctuates but 
declines from 0.76 to 0.65. Like training, val/cls_loss drops from 
2 to 0.5. Starting around 1.15, val/df1_loss drops but fluctuates. 
This variation in validation losses implies improving the model 
on unseen data to avoid overfitting and improve consistency.

In Figure 6, the x-axis of the graph shows confidence lev-
els, while the y-axis represents the F1 score. The bold blue 
line, labeled “all classes 0.95 at 0.547,” shows that when the 
model’s confidence threshold is set at around 0.547, the F1 
score for all classes combined approaches 0.95. This high 
score signifies excellent model performance.

Figure 7 shows the confidence threshold, the model’s 
assessed probability of forecast correctness. The y-axis 

Figure 3:  Confusion matrix of proposed model results.
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Figure 4:  Confusion matrix of proposed model detection results after data normalization.

Figure 5:  Proposed model training validation precision–recall and different types of loss. Abbreviation: mAP, mean average 
precision.
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shows model accuracy at each confidence level. The bold 
blue line, “all classes 1.00 at 1.000,” shows the model’s pre-
cision of 1.00 (or 100%) for all classes when it forecasts 
100% accurately. This model is ideal since it predicts with 
certainty and is accurate. However, choosing high confi-
dence thresholds may cause the model to miss many true 
positives when it lacks the confidence to foresee them, 
reducing recall.

In Figure 8, several experiments and iterations aim to 
optimize precision and recall, leading to a position near the 
upper-right quadrant of the graph. The various gray lines 
depict the trade-off between accuracy and recall for different 
classes or runs of the model. The blue line, denoted as “all 
classes 0.982 mAP@0.5,” indicates that the model achieves 
an mAP of 0.982 at an IoU threshold of 0.5, a commonly 
employed criterion in object detection tasks. The mapped 

Figure 6:  Proposed model for ArSL detection F1–confidence curve. Abbreviation: ArSL, Arabic Sign Language.

Figure 7:  Precision–confidence curve of proposed detection model for ArSL. Abbreviation: ArSL, Arabic Sign Language.
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value is significantly high, suggesting that the model exhib-
its strong performance across all classes in terms of both pre-
cision and recall at this threshold.

Figure 9 shows that our method for ArSL identification 
is highly effective and validated using a recall–confidence 
score, highlighting the model’s effectiveness. The y-axis 
is the recall, representing the model’s ability to identify as 
many relevant observations as possible in each category. The 

x-axis gives a confidence level. As mentioned earlier, the 
ability of our model is confirmed in terms of ArSL detec-
tion. Fine-tuning and parameter settings have achieved a 
recall–confidence score of 100%. Then, the method at hand 
is considered the best for classifying ASL signature images 
under that confidence level. Through the thick blue line with 
the label “all classes 1.00 at 0.000,” we can see one of the fac-
tors allowing our method to be so successful: this single line 

Figure 8:  Precision–recall curve for the proposed ArSL identification method. Abbreviations: ArSL, Arabic Sign Language; 
mAP, mean average precision.

Figure 9:  Recall–confidence curve of the proposed ArSL detection approach. Abbreviation: ArSL, Arabic Sign Language.
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makes up the entirety of the model’s recall, indicating that all 
classes can be recalled with high confidence. The gray lines, 
on the other hand, stand for different categories or variants, 
as multiple lines of different lengths and at various places can 
be seen. These visual depictions mean that the recall of the 
model in response to different confidence thresholds varies, 
which showcases the model’s responsiveness and capacity to 
accurately recognize all relevant instances, even at a confi-
dence threshold of 0. During experiments, it was noted that 
a low confidence threshold was used to achieve 100% recall. 
This curve is vital for comprehending the balance between 
achieving a high recall and the confidence level in the predic-
tions, which is necessary for optimizing model performance 
according to the accurate detection of ArSL.

The proposed model detection performance across differ-
ent signs is presented in Figure 10. The results show that 

the model’s correct detection rate is higher in detecting 
most signs. The proposed detection model shows robustness 
regarding accuracy, precision, and recall, with the lowest 
training and validation loss.

Detection results on base model

Model training progress is summarized in Figure 11. The 
training and validation losses for bounding box predic-
tion (box_loss), class prediction (cls_loss), and direction/
feature learning (dfl_loss) all decreased significantly over 
time. Train/box_loss begins above 2.5 and decreases to 
0.5. Similarly, val/box_loss decreases from 2 to 0.5, imply-
ing improved item detection. Similarly, train/cls_loss starts 
around 5 and falls below 0.5. Val/cls_loss decreases from 4 

Figure 10:  Proposed model detection results on different signs.
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to slightly above 0.5, indicating improved item categoriza-
tion accuracy. The train/dfl_loss and val/dfl_loss ratios drop 
from more than 3.5 to 0.5 and 3 to slightly above 0.5, respec-
tively, showing feature or directional learning improvement. 
Precision and recollection increase steadily. Class B preci-
sion and recall measures increase from 0 to more than 0.6 
and 0.2 to more than 0.7, respectively.

These changes result in more correct predictions and 
improved detection of all signs. mAP scores improved 

significantly, including mAP50(B) and mAP50-95b. The 
mAP50(B) has risen from 0 to over 0.8, while the mAP50-
95(B) has increased from 0.1 to more than 0.6. IoU scores 
consistently improve in precision. After training, the numer-
ical patterns demonstrate the model’s improved predicting 
and categorization abilities.

The F1–confidence curve shows the link between the 
F1 score and the classification model confidence thresh-
old in Figure 12. While the broad blue line shows overall 

Figure 11:  Model training validation precision–recall and loss of YOLOv8. Abbreviations: mAP, mean average precision; YOLO, 
You Only Look Once.

Figure 12:  F1–confidence curve of the base detection model.
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performance across all courses, the gray lines likely show F1 
scores for various classes at varying confidence criteria. The 
model’s highest F1 score for all classes is “all classes 0.72” 
at a confidence threshold of 0.381.

In Figure 13, a precision–confidence curve is depicted, 
illustrating the accuracy of a classification model at different 
levels of confidence thresholds.

Each gray line refers to a distinct class, whereas the bold 
blue line reflects the overall precision encompassing all 

classes. The phrase “all classes 1.00 at 1.000” signifies the 
accuracy achieved by the model when the confidence thresh-
old is set to its highest level.

A precision–recall curve is presented in Figure 14, which 
assesses the effectiveness of a classification model. The gray 
lines depict the trade-offs between precision and recall for 
each class, while the blue line represents average perfor-
mance across all classes with 0.786 mAP@0.5 and an mAP 
score of 0.786 at an IoU criterion of 0.5. The results show 

Figure 13:  Precision–confidence curve of the base model for ArSL detection. Abbreviation: ArSL, Arabic Sign Language.

Figure 14:  Precision–recall curve of detection rate of the base model. Abbreviation: mAP, mean average precision.
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a high level of model performance, on average, across all 
classes.

Figure 15 illustrates a recall–confidence curve, which 
demonstrates the fluctuation of recall at various confidence 
thresholds for a classification model. The gray lines repre-
sent the recall at different confidence levels for each class, 
while the average recall for all classes is indicated by the 
blue line. All classifications (0.99 at 0.000) signify that the 
model achieves almost perfect recall when using a confi-
dence threshold of 0, indicating a strong ability to detect true 
positives across all classes.

DISCUSSION

In this paper, we proposed a technique that utilizes a deep 
CNN model integrated with YOLO to detect ArSL signs. Our 
proposed method showed competitive performance as com-
pared with the state-of-the-art (SOTA) approaches. Unlike 
the previous methods, this proposed technique contributes 
to specifying the visual data’s key unique and discriminative 
features, which minimizes redundant information and max-
imizes the detection rate. In our proposed method, taking 
the critical roles of visual data in computation, two attention 
mechanisms were incorporated, channel and spatial atten-
tion, which used self-attention module blocks and cross-con-
volution modules. The mechanism of attention techniques, 
which has some differences, is highlighted in the most sig-
nificant features of the ArSL images. By emphasizing the 
importance of the unique features of the ArSL signs, the pro-
posed technique achieved a better and more comprehensive 
understanding of the ArSL gestures.

Recent researchers have attempted to concatenate differ-
ent advanced recognition systems to get more promising 

identification rates for ArSL gestures. ANFIS has been proven 
pioneering by many researchers; however, it is counteracted 
by its significant weakness in swiftly adapting and performing 
intricate tasks of gesture recognition, an essential criterion in 
any sign language recognition system. As a result, ANFIS has 
achieved a high precision of 86.69%, but its performance and 
adaptation ability to intricate gesture recognition tasks remain 
limited (Podder et al., 2023). A detailed comparison of the pro-
posed model with SOTA approaches is presented with an accu-
racy of 94.46% (Aldhahri et al., 2023) presented in (Table 1).

An independent-user-based technique employed DL and 
vision-based techniques to interpret ArSL with 98% accu-
racy (Balaha et  al., 2023). A YOLOv5-based approach 
was presented (Dima and Ahmed, 2021) for sign language 
recognition with an mAP of 0.98 with a precision of 95%. 
Aldhahri et al. (2023) successfully recognized Arabic signs 
using DL-based techniques on the ArASL2018 dataset with 
an accuracy of 94.46%.

YOLOv6 was employed to recognize the ArSL using static 
and dynamic images with 96% accuracy on static images and 

Figure 15:  Recall–confidence curve of the base model for ArSL detection. Abbreviation: ArSL, Arabic Sign Language.

Table 1:  Comparison of the proposed model with SOTA 
techniques.

Reference   Year Model   Recognition 
rate (%)

Podder et al. (2023)   2023 ANFIS   86.69

Balaha et al. (2023)   2023 Vision-based DL   98

Dima and Ahmed (2021)   2021 YOLOv5   95

Aldhahri et al. (2023)   2023 DL model   94.46

Buttar et al. (2023)   2023 YOLOv6   92

  2024 Proposed   99

The bold is the proposed model with highest recognition rate. 
Abbreviations: ANFIS, adaptive neuro-fuzzy inference system; 
DL, deep learning; YOLO, You Only Look Once.
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92% accuracy on different continuous signs (Buttar et  al., 
2023).

The modified model also improved the precision and recall 
rate to 0.99 in recognizing and detecting different signs of 
ArSL. The robustness of the proposed model showed sig-
nificant improvement in detecting and recognizing different 
signs. The model performance decreases the error rate with a 
higher rate of accurate sign recognition. The YOLOv8-based 
model achieves significant 0.9909 and 0.8306 for mAP@0.5 
and mAP@0.5:0.95, respectively. The utilization of a pre-
trained DL model shows a decline in the recognition rate 
with a higher error rate. We utilized a pre-trained model as 
well as our custom module integration.

CONCLUSION

In this paper, we proposed a novel DL-based approach using 
YOLOv8 to detect and recognize the ArSL signs effectively. 
The robust object detection model YOLOv8 is used as a 
baseline to develop an attention-aware feature descriptor 
for feature engineering. The integration of the self-attention 
modules with channel attention and spatial attention mod-
ules utilized to compress and decompress in features, and the 
implementation of the cross-convolution module to mathe-
matically process for split three-way matrix efficiently. 
These are our contributing resources to increase the preci-
sion, accuracy, and recognition speed of gesture recognition. 
ArSL sign detection rates are much higher than those of any 
existing approaches. We have driven SOTA recognition rates 
and opened the best way to attempt broad-range applications 
for ArSL recognition and extraction of DL features. The val-
idation of the model using the ArSL21L dataset highlights its 
efficacy in accurately finding a diverse assortment of ArSL 
gestures. Unlike the specified traditional approaches, the 
proposed technique derived the most relevant features from 
ArSL images, rather than using hardcoded feature extrac-
tion techniques employed in previous studies. The proposed 
model is robust in sign detection and recognition, but it is 
trained on limited data, and more complex data and environ-
ments will hamper its performance. A more robust DL-based 
technique will be developed in the future, and the model will 
be trained on more diverse datasets to detect and classify 

diverse Arabic signs. Model generalization and interopera-
bility will be enhanced for real-world applications.
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