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New science of climate change impacts on
agriculture implies higher social cost of carbon
Frances C. Moore1, Uris Baldos2,3, Thomas Hertel2,3,4 & Delavane Diaz5

Despite substantial advances in climate change impact research in recent years, the scientific

basis for damage functions in economic models used to calculate the social cost of carbon

(SCC) is either undocumented, difficult to trace, or based on a small number of dated studies.

Here we present new damage functions based on the current scientific literature and

introduce these into an integrated assessment model (IAM) in order to estimate a new SCC.

We focus on the agricultural sector, use two methods for determining the yield impacts of

warming, and the GTAP CGE model to calculate the economic consequences of yield shocks.

These new damage functions reveal far more adverse agricultural impacts than currently

represented in IAMs. Impacts in the agriculture increase from net benefits of $2.7 ton−1 CO2

to net costs of $8.5 ton−1, leading the total SCC to more than double.
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C limate science has advanced significantly in the past 20
years so that our understanding of the physical con-
sequences of greenhouse gas emissions is now well

established1. The biophysical effects of changes in temperature
and rainfall on, for example, ecosystems, agricultural yields, and
sea-level rise are also increasingly well understood. However, this
new science is not reflected in some of the highly influential
economic models currently used to determine the social cost of
carbon (SCC)—a measure of the total damages from an addi-
tional ton of CO2 emissions used to quantify the benefits of
emissions reduction. In most cases, the scientific basis for damage
functions (reduced-form expressions for how climate change
affects economic welfare) in these models is undocumented,
tautological (based on damages from previous versions of the
models), or dates from between 10 and 20 years ago and therefore
may have been superseded by more recent results2.

The lack of a current empirical basis for integrated assessment
model (IAM) damage functions is not just an academic question
because the SCC has been formally adopted by the U.S. govern-
ment to quantify the benefits of CO2 mitigation in cost–benefit
analysis3. Regulations with benefits totaling over $1 trillion have
used the SCC in cost–benefit analysis4. Increasingly, it is also
being used at the state level: recent rulings in California, New
York, and Minnesota all require use of the SCC in analysis of
climate and energy regulations5–7. Therefore, the value of the
SCC is a relevant consideration for long-term planning in

industry and government, and yet the extent to which it would
change if more recent scientific knowledge were incorporated is
largely unknown. Many recent commentaries on the state of
climate change economics have identified improving the
empirical basis of IAM damage functions as high-priority area for
future work2, 8–12.

A large and growing body of science has dramatically improved
our knowledge of the social and economic risks posed by climate
change and therefore provides an opportunity to substantially
improve the empirical basis of the damages underlying the
SCC12–15. However, translating the literature on biophysical cli-
mate change impacts into damage functions is not straightfor-
ward. For each sector, individual scientific studies must be
aggregated and translated into a consistent set of global impacts.
Then, because damage functions parameterize how economic
welfare changes with temperature, the economic value of these
biophysical impacts must be assessed, which might involve sub-
stantial economic modeling. Finally, new damage functions must
be introduced into an IAM in order to examine the effect on the
SCC. The complexity and interdisciplinary nature of this process
may be part of the reason damage functions in IAMs have lagged
the science of climate change impacts.

This paper focuses on the agricultural sector, connecting a
current and comprehensive review of the biophysical science of
the impacts of climate change on yields to the SCC. Agriculture is
an important sector for climate change damages because it is both
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Fig. 1 Impacts of temperature change on yields of four major crops. Based on a meta-analysis of 1010 point-estimates from 56 studies (see Methods
section). Darkest, middle, and lightest lines show responses at the 75th, 50th, and 25th quantiles of baseline growing-season temperature, respectively.
Dashed lines show the 95% confidence interval based on 750 block bootstraps, blocking at the study level. Plotted response curves are for temperature
only and do not include CO2 fertilization or adaptation. Temperature changes are relative to a local 1995–2005 baseline. The histograms show the number
of observations by crop and level of warming used to estimate the response functions. In subsequent analyses, yield losses >100% are set to losses of 99%
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directly affected by climate change and has critical implications
for future food security and social welfare. We start with the large
agronomic literature on how climate change affects crop yields
based on a meta-analysis published by Chalinor et al16. and used
to support conclusions in the IPCC 5th Assessment Report17. We
present a new analysis of this database that we use to aggregate
these results to the global scale. We then compare our results with
those of the Agricultural Model Intercomparison and Improve-
ment Project (AgMIP) published by Rosenzweig et al18. Using the
predicted yield under climate change, derived both from the
meta-analysis and from AgMIP as inputs to the GTAP compu-
table general equilibrium (CGE) model, we estimate the economic
consequences of these changes. Finally, we parameterize two new
damage functions based on the CGE results and incorporate them
into one of the most widely used IAMs in order to examine
implications for the SCC.

This approach exemplifies several principles that we believe
can provide important guidance in updating damage functions in
other sectors in the future. Our meta-analysis is related to the
findings of the food security chapter of the IPCC 5th Assessment
Report. Where possible, tying damage functions to the IPCC has
several benefits: findings are updated on a moderately regular
basis (every 7 years), are assembled and reviewed by impact
experts within each field, and are formally accepted as fact by
governments involved in the process. Both the meta-analysis and
the AgMIP damage functions also use an ensemble of models.
Findings in climate and, increasingly, agricultural modeling have
shown that use of multi-model ensembles tend to outperform any
individual model1, 19. Therefore, averaging multiple model out-
puts should lead to more reliable damage functions and better
uncertainty quantification than trying to pick preferred models.
Finally, this is an end-to-end analysis in which analysis of
the underlying biophysical impacts literature to produce global,
sector-wide response functions, modeling of the economic
responses to those biophysical changes using a state of the art,
open-source CGE model to produce economic damages, and
introduction of these damages into an IAM and the resulting
effect on the SCC are all documented within a single study. This
means our damage functions and the changes we identify in the
SCC have a clear and traceable connection to the underlying
science that is both comprehensive and up-to-date, in contrast to
most current IAM damage functions2. This approach is also
consistent with the National Academy of Sciences report on
calculating the SCC, which recommended that damage functions
should be based on the current, peer-reviewed literature on cli-
mate impacts, have uncertainties that are characterized and
quantified where possible, and be transparent, well-documented
and reproducible2.

Results
Estimating the global yield response to climate change. The
first step in our analysis involves aggregating the large volume of
research on how climate change affects crop yields. We do this
through a meta-analysis of 1010 published estimates of yield
response to changing climate conditions, including both statistical
and process-based studies, using a database complied for the
IPCC 5th Assessment Report16, 17. Figure 1 shows the tempera-
ture response functions we derive for the four most important
food crops (see Methods section). The effect of higher tempera-
tures on yields is negative for all crops in almost all locations. The
interaction between the effects of warming and current growing-
season temperature is in the expected direction, with warming
consistently more damaging in places that are already hot.
However, for wheat and maize (and soybeans at low levels of
warming) this effect is not particularly large.

The effects of other variables are shown in Supplementary
Information (SI), Supplementary Table 1 and Supplementary
Fig. 1. CO2 has a positive effect on crop yields, with an estimated
increase of 11.5% (C3) and 8.7% (C4) for a doubling of CO2 from
preindustrial levels. This is very close to estimates from
experimental field studies for C3 crops but is somewhat high
for C4 crops20, 21. The effect of agronomic, on-farm, within-crop
adaptations (principally changes in crop variety and planting date
(see Methods section)) is small and statistically insignificant.
Studies that include agronomic adaptation do, on average, report
higher yields than those that do not, but this is almost entirely
captured by an adaptation intercept term rather than the
interaction with change in temperature. This suggests that
changes described as adaptations to climate change in the studies
underpinning our meta-analysis would provide similar yield
benefits with and without climate change and are therefore not
true climate adaptations as conventionally defined22. In results
that follow we include only the true climate adaptation effect for
all crops, but we find this to be small (Supplementary Table 1).
Note that this statement refers only to the on-farm, within-crop
agronomic adaptations captured by the studies that support the
meta-analysis. Additional economic adaptations such as crop
switching, increasing production intensity, substituting consump-
tion, or adjusting trade relationships are captured in the GTAP
model (Supplementary Table 2).

Our continuous response functions are extrapolated globally
using maps of baseline temperature and the spatial pattern of
global temperature change in order to estimate yield changes for
different levels of global warming (Methods, Supplementary
Figs 2–5). We compare these results to those from the AgMIP
Global Gridded Crop Model Intercomparison (GGCMI), the one
other source of global, multi-crop, multi-model yield changes
(Supplementary Fig. 6)18. Our preferred results focus on the set of
models within the AgMIP ensemble that explicitly represent
nitrogen stress (see Methods section) though in the SI we also
present results using the full ensemble. The two approaches for
estimating yield impacts differ substantially in the kinds of spatial
heterogeneity in the yield response to warming and CO2 that are
captured. The GGCMI results explicitly account for spatial
variation resulting from soil type, irrigation, baseline temperature,
and (in models representing nitrogen stress) nutrient limitations.
The meta-analysis deliberately smooths out most of this
heterogeneity in order to more precisely estimate a common
response function, preserving only the heterogeneity resulting
from different baseline temperatures. (See also Supplementary
Table 3 for additional discussion on sources of spatial
heterogeneity).

With the exceptions of soybeans, our point-estimates show
substantial areas of agreement (within 10 percentage points of the
GGCMI). A major difference is that our latitudinal variation in
yield impacts tends to be more modest than in the GGCMI
ensemble, leading our meta-analysis results to be more optimistic
in tropical areas and more pessimistic at higher latitudes. At the
global scale, these cancel to some degree so that differences in
global, production-weighted yield changes between the two
methods are smaller and, due to large uncertainties involved,
statistically indistinguishable from each other (Supplementary
Fig. 7). The largest area of disagreement is for wheat yields—with
the AgMIP ensemble showing global productivity gains for 2 and
3 degrees of warming and the meta-analysis showing substantial
losses.

Economic consequences of yield impacts. We use gridded yield
changes for the four major crops for 1–3 °C based on both our
meta-analysis and the GGCMI ensemble average as input to the
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GTAP CGE model (see Methods section). Our aggregation of the
version 9 GTAP data base results in a model that solves for
equilibrium prices, consumption, production, and bilateral trade
flows of 14 commodities (of which 9 are in the agricultural sector)
across 140 regions (see Methods section)23, 24. This step is
necessary because IAM damage functions parameterize how
economic welfare changes with global temperature and, beyond
the direct productivity effects, the relationship between yield and
welfare changes is not straightforward. This complexity derives
from the presence of additional impacts on a nation’s terms of
trade (changes in the relative prices of a region’s exports and
imports) and an allocative efficiency effect (interactions between
changing production, consumption, and trade patterns and
existing market distortions)25. The sum of these three is the total
regional welfare change, reported here as real income.

Figure 2 shows regional welfare changes associated with 3 °C of
warming based on the meta-analysis results, normalized by the
current value of the four crops being modeled. At this level of
warming, total effects on welfare (Fig. 2d) are negative in most
areas, primarily driven by the direct productivity effect of climate
change on agriculture (Fig. 2a). However, terms-of-trade effects
(Fig. 2b) are important in determining the distribution of global
welfare gains across individual regions, comprising >50% of total
welfare change in some regions (Supplementary Fig. 8). Because
world crop prices are increasing in this scenario (Supplementary
Fig. 9), it is the net agricultural exporters that tend to gain from
changing terms of trade (e.g., Australia, Argentina, USA), while
net importers lose (e.g., Mexico, the Middle East, North Africa).
Supplementary Fig. 10 shows the same welfare decomposition but
based on yield changes from the GGCMI ensemble (Supplemen-
tary Fig. 11 shows results for the full ensemble, including models
that do not represent nitrogen stress). Both sets of results show
welfare declines in south Asia, sub-Saharan Africa, Brazil,

Mexico, and China. However, the GGCMI results show much
wider welfare gains from productivity improvement in higher
latitudes. In addition, price changes are more variable (with an
increase in maize and soy prices but decreases in wheat and rice
prices), so that the terms-of-trade effects are smaller and are
distributed differently between importers and exporters of
different crops. Note that our results differ from Nelson et al26.,
who also used the GGCMI ensemble as input to a range of
general- and partial-equilibrium models. A major reason why our
results differ from theirs is that they did not include CO2

fertilization, which is included in our yield shocks.

Implications for the social cost of carbon. To create new
damage functions, we take welfare changes for 1–3 °C of average
global warming and aggregate up to the 16 geographic regions
used in the FUND model27. Figure 3 shows our damage functions
estimated from both the meta-analysis and GGCMI yield
responses, compared to the existing agricultural sector damage
functions in FUND (see also Supplementary Fig. 12 and Sup-
plementary Table 4). Agriculture in FUND shows benefits in all
regions for warming < 3 °C. This is a result of both a direct
positive effect of moderate amounts of warming on yields for all
regions and the CO2 fertilization effect. In contrast, our meta-
analysis results show almost universal negative welfare changes
for warming beyond 2 °C that in many cases are very large.
Current FUND welfare impacts are almost entirely at or beyond
the upper bound of our 95% confidence intervals (Fig. 3). Results
for the preferred AgMIP GGCMI ensemble fall in between these
two cases. In some regions (Japan+Korea and the Middle East),
they closely track existing FUND damages. In other regions
(Central America, USA, South Asia), they show welfare declines
at 2 and 3° of warming that are similar to our meta-analysis
results.

<−100 −100−−50 −50−−20 −20−−5 −5−−0 0−5 5−20 20−50 50−100 >100

Equivalent variation

Terms of trade effectDirect effect

Allocative efficiency effect

% Crop value
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Fig. 2Welfare changes from 3 °C of global average warming. Changes are relative to a 1995–2005 global average baseline and use yield changes based on
the meta-analysis results shown in Fig. 1: a the direct technical effect of climate change on agricultural productivity; b terms of trade effects; c the allocative
efficiency effect; and d total welfare change reported as equivalent variation. Results are based on yield changes that include adaptation and the CO2

fertilization effect for C3 crops but not for maize. Welfare changes are normalized by the value of production of the affected crops (maize, rice, wheat, and
soybeans)
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In order to investigate the importance of parameterization of
the economic model used to calculate damages in driving the
regional damage functions, we perform a systematic sensitivity
analysis of key parameters within GTAP (see Methods section).
Variation in economic welfare changes associated with these
changes is shown in Supplementary Fig. 13 and is very small and
is dwarfed by the uncertainty in biophysical productivity shocks
shown in the error bars in Fig. 3.

We use an IAM damage module based on the FUND model
and substitute our new agricultural damage functions into the
agricultural sector to calculate how the SCC changes as a result of
this more up-to-date science and new economic modeling (see
Methods section). Because total damages in FUND are an
additive sum over regions and sectors, the SCC can be
decomposed into its constituent parts. Figure 4 summarizes the
results of this analysis, using a 3% discount rate. Additional
results based on a 2.5 and 5% discount rate are given in
Supplementary Table 5. Currently, agriculture in FUND con-
tributes a benefit of $2.7 ton−1 CO2 toward the SCC. In contrast,
damage functions based on both the preferred AgMIP GGCMI
ensemble and the meta-analysis show net costs of $3.5 and $8.5
ton−1, respectively (95% confidence interval based on the spread

in yield impacts for the meta-analysis is −$0.6 to $33.3 ton−1).
This difference has a substantial effect on the SCC: although the
FUND model represents damages from 14 impact sectors, only a
few key sectors—agriculture, cooling, and heating—contribute
substantively to the SCC28. Updating the damage functions in the
agriculture sector alone increases the SCC from $8.6 to $14.8
(AgMIP) and $19.7 (meta-analysis) ton−1 CO2, increases of 72
and 129%, respectively.

Sensitivity of results to alternative methodological assumptions
are shown in Supplementary Table 5, which gives the SCC under
alternative discount rates, an alternative method of extrapolating
beyond 3 °C, and using the full AgMIP ensemble instead of the
preferred set of models that explicitly represent nitrogen stress.
Although discount rates have a large effect on the SCC, they scale
all results and so do not alter the finding that updated damage
functions imply a higher SCC. The largest sensitivity of results is
around including the full ensemble of process-based crop models
in the AgMIP GGCMI. Adding models that do not represent
nitrogen stress substantially reduces the estimated impact of
climate change on agriculture and leads to an SCC ($9.6 ton−1

with a 3% discount rate) only slightly greater than the current
FUND estimate. This difference is due to the presence of large
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productivity gains in many parts of the world (Supplementary
Fig. 11a), a product particularly of the LPJ-GUESS and GAEZ-
IMAGE models18.

Discussion
Here we show that the current science of climate change impacts
on agriculture, combined with up-to-date economic modeling,
implies larger damages to the sector than currently represented in
models used to calculate the SCC. In contrast to existing regional
damage functions, which show benefits in every region up to at
least 3 °C of warming, we find potential for welfare declines even
at much lower levels of warming. Though the range of possible
effects of climate change on yields is substantial, our finding that
the SCC should be increased is robust to this variation, as well as
to uncertainties relating to the discount rate, economic modeling,
and extrapolation of the damage function.

Of the three IAMs used to estimate the SCC, only FUND
explicitly represents the agricultural sector, so that has been the
focus of comparison in this paper. However, agricultural impacts
are a part of damages in the two other models. In PAGE (2009
version) agricultural impacts are represented within the market
impacts damage function and in DICE (2013 version) they are in
the non-sea level rise damage function29, 30. Given the same
socio-economic assumptions and climate model used to calculate
SCC values reported in the previous section, these damage
functions give SCC values of $6.6 ton−1 and $18.9 ton−1,
respectively (3% discount rate)28. In the case of PAGE, market
impacts are substantially smaller than agricultural damages esti-
mated using the meta-analysis ($8.5 ton−1), implying either that
there are large off-setting benefits in other market sectors or that
the empirical basis for the market impacts damage function may
need to be reviewed. In the case of DICE, our results imply that
agricultural impacts make up between 19% (AgMIP) and 45%
(meta-analysis) of non-sea level rise damages.

Governments are currently relying on IAMs to evaluate climate
and energy policy and these models have already come under

legal scrutiny as a result31, 32, 5. It is therefore important, from
both a regulatory and an academic perspective, that the repre-
sentation of damages reflect current scientific consensus on
impacts in a timely and transparent manner. Here we have shown
that improving the empirical basis of just one sector, agriculture,
results in a large increase in the SCC. In addition, we have
demonstrated the potential of an end-to-end analysis directly
linking the biophysical impacts of climate change to economic
welfare and ultimately the SCC. Damage functions resulting from
this approach are more clearly tied to underlying science and can
be easily updated in light of future findings. This approach, which
can also be extended to other sectors, therefore represents an
essential step in maintaining and improving the integrity of IAM
results going forward.

Methods
Meta-analysis of yield response to climate change. The yield–temperature
response functions used in this paper are derived from a database of studies esti-
mating the climate change impact on yield compiled for the IPCC 5th Assessment
Report17, also described in a meta-analysis by Challinor et al.16. Methods for
sampling the literature and criteria for inclusion are described in Challinor et al.16.
as a “broad and inclusive literature search” combined with quality-control proce-
dures documented in the Supplemental Information of that paper. In this study, we
focus on four major crops—maize, rice, wheat, and soybeans. The bulk of the
scientific literature on yield response to temperature relates to these crops, which
collectively account for about 20% of the value of global agricultural production,
65% of harvested crop area, and nearly 50% of calories directly consumed33. For
the four crops, the database contains 1010 observations (344, 238, 336, and 92 for
maize, rice, wheat, and soybeans, respectively) from 56 different studies (many
studies report multiple yield changes for different crops, different locations, dif-
ferent levels of temperature change, or different assumptions about adaptation).
The studies include 8 empirical studies and 48 process-based studies, published
between 1997 and 2012. Supplementary Figs 14 and 15 show the geographic
coverage of production areas within the database and the distribution of publica-
tion dates. Of the 1010 data points, 451 are reported as including some form of on-
farm, within-crop, agronomic adaptation. The vast majority of these adaptations
involve adjusting either planting date (10%) or cultivar (12%) or both (44%).
Recognizing the existence of a more recent and possibly more systematic literature
review for wheat yields, we perform a robustness check where we incorporate
additional results identified in Wilcox and Makowski34. This substantially increases
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the number of observations for wheat but does not affect our estimated response
curve (Supplementary Fig. 16).

We merge this database with information on baseline growing-season
temperature for each data point. To do this, each data point was assigned to a
country. For the 14% of studies looking at more than one country, the country
assigned was the one with the highest production of the relevant crop. Average
baseline growing-season temperatures were calculated using planting and harvest
dates from Sacks et al35. and gridded monthly temperatures for 1979–2013 from
the Climate Research Unit36. These were averaged to the country level using year
2000 crop production weights from Monfreda et al37.

The response functions are jointly estimated from the point-estimates in the
database using a multi-variate:

ΔYijk ¼ β1jΔTijk�Cropj þ β2jΔT2
ijk�Cropj þ β3jΔTijk�Cropj�Tjk

þβ4jΔT2
ijk�Cropj�Tjk þ β5f1 ΔCO2ijk

� ��C3j

þβ6f2 ΔCO2ijk
� ��C4j þ β7ΔPijk þ β8ΔTijk�Adaptijk þ β9Adaptijk þ εijk

ð1Þ

where ΔYijk is the change in yield from point-estimate i for crop j in country k
(in %). ΔTijk;ΔCO2ijk and ΔPijk are the changes in temperature (in degree C), CO2

concentration (in parts per million (ppm)), and rainfall (in percent) for point-
estimate ijk, Tjk is the baseline growing-season temperature for crop j in country k,
C3j and C4j are dummy variables indicating whether crop j is C3 or C4, and Adaptijk
is a dummy variable indicating whether the point-estimate includes any on-farm
adaptation. Eq. 1 is estimated using an ordinary least squares regression.

Uncertainty in the parameters is estimated through 1500 block bootstraps, with
blocks defined at the study level, allowing for possible correlation between point-
estimates from the same study. Error bars reported throughout the paper are based
on the 2.5th and 97.5th quantiles of the bootstrapped distribution. This treatment
of the errors does assume independence between studies, which may be
questionable if the same model is used in multiple studies. In total, 28 models,
made up of 17 process-based model families (i.e., treating CERES-maize, CERES-
rice, and CERES-wheat as a single model) and 11 statistical models, are used in the
56 studies. Supplementary Fig. 17 shows response curves with standard errors
based on a model block bootstrap as a robustness check. These are qualitatively
similar to the error bars shows in Fig. 1, particularly for warming <3 °C that is the
focus of the economic analysis, suggesting the study block bootstrap is capturing
the bulk of residual covariance. All error bars reported in the paper show
confidence intervals rather than prediction intervals. This is appropriate since the
relevant uncertainty is in the expected response of yield to temperature change,
which is given by confidence intervals.

There are a number of important things to note about this specification shown
in Eq. 1. First, the impacts of temperature are modeled as crop-specific quadratics
(β1j and β2j terms), allowing the effects of warming to vary by crop. In addition, the
effects of warming are allowed to vary with baseline growing-season temperature
(β3j and β4j terms), capturing the intuition that the impacts of a 1 °C warming
should be different in a cold location than in a hot location.

Second, there is no intercept term, thereby forcing response functions without
adaptation through the origin. This is consistent with the expected functional form
of a climate damage function, which should have no impacts if there are no
changes in climate variables. However, we include an intercept for studies that do
include adaptation (β9). This is prompted by the observation that, in many studies,
‘adaptation’ is represented by changing management practices that would improve
yields even in the current climate, such as adoption of improved varieties or
increasing fertilizer or irrigation inputs22. Failing to include an adaptation intercept
in this context will lead to an overestimation of the potential of these kinds of
changes to reduce the negative impacts of a warming climate. This adaptation
intercept is subtracted in our estimates of the effect of climate on yield to produce
an adjusted damage function that goes through the origin. (In other words, we
calculate the effect of a change in temperature of X on yields to be the yield change
predicted from Eq. 1 for a temperature change of X minus the yield change
predicted for a temperature change of zero (i.e., β6 Adaptij)). The true effect of
adaptation is the interaction with temperature change, given by the β8 term in
Eq. 1, which is included in all subsequent analyses. This term captures the effect of
management changes that are not beneficial today but that will become beneficial
under a changed climate, the standard definition of adaptation.

Finally, the functions f1ðÞ and f2ðÞ are concave, allowing for a declining
marginal effect of CO2, consistent with a number of field studies20, 38. Specifically,
the function takes the form f ΔCO2ij

� � ¼ ΔCO2ij

ΔCO2ijþA where A is a free parameter set at
100 ppm for C3 crops and at 50 ppm for C4 crops based on a comparison of the R2

across models using multiple possible values. The changes in CO2 are adjusted so
that all are relative to a modern baseline of 360 ppm (the most common baseline
value for studies included in the analysis).

In addition to Eq. 1, our preferred specification, we investigate the effects of
several alternate specifications. Specifically we first investigate whether newer
studies (publication date of 2005 or later) give a different temperature response
compared to the full sample; second investigate the effect of individual agronomic
adaptations, specifically changing cultivar and planting date; third allow the effect
of temperature to differ depending on whether the study was a process-based or
empirical study; fourth add a ΔT3

ijk term in the specification; and finally perform

F-tests on individual terms within the model. These findings are documented in the
SI (Supplementary Figs 18–20, Supplementary Tables 6 and 7). They do not
substantially alter our estimates of the yield response to climate change.

Gridded yield changes. After estimating Eq. 1, we developed global gridded yield
change scenarios for the four major crops (maize, wheat, rice, and soybeans).
Although IAM damage functions are typically based on global temperature
changes, it is important to account for the fact that local warming may differ
significantly from global warming in estimating impacts. Local yield impacts will
depend on local temperature changes, which scale in a predictable way with global
temperature change. We estimate this scaling using the CMIP5 multi-model
ensemble mean for the high emissions scenario RCP 8.539. For each grid cell, we
take the change in temperature between a future (2035–2065) and baseline
(1861–1900) period and divide by the mean global warming over this time period,
giving the pattern scaling relationship between global and local temperature change
for each grid cell (Supplementary Fig. 21). For a given increase in global mean
temperature, warming is larger over land than over the ocean and at high latitudes
compared to the tropics.

These gridded temperature changes are combined with the yield–temperature
response function estimated using Eq. 1 and baseline growing-season temperature
to give yield changes at different levels of global warming. We calculate yield
changes for warming of 1, 2, and 3 degree Celsius including the estimated effect of
on-farm adaptation. Any predicted yield losses >100% are set to losses of 99%. The
CO2 fertilization effect is included for all crops. CO2 concentrations for a given
level of global temperature change are determined based on a fitted quadratic
relationship between global temperature change and CO2 concentrations from the
RCP 8.5 CMIP5 multi-model ensemble mean (adjusted R2> 0.999, 98 degrees of
freedom).

AgMIP GGCMI ensemble. The AgMIP GGCMI is the one other source of global,
multi-crop, multi-model yield responses and so we compare the results of our
meta-analysis against these results. This ensemble of gridded crop model outputs
includes up to seven process-based crop models, run using five General Circulation
Models (GCMs)18. Yield changes are calculated relative to the 1981–2000 average.
In order to determine yield changes for specific levels of temperature change (1–3 °
C), we find the year in which warming passes each specific level for each GCM for
the RCP 8.5 emissions scenario (taking the average of multiple ensemble members,
if available) and take the 11-year yield average around that year40. We determine
irrigated areas using crop-specific irrigation areas from Monfreda et al37. and use
irrigated results for cells where irrigated crop area exceeds non-irrigated crop area.
We use runs including CO2 fertilization for all analyses.

The results reported in the main text use a preferred AgMIP ensemble that only
includes models that explicitly represent nitrogen stress (EPIC, GEPIC, PEGASUS,
and pDSSAT). We believe these results are preferred given crop response to
changing temperature and, in particular, CO2 conditions is known to depend on
nutrient availability41, 42 and crops in many areas of the world are currently under-
fertilized43. Moreover, the distinction between models based on representation of
nitrogen stress has been identified as significant in understanding ensemble results
by the AgMIP team18. Results in the main text should therefore be interpreted as
impacts assuming continuation of current nutrient management practices. In the
SI, we report results using the full AgMIP ensemble, which differ substantially from
those of the restricted ensemble (Supplementary Fig. 11 and Supplementary
Table 5). For both ensembles, the mean is calculated as a simple mean of yield
change for each level of warming using all crop model×GCM combinations.

Welfare consequences of yield changes. To estimate the economic implications
of warming-induced yield shocks, we use the Global Trade Analysis Project
(GTAP) general equilibrium model and its accompanying database23, 24. GTAP is a
widely used, comparative static general equilibrium model that exhaustively tracks
bilateral trade flows between all countries in the world and explicitly models the
consumption and production for all commodities of each national economy.
Producers are assumed to maximize profits, while consumers maximize utility.
Factor market clearing requires that supply equal demand for agricultural and non-
agricultural skilled and unskilled labor and capital, natural resources, and agri-
cultural land, and adjustments in each of these markets in response to the climate
change shocks determines the resulting wage and rental rate impacts. The model
has been validated with respect to its performance in predicting the price impacts
of exogenous supply side shocks, such as those that might result from global
climate change44. Additional information on the structure of GTAP is given in
Supplementary Fig. 22.

GTAP captures a number of dimensions important for determining the welfare
implications of climate change impacts on agriculture. These include the shifting of
land area between crops, potential intensification of production, shifting of
consumption between commodities and sources of goods, and the adjustment of
global trade patterns (Supplementary Table 2). For the purposes of this study,
GTAP is run with 140 regions and 14 commodities—with the latter designed to
place an emphasis on the agricultural sector. Productivity changes are introduced
to GTAP as a Hicks-neutral shift in the production function such that farmers
employing the same combination of inputs would experience X% lower output in
the presence of a X% climate-driven yield shock.
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Wheat and rice are modeled as individual sectors within each region. Maize is
part of the coarse grains sector and soybeans is part of the oilseeds sector. Impacts
in these sectors are scaled downwards based on the relative importance of maize
and soybeans for sectoral production in each region. Yields of crops not covered in
the meta-analysis (coarse grains nec., oilseeds nec., sugarcane, cotton, and fruits
and vegetables) are not altered. Absent normalization, this will lead to an
underestimate of potential climate impacts, since these other sectors are also likely
to be affected by climate change. Therefore, in the results that follow, welfare
changes are normalized by the value of production of the crops covered in the
meta-analysis. Global and regional welfare changes are measured in terms of
equivalent variation and are decomposed into the three components shown in
Fig. 2 following Hertel and Randhir25.

In order to explore uncertainty in the economic modeling, we perform a
systematic sensitivity analysis of GTAP output to perturbations in four sets of key
parameters governing the supply and demand behavior in this model. On the
supply side, these pertain to the parameters determining the intensive (substitution
of other inputs for land) and extensive (land supply elasticities) margins of crop
supply response to commodity price. On the demand side, these are the parameters
that govern the price elasticity of demand for food and the price elasticity of
demand for imports—which in turn govern the price responsiveness of export
demands. Parameters vary by commodity/sector. We develop symmetric,
triangular distributions for each parameter value, based on estimates in the
literature (Supplementary Table 8) and sample from these distributions using the
Gaussian Quadrature approach implemented by Arndt45. This approach has been
shown to perform nearly as well as a complete Monte Carlo analysis in the context
of CGE modeling, but it is much more efficient, requiring far fewer model
solutions46. Due to the computational burden of conducting a complete, systematic
sensitivity analysis in the 140 region model, we collapse those regions down to the
16 FUND regions for purposes of this robustness check. The resulting mean and
standard deviations for regional welfare are reported in Supplementary Fig. 13.
Because on the dominance of direct effects (i.e., the impact of climate change in
yields) in many of the regions’ total welfare, variation of the economic parameters
has a modest impact on the underlying uncertainty.

Calculating the social cost of carbon. Results of the economic modeling are used
to create damage functions that relate changes in economic welfare (measured as
percentage of the value of agricultural sector output) with temperature change.
GTAP results are aggregated from the country level to the 16 FUND regions.
Damage functions are based on a linear interpolation between the point-estimates
of welfare changes at 1, 2, and 3 °C of warming and then a linear extrapolation
beyond 3 °C (results reported in main text) or on a quadratic fitted through the
point estimates (Supplementary Table 5).

These agricultural damage functions are then incorporated into a sectorally
and regionally disaggregated SCC damage module based on the FUND model,
keeping the rest of the impact sectors unchanged28, 47. Damage functions in the
module use the central parameter estimates of FUND. The full FUND model
includes probability distributions over many parameters and is designed to be
run in a Monte Carlo mode47. This uncertainty is not dealt with in this paper,
meaning uncertainty reported in the SCC reflects only the uncertainty in the
yield response derived from the meta-analysis. The damage module is driven by
a standardized socio-economic and emissions pathway and climate model28. We
use a business-as-usual emissions scenario (Scenario 2 in ref. 3), paired with the
DICE climate module48. This produces a warming of 4 °C of warming above
preindustrial by 2100. The SCC is calculated by adding a 1 Gt pulse of CO2

emissions to this reference emissions path in 2020 and comparing the time path
of damages along the perturbed pathway to the reference case. Then these
incremental damages (or benefits) are discounted back to 2020 at a 3% discount
rate and normalized by the CO2 pulse volume to give the SCC. Results using
alternative discount rates are given in Supplementary Table 5. As the SCC is
additive, it can be decomposed by sector and region, allowing a detailed
comparison of the regional impacts in agriculture between FUND and the
revised regional damage functions.

Code availability. Code for GTAP is open source and available for download at
http://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=2458.
The FUND model is open source and available at http://www.fund-model.org/
source-code. All other code is available from the authors upon request.

Data availability. Data for the meta-analysis is available at ag-impacts.org.
Gridded yield changes based on the meta-analysis are available at 10.6084/m9.
figshare.5417548. Welfare changes for GTAP regions based on yield shocks from
both the meta-analysis and AgMIP are available at 10.6084/m9.figshare.5417557
and 10.6084/m9.figshare.5417560. Other data are available from the authors upon
request.
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